1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
// Based on Go stdlib implementation
const std = @import("../../std.zig");
const math = std.math;
const mem = std.mem;
const BlockVec = [4]u32;
/// A single AES block.
pub const Block = struct {
pub const block_length: usize = 16;
/// Internal representation of a block.
repr: BlockVec align(16),
/// Convert a byte sequence into an internal representation.
pub inline fn fromBytes(bytes: *const [16]u8) Block {
const s0 = mem.readIntBig(u32, bytes[0..4]);
const s1 = mem.readIntBig(u32, bytes[4..8]);
const s2 = mem.readIntBig(u32, bytes[8..12]);
const s3 = mem.readIntBig(u32, bytes[12..16]);
return Block{ .repr = BlockVec{ s0, s1, s2, s3 } };
}
/// Convert the internal representation of a block into a byte sequence.
pub inline fn toBytes(block: Block) [16]u8 {
var bytes: [16]u8 = undefined;
mem.writeIntBig(u32, bytes[0..4], block.repr[0]);
mem.writeIntBig(u32, bytes[4..8], block.repr[1]);
mem.writeIntBig(u32, bytes[8..12], block.repr[2]);
mem.writeIntBig(u32, bytes[12..16], block.repr[3]);
return bytes;
}
/// XOR the block with a byte sequence.
pub inline fn xorBytes(block: Block, bytes: *const [16]u8) [16]u8 {
const block_bytes = block.toBytes();
var x: [16]u8 = undefined;
comptime var i: usize = 0;
inline while (i < 16) : (i += 1) {
x[i] = block_bytes[i] ^ bytes[i];
}
return x;
}
/// Encrypt a block with a round key.
pub inline fn encrypt(block: Block, round_key: Block) Block {
const s0 = block.repr[0];
const s1 = block.repr[1];
const s2 = block.repr[2];
const s3 = block.repr[3];
const t0 = round_key.repr[0] ^ table_encrypt[0][@truncate(u8, s0 >> 24)] ^ table_encrypt[1][@truncate(u8, s1 >> 16)] ^ table_encrypt[2][@truncate(u8, s2 >> 8)] ^ table_encrypt[3][@truncate(u8, s3)];
const t1 = round_key.repr[1] ^ table_encrypt[0][@truncate(u8, s1 >> 24)] ^ table_encrypt[1][@truncate(u8, s2 >> 16)] ^ table_encrypt[2][@truncate(u8, s3 >> 8)] ^ table_encrypt[3][@truncate(u8, s0)];
const t2 = round_key.repr[2] ^ table_encrypt[0][@truncate(u8, s2 >> 24)] ^ table_encrypt[1][@truncate(u8, s3 >> 16)] ^ table_encrypt[2][@truncate(u8, s0 >> 8)] ^ table_encrypt[3][@truncate(u8, s1)];
const t3 = round_key.repr[3] ^ table_encrypt[0][@truncate(u8, s3 >> 24)] ^ table_encrypt[1][@truncate(u8, s0 >> 16)] ^ table_encrypt[2][@truncate(u8, s1 >> 8)] ^ table_encrypt[3][@truncate(u8, s2)];
return Block{ .repr = BlockVec{ t0, t1, t2, t3 } };
}
/// Encrypt a block with the last round key.
pub inline fn encryptLast(block: Block, round_key: Block) Block {
const t0 = block.repr[0];
const t1 = block.repr[1];
const t2 = block.repr[2];
const t3 = block.repr[3];
// Last round uses s-box directly and XORs to produce output.
var s0 = @as(u32, sbox_encrypt[t0 >> 24]) << 24 | @as(u32, sbox_encrypt[t1 >> 16 & 0xff]) << 16 | @as(u32, sbox_encrypt[t2 >> 8 & 0xff]) << 8 | @as(u32, sbox_encrypt[t3 & 0xff]);
var s1 = @as(u32, sbox_encrypt[t1 >> 24]) << 24 | @as(u32, sbox_encrypt[t2 >> 16 & 0xff]) << 16 | @as(u32, sbox_encrypt[t3 >> 8 & 0xff]) << 8 | @as(u32, sbox_encrypt[t0 & 0xff]);
var s2 = @as(u32, sbox_encrypt[t2 >> 24]) << 24 | @as(u32, sbox_encrypt[t3 >> 16 & 0xff]) << 16 | @as(u32, sbox_encrypt[t0 >> 8 & 0xff]) << 8 | @as(u32, sbox_encrypt[t1 & 0xff]);
var s3 = @as(u32, sbox_encrypt[t3 >> 24]) << 24 | @as(u32, sbox_encrypt[t0 >> 16 & 0xff]) << 16 | @as(u32, sbox_encrypt[t1 >> 8 & 0xff]) << 8 | @as(u32, sbox_encrypt[t2 & 0xff]);
s0 ^= round_key.repr[0];
s1 ^= round_key.repr[1];
s2 ^= round_key.repr[2];
s3 ^= round_key.repr[3];
return Block{ .repr = BlockVec{ s0, s1, s2, s3 } };
}
/// Decrypt a block with a round key.
pub inline fn decrypt(block: Block, round_key: Block) Block {
const s0 = block.repr[0];
const s1 = block.repr[1];
const s2 = block.repr[2];
const s3 = block.repr[3];
const t0 = round_key.repr[0] ^ table_decrypt[0][@truncate(u8, s0 >> 24)] ^ table_decrypt[1][@truncate(u8, s3 >> 16)] ^ table_decrypt[2][@truncate(u8, s2 >> 8)] ^ table_decrypt[3][@truncate(u8, s1)];
const t1 = round_key.repr[1] ^ table_decrypt[0][@truncate(u8, s1 >> 24)] ^ table_decrypt[1][@truncate(u8, s0 >> 16)] ^ table_decrypt[2][@truncate(u8, s3 >> 8)] ^ table_decrypt[3][@truncate(u8, s2)];
const t2 = round_key.repr[2] ^ table_decrypt[0][@truncate(u8, s2 >> 24)] ^ table_decrypt[1][@truncate(u8, s1 >> 16)] ^ table_decrypt[2][@truncate(u8, s0 >> 8)] ^ table_decrypt[3][@truncate(u8, s3)];
const t3 = round_key.repr[3] ^ table_decrypt[0][@truncate(u8, s3 >> 24)] ^ table_decrypt[1][@truncate(u8, s2 >> 16)] ^ table_decrypt[2][@truncate(u8, s1 >> 8)] ^ table_decrypt[3][@truncate(u8, s0)];
return Block{ .repr = BlockVec{ t0, t1, t2, t3 } };
}
/// Decrypt a block with the last round key.
pub inline fn decryptLast(block: Block, round_key: Block) Block {
const t0 = block.repr[0];
const t1 = block.repr[1];
const t2 = block.repr[2];
const t3 = block.repr[3];
// Last round uses s-box directly and XORs to produce output.
var s0 = @as(u32, sbox_decrypt[t0 >> 24]) << 24 | @as(u32, sbox_decrypt[t3 >> 16 & 0xff]) << 16 | @as(u32, sbox_decrypt[t2 >> 8 & 0xff]) << 8 | @as(u32, sbox_decrypt[t1 & 0xff]);
var s1 = @as(u32, sbox_decrypt[t1 >> 24]) << 24 | @as(u32, sbox_decrypt[t0 >> 16 & 0xff]) << 16 | @as(u32, sbox_decrypt[t3 >> 8 & 0xff]) << 8 | @as(u32, sbox_decrypt[t2 & 0xff]);
var s2 = @as(u32, sbox_decrypt[t2 >> 24]) << 24 | @as(u32, sbox_decrypt[t1 >> 16 & 0xff]) << 16 | @as(u32, sbox_decrypt[t0 >> 8 & 0xff]) << 8 | @as(u32, sbox_decrypt[t3 & 0xff]);
var s3 = @as(u32, sbox_decrypt[t3 >> 24]) << 24 | @as(u32, sbox_decrypt[t2 >> 16 & 0xff]) << 16 | @as(u32, sbox_decrypt[t1 >> 8 & 0xff]) << 8 | @as(u32, sbox_decrypt[t0 & 0xff]);
s0 ^= round_key.repr[0];
s1 ^= round_key.repr[1];
s2 ^= round_key.repr[2];
s3 ^= round_key.repr[3];
return Block{ .repr = BlockVec{ s0, s1, s2, s3 } };
}
/// Apply the bitwise XOR operation to the content of two blocks.
pub inline fn xorBlocks(block1: Block, block2: Block) Block {
var x: BlockVec = undefined;
comptime var i = 0;
inline while (i < 4) : (i += 1) {
x[i] = block1.repr[i] ^ block2.repr[i];
}
return Block{ .repr = x };
}
/// Apply the bitwise AND operation to the content of two blocks.
pub inline fn andBlocks(block1: Block, block2: Block) Block {
var x: BlockVec = undefined;
comptime var i = 0;
inline while (i < 4) : (i += 1) {
x[i] = block1.repr[i] & block2.repr[i];
}
return Block{ .repr = x };
}
/// Apply the bitwise OR operation to the content of two blocks.
pub inline fn orBlocks(block1: Block, block2: Block) Block {
var x: BlockVec = undefined;
comptime var i = 0;
inline while (i < 4) : (i += 1) {
x[i] = block1.repr[i] | block2.repr[i];
}
return Block{ .repr = x };
}
/// Perform operations on multiple blocks in parallel.
pub const parallel = struct {
/// The recommended number of AES encryption/decryption to perform in parallel for the chosen implementation.
pub const optimal_parallel_blocks = 1;
/// Encrypt multiple blocks in parallel, each their own round key.
pub fn encryptParallel(comptime count: usize, blocks: [count]Block, round_keys: [count]Block) [count]Block {
var i = 0;
var out: [count]Block = undefined;
while (i < count) : (i += 1) {
out[i] = blocks[i].encrypt(round_keys[i]);
}
return out;
}
/// Decrypt multiple blocks in parallel, each their own round key.
pub fn decryptParallel(comptime count: usize, blocks: [count]Block, round_keys: [count]Block) [count]Block {
var i = 0;
var out: [count]Block = undefined;
while (i < count) : (i += 1) {
out[i] = blocks[i].decrypt(round_keys[i]);
}
return out;
}
/// Encrypt multiple blocks in parallel with the same round key.
pub fn encryptWide(comptime count: usize, blocks: [count]Block, round_key: Block) [count]Block {
var i = 0;
var out: [count]Block = undefined;
while (i < count) : (i += 1) {
out[i] = blocks[i].encrypt(round_key);
}
return out;
}
/// Decrypt multiple blocks in parallel with the same round key.
pub fn decryptWide(comptime count: usize, blocks: [count]Block, round_key: Block) [count]Block {
var i = 0;
var out: [count]Block = undefined;
while (i < count) : (i += 1) {
out[i] = blocks[i].decrypt(round_key);
}
return out;
}
/// Encrypt multiple blocks in parallel with the same last round key.
pub fn encryptLastWide(comptime count: usize, blocks: [count]Block, round_key: Block) [count]Block {
var i = 0;
var out: [count]Block = undefined;
while (i < count) : (i += 1) {
out[i] = blocks[i].encryptLast(round_key);
}
return out;
}
/// Decrypt multiple blocks in parallel with the same last round key.
pub fn decryptLastWide(comptime count: usize, blocks: [count]Block, round_key: Block) [count]Block {
var i = 0;
var out: [count]Block = undefined;
while (i < count) : (i += 1) {
out[i] = blocks[i].decryptLast(round_key);
}
return out;
}
};
};
fn KeySchedule(comptime Aes: type) type {
std.debug.assert(Aes.rounds == 10 or Aes.rounds == 14);
const key_length = Aes.key_bits / 8;
const rounds = Aes.rounds;
return struct {
const Self = @This();
const words_in_key = key_length / 4;
round_keys: [rounds + 1]Block,
// Key expansion algorithm. See FIPS-197, Figure 11.
fn expandKey(key: [key_length]u8) Self {
const subw = struct {
// Apply sbox_encrypt to each byte in w.
fn func(w: u32) u32 {
return @as(u32, sbox_encrypt[w >> 24]) << 24 | @as(u32, sbox_encrypt[w >> 16 & 0xff]) << 16 | @as(u32, sbox_encrypt[w >> 8 & 0xff]) << 8 | @as(u32, sbox_encrypt[w & 0xff]);
}
}.func;
var round_keys: [rounds + 1]Block = undefined;
comptime var i: usize = 0;
inline while (i < words_in_key) : (i += 1) {
round_keys[i / 4].repr[i % 4] = mem.readIntBig(u32, key[4 * i ..][0..4]);
}
inline while (i < round_keys.len * 4) : (i += 1) {
var t = round_keys[(i - 1) / 4].repr[(i - 1) % 4];
if (i % words_in_key == 0) {
t = subw(std.math.rotl(u32, t, 8)) ^ (@as(u32, powx[i / words_in_key - 1]) << 24);
} else if (words_in_key > 6 and i % words_in_key == 4) {
t = subw(t);
}
round_keys[i / 4].repr[i % 4] = round_keys[(i - words_in_key) / 4].repr[(i - words_in_key) % 4] ^ t;
}
return Self{ .round_keys = round_keys };
}
/// Invert the key schedule.
pub fn invert(key_schedule: Self) Self {
const round_keys = &key_schedule.round_keys;
var inv_round_keys: [rounds + 1]Block = undefined;
const total_words = 4 * round_keys.len;
var i: usize = 0;
while (i < total_words) : (i += 4) {
const ei = total_words - i - 4;
comptime var j: usize = 0;
inline while (j < 4) : (j += 1) {
var x = round_keys[(ei + j) / 4].repr[(ei + j) % 4];
if (i > 0 and i + 4 < total_words) {
x = table_decrypt[0][sbox_encrypt[x >> 24]] ^ table_decrypt[1][sbox_encrypt[x >> 16 & 0xff]] ^ table_decrypt[2][sbox_encrypt[x >> 8 & 0xff]] ^ table_decrypt[3][sbox_encrypt[x & 0xff]];
}
inv_round_keys[(i + j) / 4].repr[(i + j) % 4] = x;
}
}
return Self{ .round_keys = inv_round_keys };
}
};
}
/// A context to perform encryption using the standard AES key schedule.
pub fn AesEncryptCtx(comptime Aes: type) type {
std.debug.assert(Aes.key_bits == 128 or Aes.key_bits == 256);
const rounds = Aes.rounds;
return struct {
const Self = @This();
pub const block = Aes.block;
pub const block_length = block.block_length;
key_schedule: KeySchedule(Aes),
/// Create a new encryption context with the given key.
pub fn init(key: [Aes.key_bits / 8]u8) Self {
const key_schedule = KeySchedule(Aes).expandKey(key);
return Self{
.key_schedule = key_schedule,
};
}
/// Encrypt a single block.
pub fn encrypt(ctx: Self, dst: *[16]u8, src: *const [16]u8) void {
const round_keys = ctx.key_schedule.round_keys;
var t = Block.fromBytes(src).xorBlocks(round_keys[0]);
comptime var i = 1;
inline while (i < rounds) : (i += 1) {
t = t.encrypt(round_keys[i]);
}
t = t.encryptLast(round_keys[rounds]);
dst.* = t.toBytes();
}
/// Encrypt+XOR a single block.
pub fn xor(ctx: Self, dst: *[16]u8, src: *const [16]u8, counter: [16]u8) void {
const round_keys = ctx.key_schedule.round_keys;
var t = Block.fromBytes(&counter).xorBlocks(round_keys[0]);
comptime var i = 1;
inline while (i < rounds) : (i += 1) {
t = t.encrypt(round_keys[i]);
}
t = t.encryptLast(round_keys[rounds]);
dst.* = t.xorBytes(src);
}
/// Encrypt multiple blocks, possibly leveraging parallelization.
pub fn encryptWide(ctx: Self, comptime count: usize, dst: *[16 * count]u8, src: *const [16 * count]u8) void {
var i: usize = 0;
while (i < count) : (i += 1) {
ctx.encrypt(dst[16 * i .. 16 * i + 16][0..16], src[16 * i .. 16 * i + 16][0..16]);
}
}
/// Encrypt+XOR multiple blocks, possibly leveraging parallelization.
pub fn xorWide(ctx: Self, comptime count: usize, dst: *[16 * count]u8, src: *const [16 * count]u8, counters: [16 * count]u8) void {
var i: usize = 0;
while (i < count) : (i += 1) {
ctx.xor(dst[16 * i .. 16 * i + 16][0..16], src[16 * i .. 16 * i + 16][0..16], counters[16 * i .. 16 * i + 16][0..16].*);
}
}
};
}
/// A context to perform decryption using the standard AES key schedule.
pub fn AesDecryptCtx(comptime Aes: type) type {
std.debug.assert(Aes.key_bits == 128 or Aes.key_bits == 256);
const rounds = Aes.rounds;
return struct {
const Self = @This();
pub const block = Aes.block;
pub const block_length = block.block_length;
key_schedule: KeySchedule(Aes),
/// Create a decryption context from an existing encryption context.
pub fn initFromEnc(ctx: AesEncryptCtx(Aes)) Self {
return Self{
.key_schedule = ctx.key_schedule.invert(),
};
}
/// Create a new decryption context with the given key.
pub fn init(key: [Aes.key_bits / 8]u8) Self {
const enc_ctx = AesEncryptCtx(Aes).init(key);
return initFromEnc(enc_ctx);
}
/// Decrypt a single block.
pub fn decrypt(ctx: Self, dst: *[16]u8, src: *const [16]u8) void {
const inv_round_keys = ctx.key_schedule.round_keys;
var t = Block.fromBytes(src).xorBlocks(inv_round_keys[0]);
comptime var i = 1;
inline while (i < rounds) : (i += 1) {
t = t.decrypt(inv_round_keys[i]);
}
t = t.decryptLast(inv_round_keys[rounds]);
dst.* = t.toBytes();
}
/// Decrypt multiple blocks, possibly leveraging parallelization.
pub fn decryptWide(ctx: Self, comptime count: usize, dst: *[16 * count]u8, src: *const [16 * count]u8) void {
var i: usize = 0;
while (i < count) : (i += 1) {
ctx.decrypt(dst[16 * i .. 16 * i + 16][0..16], src[16 * i .. 16 * i + 16][0..16]);
}
}
};
}
/// AES-128 with the standard key schedule.
pub const Aes128 = struct {
pub const key_bits: usize = 128;
pub const rounds = ((key_bits - 64) / 32 + 8);
pub const block = Block;
/// Create a new context for encryption.
pub fn initEnc(key: [key_bits / 8]u8) AesEncryptCtx(Aes128) {
return AesEncryptCtx(Aes128).init(key);
}
/// Create a new context for decryption.
pub fn initDec(key: [key_bits / 8]u8) AesDecryptCtx(Aes128) {
return AesDecryptCtx(Aes128).init(key);
}
};
/// AES-256 with the standard key schedule.
pub const Aes256 = struct {
pub const key_bits: usize = 256;
pub const rounds = ((key_bits - 64) / 32 + 8);
pub const block = Block;
/// Create a new context for encryption.
pub fn initEnc(key: [key_bits / 8]u8) AesEncryptCtx(Aes256) {
return AesEncryptCtx(Aes256).init(key);
}
/// Create a new context for decryption.
pub fn initDec(key: [key_bits / 8]u8) AesDecryptCtx(Aes256) {
return AesDecryptCtx(Aes256).init(key);
}
};
// constants
// Rijndael's irreducible polynomial.
const poly: u9 = 1 << 8 | 1 << 4 | 1 << 3 | 1 << 1 | 1 << 0; // x⁸ + x⁴ + x³ + x + 1
// Powers of x mod poly in GF(2).
const powx = init: {
var array: [16]u8 = undefined;
var value = 1;
for (array) |*power| {
power.* = value;
value = mul(value, 2);
}
break :init array;
};
const sbox_encrypt align(64) = generateSbox(false);
const sbox_decrypt align(64) = generateSbox(true);
const table_encrypt align(64) = generateTable(false);
const table_decrypt align(64) = generateTable(true);
// Generate S-box substitution values.
fn generateSbox(invert: bool) [256]u8 {
@setEvalBranchQuota(10000);
var sbox: [256]u8 = undefined;
var p: u8 = 1;
var q: u8 = 1;
for (sbox) |_| {
p = mul(p, 3);
q = mul(q, 0xf6); // divide by 3
var value: u8 = q ^ 0x63;
value ^= math.rotl(u8, q, 1);
value ^= math.rotl(u8, q, 2);
value ^= math.rotl(u8, q, 3);
value ^= math.rotl(u8, q, 4);
if (invert) {
sbox[value] = p;
} else {
sbox[p] = value;
}
}
if (invert) {
sbox[0x63] = 0x00;
} else {
sbox[0x00] = 0x63;
}
return sbox;
}
// Generate lookup tables.
fn generateTable(invert: bool) [4][256]u32 {
var table: [4][256]u32 = undefined;
for (generateSbox(invert)) |value, index| {
table[0][index] = mul(value, if (invert) 0xb else 0x3);
table[0][index] |= math.shl(u32, mul(value, if (invert) 0xd else 0x1), 8);
table[0][index] |= math.shl(u32, mul(value, if (invert) 0x9 else 0x1), 16);
table[0][index] |= math.shl(u32, mul(value, if (invert) 0xe else 0x2), 24);
table[1][index] = math.rotr(u32, table[0][index], 8);
table[2][index] = math.rotr(u32, table[0][index], 16);
table[3][index] = math.rotr(u32, table[0][index], 24);
}
return table;
}
// Multiply a and b as GF(2) polynomials modulo poly.
fn mul(a: u8, b: u8) u8 {
@setEvalBranchQuota(30000);
var i: u8 = a;
var j: u9 = b;
var s: u9 = 0;
while (i > 0) : (i >>= 1) {
if (i & 1 != 0) {
s ^= j;
}
j *= 2;
if (j & 0x100 != 0) {
j ^= poly;
}
}
return @truncate(u8, s);
}
|