1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
|
// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
// Gimli is a 384-bit permutation designed to achieve high security with high
// performance across a broad range of platforms, including 64-bit Intel/AMD
// server CPUs, 64-bit and 32-bit ARM smartphone CPUs, 32-bit ARM
// microcontrollers, 8-bit AVR microcontrollers, FPGAs, ASICs without
// side-channel protection, and ASICs with side-channel protection.
//
// https://gimli.cr.yp.to/
// https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/gimli-spec.pdf
const std = @import("../std.zig");
const mem = std.mem;
const math = std.math;
const debug = std.debug;
const assert = std.debug.assert;
const testing = std.testing;
const htest = @import("test.zig");
const Vector = std.meta.Vector;
pub const State = struct {
pub const BLOCKBYTES = 48;
pub const RATE = 16;
data: [BLOCKBYTES / 4]u32 align(16),
const Self = @This();
pub fn init(initial_state: [State.BLOCKBYTES]u8) Self {
var data: [BLOCKBYTES / 4]u32 = undefined;
var i: usize = 0;
while (i < State.BLOCKBYTES) : (i += 4) {
data[i / 4] = mem.readIntNative(u32, initial_state[i..][0..4]);
}
return Self{ .data = data };
}
/// TODO follow the span() convention instead of having this and `toSliceConst`
pub fn toSlice(self: *Self) *[BLOCKBYTES]u8 {
return mem.asBytes(&self.data);
}
/// TODO follow the span() convention instead of having this and `toSlice`
pub fn toSliceConst(self: *const Self) *const [BLOCKBYTES]u8 {
return mem.asBytes(&self.data);
}
inline fn endianSwap(self: *Self) void {
for (self.data) |*w| {
w.* = mem.littleToNative(u32, w.*);
}
}
fn permute_unrolled(self: *Self) void {
self.endianSwap();
const state = &self.data;
comptime var round = @as(u32, 24);
inline while (round > 0) : (round -= 1) {
var column = @as(usize, 0);
while (column < 4) : (column += 1) {
const x = math.rotl(u32, state[column], 24);
const y = math.rotl(u32, state[4 + column], 9);
const z = state[8 + column];
state[8 + column] = ((x ^ (z << 1)) ^ ((y & z) << 2));
state[4 + column] = ((y ^ x) ^ ((x | z) << 1));
state[column] = ((z ^ y) ^ ((x & y) << 3));
}
switch (round & 3) {
0 => {
mem.swap(u32, &state[0], &state[1]);
mem.swap(u32, &state[2], &state[3]);
state[0] ^= round | 0x9e377900;
},
2 => {
mem.swap(u32, &state[0], &state[2]);
mem.swap(u32, &state[1], &state[3]);
},
else => {},
}
}
self.endianSwap();
}
fn permute_small(self: *Self) void {
self.endianSwap();
const state = &self.data;
var round = @as(u32, 24);
while (round > 0) : (round -= 1) {
var column = @as(usize, 0);
while (column < 4) : (column += 1) {
const x = math.rotl(u32, state[column], 24);
const y = math.rotl(u32, state[4 + column], 9);
const z = state[8 + column];
state[8 + column] = ((x ^ (z << 1)) ^ ((y & z) << 2));
state[4 + column] = ((y ^ x) ^ ((x | z) << 1));
state[column] = ((z ^ y) ^ ((x & y) << 3));
}
switch (round & 3) {
0 => {
mem.swap(u32, &state[0], &state[1]);
mem.swap(u32, &state[2], &state[3]);
state[0] ^= round | 0x9e377900;
},
2 => {
mem.swap(u32, &state[0], &state[2]);
mem.swap(u32, &state[1], &state[3]);
},
else => {},
}
}
self.endianSwap();
}
const Lane = Vector(4, u32);
inline fn shift(x: Lane, comptime n: comptime_int) Lane {
return x << @splat(4, @as(u5, n));
}
fn permute_vectorized(self: *Self) void {
self.endianSwap();
const state = &self.data;
var x = Lane{ state[0], state[1], state[2], state[3] };
var y = Lane{ state[4], state[5], state[6], state[7] };
var z = Lane{ state[8], state[9], state[10], state[11] };
var round = @as(u32, 24);
while (round > 0) : (round -= 1) {
x = math.rotl(Lane, x, 24);
y = math.rotl(Lane, y, 9);
const newz = x ^ shift(z, 1) ^ shift(y & z, 2);
const newy = y ^ x ^ shift(x | z, 1);
const newx = z ^ y ^ shift(x & y, 3);
x = newx;
y = newy;
z = newz;
switch (round & 3) {
0 => {
x = @shuffle(u32, x, undefined, [_]i32{ 1, 0, 3, 2 });
x[0] ^= round | 0x9e377900;
},
2 => {
x = @shuffle(u32, x, undefined, [_]i32{ 2, 3, 0, 1 });
},
else => {},
}
}
comptime var i: usize = 0;
inline while (i < 4) : (i += 1) {
state[0 + i] = x[i];
state[4 + i] = y[i];
state[8 + i] = z[i];
}
self.endianSwap();
}
pub const permute = if (std.Target.current.cpu.arch == .x86_64) impl: {
break :impl permute_vectorized;
} else if (std.builtin.mode == .ReleaseSmall) impl: {
break :impl permute_small;
} else impl: {
break :impl permute_unrolled;
};
pub fn squeeze(self: *Self, out: []u8) void {
var i = @as(usize, 0);
while (i + RATE <= out.len) : (i += RATE) {
self.permute();
mem.copy(u8, out[i..], self.toSliceConst()[0..RATE]);
}
const leftover = out.len - i;
if (leftover != 0) {
self.permute();
mem.copy(u8, out[i..], self.toSliceConst()[0..leftover]);
}
}
};
test "permute" {
// test vector from gimli-20170627
const tv_input = [3][4]u32{
[4]u32{ 0x00000000, 0x9e3779ba, 0x3c6ef37a, 0xdaa66d46 },
[4]u32{ 0x78dde724, 0x1715611a, 0xb54cdb2e, 0x53845566 },
[4]u32{ 0xf1bbcfc8, 0x8ff34a5a, 0x2e2ac522, 0xcc624026 },
};
var input: [48]u8 = undefined;
var i: usize = 0;
while (i < 12) : (i += 1) {
mem.writeIntLittle(u32, input[i * 4 ..][0..4], tv_input[i / 4][i % 4]);
}
var state = State.init(input);
state.permute();
const tv_output = [3][4]u32{
[4]u32{ 0xba11c85a, 0x91bad119, 0x380ce880, 0xd24c2c68 },
[4]u32{ 0x3eceffea, 0x277a921c, 0x4f73a0bd, 0xda5a9cd8 },
[4]u32{ 0x84b673f0, 0x34e52ff7, 0x9e2bef49, 0xf41bb8d6 },
};
var expected_output: [48]u8 = undefined;
i = 0;
while (i < 12) : (i += 1) {
mem.writeIntLittle(u32, expected_output[i * 4 ..][0..4], tv_output[i / 4][i % 4]);
}
testing.expectEqualSlices(u8, state.toSliceConst(), expected_output[0..]);
}
pub const Hash = struct {
state: State,
buf_off: usize,
pub const block_length = State.RATE;
pub const digest_length = 32;
pub const Options = struct {};
const Self = @This();
pub fn init(options: Options) Self {
return Self{
.state = State{ .data = [_]u32{0} ** (State.BLOCKBYTES / 4) },
.buf_off = 0,
};
}
/// Also known as 'absorb'
pub fn update(self: *Self, data: []const u8) void {
const buf = self.state.toSlice();
var in = data;
while (in.len > 0) {
const left = State.RATE - self.buf_off;
const ps = math.min(in.len, left);
for (buf[self.buf_off .. self.buf_off + ps]) |*p, i| {
p.* ^= in[i];
}
self.buf_off += ps;
in = in[ps..];
if (self.buf_off == State.RATE) {
self.state.permute();
self.buf_off = 0;
}
}
}
/// Finish the current hashing operation, writing the hash to `out`
///
/// From 4.9 "Application to hashing"
/// By default, Gimli-Hash provides a fixed-length output of 32 bytes
/// (the concatenation of two 16-byte blocks). However, Gimli-Hash can
/// be used as an “extendable one-way function” (XOF).
pub fn final(self: *Self, out: []u8) void {
const buf = self.state.toSlice();
// XOR 1 into the next byte of the state
buf[self.buf_off] ^= 1;
// XOR 1 into the last byte of the state, position 47.
buf[buf.len - 1] ^= 1;
self.state.squeeze(out);
}
};
pub fn hash(out: []u8, in: []const u8, options: Hash.Options) void {
var st = Hash.init(options);
st.update(in);
st.final(out);
}
test "hash" {
// a test vector (30) from NIST KAT submission.
var msg: [58 / 2]u8 = undefined;
try std.fmt.hexToBytes(&msg, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C");
var md: [32]u8 = undefined;
hash(&md, &msg, .{});
htest.assertEqual("1C9A03DC6A5DDC5444CFC6F4B154CFF5CF081633B2CEA4D7D0AE7CCFED5AAA44", &md);
}
test "hash test vector 17" {
var msg: [32 / 2]u8 = undefined;
try std.fmt.hexToBytes(&msg, "000102030405060708090A0B0C0D0E0F");
var md: [32]u8 = undefined;
hash(&md, &msg, .{});
htest.assertEqual("404C130AF1B9023A7908200919F690FFBB756D5176E056FFDE320016A37C7282", &md);
}
test "hash test vector 33" {
var msg: [32]u8 = undefined;
try std.fmt.hexToBytes(&msg, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F");
var md: [32]u8 = undefined;
hash(&md, &msg, .{});
htest.assertEqual("A8F4FA28708BDA7EFB4C1914CA4AFA9E475B82D588D36504F87DBB0ED9AB3C4B", &md);
}
pub const Aead = struct {
pub const tag_length = State.RATE;
pub const nonce_length = 16;
pub const key_length = 32;
/// ad: Associated Data
/// npub: public nonce
/// k: private key
fn init(ad: []const u8, npub: [nonce_length]u8, k: [key_length]u8) State {
var state = State{
.data = undefined,
};
const buf = state.toSlice();
// Gimli-Cipher initializes a 48-byte Gimli state to a 16-byte nonce
// followed by a 32-byte key.
assert(npub.len + k.len == State.BLOCKBYTES);
std.mem.copy(u8, buf[0..npub.len], &npub);
std.mem.copy(u8, buf[npub.len .. npub.len + k.len], &k);
// It then applies the Gimli permutation.
state.permute();
{
// Gimli-Cipher then handles each block of associated data, including
// exactly one final non-full block, in the same way as Gimli-Hash.
var data = ad;
while (data.len >= State.RATE) : (data = data[State.RATE..]) {
for (buf[0..State.RATE]) |*p, i| {
p.* ^= data[i];
}
state.permute();
}
for (buf[0..data.len]) |*p, i| {
p.* ^= data[i];
}
// XOR 1 into the next byte of the state
buf[data.len] ^= 1;
// XOR 1 into the last byte of the state, position 47.
buf[buf.len - 1] ^= 1;
state.permute();
}
return state;
}
/// c: ciphertext: output buffer should be of size m.len
/// tag: authentication tag: output MAC
/// m: message
/// ad: Associated Data
/// npub: public nonce
/// k: private key
pub fn encrypt(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: []const u8, npub: [nonce_length]u8, k: [key_length]u8) void {
assert(c.len == m.len);
var state = Aead.init(ad, npub, k);
const buf = state.toSlice();
// Gimli-Cipher then handles each block of plaintext, including
// exactly one final non-full block, in the same way as Gimli-Hash.
// Whenever a plaintext byte is XORed into a state byte, the new state
// byte is output as ciphertext.
var in = m;
var out = c;
while (in.len >= State.RATE) : ({
in = in[State.RATE..];
out = out[State.RATE..];
}) {
for (in[0..State.RATE]) |v, i| {
buf[i] ^= v;
}
mem.copy(u8, out[0..State.RATE], buf[0..State.RATE]);
state.permute();
}
for (in[0..]) |v, i| {
buf[i] ^= v;
out[i] = buf[i];
}
// XOR 1 into the next byte of the state
buf[in.len] ^= 1;
// XOR 1 into the last byte of the state, position 47.
buf[buf.len - 1] ^= 1;
state.permute();
// After the final non-full block of plaintext, the first 16 bytes
// of the state are output as an authentication tag.
std.mem.copy(u8, tag, buf[0..State.RATE]);
}
/// m: message: output buffer should be of size c.len
/// c: ciphertext
/// tag: authentication tag
/// ad: Associated Data
/// npub: public nonce
/// k: private key
/// NOTE: the check of the authentication tag is currently not done in constant time
pub fn decrypt(m: []u8, c: []const u8, tag: [tag_length]u8, ad: []const u8, npub: [nonce_length]u8, k: [key_length]u8) !void {
assert(c.len == m.len);
var state = Aead.init(ad, npub, k);
const buf = state.toSlice();
var in = c;
var out = m;
while (in.len >= State.RATE) : ({
in = in[State.RATE..];
out = out[State.RATE..];
}) {
const d = in[0..State.RATE].*;
for (d) |v, i| {
out[i] = buf[i] ^ v;
}
mem.copy(u8, buf[0..State.RATE], d[0..State.RATE]);
state.permute();
}
for (buf[0..in.len]) |*p, i| {
const d = in[i];
out[i] = p.* ^ d;
p.* = d;
}
// XOR 1 into the next byte of the state
buf[in.len] ^= 1;
// XOR 1 into the last byte of the state, position 47.
buf[buf.len - 1] ^= 1;
state.permute();
// After the final non-full block of plaintext, the first 16 bytes
// of the state are the authentication tag.
// TODO: use a constant-time equality check here, see https://github.com/ziglang/zig/issues/1776
if (!mem.eql(u8, buf[0..State.RATE], &tag)) {
@memset(m.ptr, undefined, m.len);
return error.InvalidMessage;
}
}
};
test "cipher" {
var key: [32]u8 = undefined;
try std.fmt.hexToBytes(&key, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F");
var nonce: [16]u8 = undefined;
try std.fmt.hexToBytes(&nonce, "000102030405060708090A0B0C0D0E0F");
{ // test vector (1) from NIST KAT submission.
const ad: [0]u8 = undefined;
const pt: [0]u8 = undefined;
var ct: [pt.len]u8 = undefined;
var tag: [16]u8 = undefined;
Aead.encrypt(&ct, &tag, &pt, &ad, nonce, key);
htest.assertEqual("", &ct);
htest.assertEqual("14DA9BB7120BF58B985A8E00FDEBA15B", &tag);
var pt2: [pt.len]u8 = undefined;
try Aead.decrypt(&pt2, &ct, tag, &ad, nonce, key);
testing.expectEqualSlices(u8, &pt, &pt2);
}
{ // test vector (34) from NIST KAT submission.
const ad: [0]u8 = undefined;
var pt: [2 / 2]u8 = undefined;
try std.fmt.hexToBytes(&pt, "00");
var ct: [pt.len]u8 = undefined;
var tag: [16]u8 = undefined;
Aead.encrypt(&ct, &tag, &pt, &ad, nonce, key);
htest.assertEqual("7F", &ct);
htest.assertEqual("80492C317B1CD58A1EDC3A0D3E9876FC", &tag);
var pt2: [pt.len]u8 = undefined;
try Aead.decrypt(&pt2, &ct, tag, &ad, nonce, key);
testing.expectEqualSlices(u8, &pt, &pt2);
}
{ // test vector (106) from NIST KAT submission.
var ad: [12 / 2]u8 = undefined;
try std.fmt.hexToBytes(&ad, "000102030405");
var pt: [6 / 2]u8 = undefined;
try std.fmt.hexToBytes(&pt, "000102");
var ct: [pt.len]u8 = undefined;
var tag: [16]u8 = undefined;
Aead.encrypt(&ct, &tag, &pt, &ad, nonce, key);
htest.assertEqual("484D35", &ct);
htest.assertEqual("030BBEA23B61C00CED60A923BDCF9147", &tag);
var pt2: [pt.len]u8 = undefined;
try Aead.decrypt(&pt2, &ct, tag, &ad, nonce, key);
testing.expectEqualSlices(u8, &pt, &pt2);
}
{ // test vector (790) from NIST KAT submission.
var ad: [60 / 2]u8 = undefined;
try std.fmt.hexToBytes(&ad, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D");
var pt: [46 / 2]u8 = undefined;
try std.fmt.hexToBytes(&pt, "000102030405060708090A0B0C0D0E0F10111213141516");
var ct: [pt.len]u8 = undefined;
var tag: [16]u8 = undefined;
Aead.encrypt(&ct, &tag, &pt, &ad, nonce, key);
htest.assertEqual("6815B4A0ECDAD01596EAD87D9E690697475D234C6A13D1", &ct);
htest.assertEqual("DFE23F1642508290D68245279558B2FB", &tag);
var pt2: [pt.len]u8 = undefined;
try Aead.decrypt(&pt2, &ct, tag, &ad, nonce, key);
testing.expectEqualSlices(u8, &pt, &pt2);
}
{ // test vector (1057) from NIST KAT submission.
const ad: [0]u8 = undefined;
var pt: [64 / 2]u8 = undefined;
try std.fmt.hexToBytes(&pt, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F");
var ct: [pt.len]u8 = undefined;
var tag: [16]u8 = undefined;
Aead.encrypt(&ct, &tag, &pt, &ad, nonce, key);
htest.assertEqual("7F8A2CF4F52AA4D6B2E74105C30A2777B9D0C8AEFDD555DE35861BD3011F652F", &ct);
htest.assertEqual("7256456FA935AC34BBF55AE135F33257", &tag);
var pt2: [pt.len]u8 = undefined;
try Aead.decrypt(&pt2, &ct, tag, &ad, nonce, key);
testing.expectEqualSlices(u8, &pt, &pt2);
}
}
|