aboutsummaryrefslogtreecommitdiff
path: root/lib/std/crypto/aes/aesni.zig
blob: 64bf37b46ee359db7ad1a2d099da06d58d691c77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
const std = @import("../../std.zig");
const builtin = @import("builtin");
const mem = std.mem;
const debug = std.debug;

const has_vaes = builtin.cpu.arch == .x86_64 and builtin.cpu.has(.x86, .vaes);
const has_avx512f = builtin.cpu.arch == .x86_64 and builtin.zig_backend != .stage2_x86_64 and builtin.cpu.has(.x86, .avx512f);

/// A single AES block.
pub const Block = struct {
    const Repr = @Vector(2, u64);

    /// The length of an AES block in bytes.
    pub const block_length: usize = 16;

    /// Internal representation of a block.
    repr: Repr,

    /// Convert a byte sequence into an internal representation.
    pub fn fromBytes(bytes: *const [16]u8) Block {
        const repr = mem.bytesToValue(Repr, bytes);
        return Block{ .repr = repr };
    }

    /// Convert the internal representation of a block into a byte sequence.
    pub fn toBytes(block: Block) [16]u8 {
        return mem.toBytes(block.repr);
    }

    /// XOR the block with a byte sequence.
    pub fn xorBytes(block: Block, bytes: *const [16]u8) [16]u8 {
        const x = block.repr ^ fromBytes(bytes).repr;
        return mem.toBytes(x);
    }

    /// Encrypt a block with a round key.
    pub fn encrypt(block: Block, round_key: Block) Block {
        return Block{
            .repr = asm (
                \\ vaesenc %[rk], %[in], %[out]
                : [out] "=x" (-> Repr),
                : [in] "x" (block.repr),
                  [rk] "x" (round_key.repr),
            ),
        };
    }

    /// Encrypt a block with the last round key.
    pub fn encryptLast(block: Block, round_key: Block) Block {
        return Block{
            .repr = asm (
                \\ vaesenclast %[rk], %[in], %[out]
                : [out] "=x" (-> Repr),
                : [in] "x" (block.repr),
                  [rk] "x" (round_key.repr),
            ),
        };
    }

    /// Decrypt a block with a round key.
    pub fn decrypt(block: Block, inv_round_key: Block) Block {
        return Block{
            .repr = asm (
                \\ vaesdec %[rk], %[in], %[out]
                : [out] "=x" (-> Repr),
                : [in] "x" (block.repr),
                  [rk] "x" (inv_round_key.repr),
            ),
        };
    }

    /// Decrypt a block with the last round key.
    pub fn decryptLast(block: Block, inv_round_key: Block) Block {
        return Block{
            .repr = asm (
                \\ vaesdeclast %[rk], %[in], %[out]
                : [out] "=x" (-> Repr),
                : [in] "x" (block.repr),
                  [rk] "x" (inv_round_key.repr),
            ),
        };
    }

    /// Apply the bitwise XOR operation to the content of two blocks.
    pub fn xorBlocks(block1: Block, block2: Block) Block {
        return Block{ .repr = block1.repr ^ block2.repr };
    }

    /// Apply the bitwise AND operation to the content of two blocks.
    pub fn andBlocks(block1: Block, block2: Block) Block {
        return Block{ .repr = block1.repr & block2.repr };
    }

    /// Apply the bitwise OR operation to the content of two blocks.
    pub fn orBlocks(block1: Block, block2: Block) Block {
        return Block{ .repr = block1.repr | block2.repr };
    }

    /// Perform operations on multiple blocks in parallel.
    pub const parallel = struct {
        const cpu = std.Target.x86.cpu;

        /// The recommended number of AES encryption/decryption to perform in parallel for the chosen implementation.
        pub const optimal_parallel_blocks = switch (builtin.cpu.model) {
            &cpu.westmere, &cpu.goldmont => 3,
            &cpu.cannonlake, &cpu.skylake, &cpu.skylake_avx512, &cpu.tremont, &cpu.goldmont_plus, &cpu.cascadelake => 4,
            &cpu.icelake_client, &cpu.icelake_server, &cpu.tigerlake, &cpu.rocketlake, &cpu.alderlake => 6,
            &cpu.haswell, &cpu.broadwell => 7,
            &cpu.sandybridge, &cpu.ivybridge => 8,
            &cpu.znver1, &cpu.znver2, &cpu.znver3, &cpu.znver4 => 8,
            else => 8,
        };

        /// Encrypt multiple blocks in parallel, each their own round key.
        pub fn encryptParallel(comptime count: usize, blocks: [count]Block, round_keys: [count]Block) [count]Block {
            comptime var i = 0;
            var out: [count]Block = undefined;
            inline while (i < count) : (i += 1) {
                out[i] = blocks[i].encrypt(round_keys[i]);
            }
            return out;
        }

        /// Decrypt multiple blocks in parallel, each their own round key.
        pub fn decryptParallel(comptime count: usize, blocks: [count]Block, round_keys: [count]Block) [count]Block {
            comptime var i = 0;
            var out: [count]Block = undefined;
            inline while (i < count) : (i += 1) {
                out[i] = blocks[i].decrypt(round_keys[i]);
            }
            return out;
        }

        /// Encrypt multiple blocks in parallel with the same round key.
        pub fn encryptWide(comptime count: usize, blocks: [count]Block, round_key: Block) [count]Block {
            comptime var i = 0;
            var out: [count]Block = undefined;
            inline while (i < count) : (i += 1) {
                out[i] = blocks[i].encrypt(round_key);
            }
            return out;
        }

        /// Decrypt multiple blocks in parallel with the same round key.
        pub fn decryptWide(comptime count: usize, blocks: [count]Block, round_key: Block) [count]Block {
            comptime var i = 0;
            var out: [count]Block = undefined;
            inline while (i < count) : (i += 1) {
                out[i] = blocks[i].decrypt(round_key);
            }
            return out;
        }

        /// Encrypt multiple blocks in parallel with the same last round key.
        pub fn encryptLastWide(comptime count: usize, blocks: [count]Block, round_key: Block) [count]Block {
            comptime var i = 0;
            var out: [count]Block = undefined;
            inline while (i < count) : (i += 1) {
                out[i] = blocks[i].encryptLast(round_key);
            }
            return out;
        }

        /// Decrypt multiple blocks in parallel with the same last round key.
        pub fn decryptLastWide(comptime count: usize, blocks: [count]Block, round_key: Block) [count]Block {
            comptime var i = 0;
            var out: [count]Block = undefined;
            inline while (i < count) : (i += 1) {
                out[i] = blocks[i].decryptLast(round_key);
            }
            return out;
        }
    };
};

/// A fixed-size vector of AES blocks.
/// All operations are performed in parallel, using SIMD instructions when available.
pub fn BlockVec(comptime blocks_count: comptime_int) type {
    return struct {
        const Self = @This();

        /// The number of AES blocks the target architecture can process with a single instruction.
        pub const native_vector_size = w: {
            if (has_avx512f and blocks_count % 4 == 0) break :w 4;
            if (has_vaes and blocks_count % 2 == 0) break :w 2;
            break :w 1;
        };

        /// The size of the AES block vector that the target architecture can process with a single instruction, in bytes.
        pub const native_word_size = native_vector_size * 16;

        const native_words = blocks_count / native_vector_size;

        const Repr = @Vector(native_vector_size * 2, u64);

        /// Internal representation of a block vector.
        repr: [native_words]Repr,

        /// Length of the block vector in bytes.
        pub const block_length: usize = blocks_count * 16;

        /// Convert a byte sequence into an internal representation.
        pub fn fromBytes(bytes: *const [blocks_count * 16]u8) Self {
            var out: Self = undefined;
            inline for (0..native_words) |i| {
                out.repr[i] = mem.bytesToValue(Repr, bytes[i * native_word_size ..][0..native_word_size]);
            }
            return out;
        }

        /// Convert the internal representation of a block vector into a byte sequence.
        pub fn toBytes(block_vec: Self) [blocks_count * 16]u8 {
            var out: [blocks_count * 16]u8 = undefined;
            inline for (0..native_words) |i| {
                out[i * native_word_size ..][0..native_word_size].* = mem.toBytes(block_vec.repr[i]);
            }
            return out;
        }

        /// XOR the block vector with a byte sequence.
        pub fn xorBytes(block_vec: Self, bytes: *const [blocks_count * 16]u8) [blocks_count * 16]u8 {
            var x: Self = undefined;
            inline for (0..native_words) |i| {
                x.repr[i] = block_vec.repr[i] ^ mem.bytesToValue(Repr, bytes[i * native_word_size ..][0..native_word_size]);
            }
            return x.toBytes();
        }

        /// Apply the forward AES operation to the block vector with a vector of round keys.
        pub fn encrypt(block_vec: Self, round_key_vec: Self) Self {
            var out: Self = undefined;
            inline for (0..native_words) |i| {
                out.repr[i] = asm (
                    \\ vaesenc %[rk], %[in], %[out]
                    : [out] "=x" (-> Repr),
                    : [in] "x" (block_vec.repr[i]),
                      [rk] "x" (round_key_vec.repr[i]),
                );
            }
            return out;
        }

        /// Apply the forward AES operation to the block vector with a vector of last round keys.
        pub fn encryptLast(block_vec: Self, round_key_vec: Self) Self {
            var out: Self = undefined;
            inline for (0..native_words) |i| {
                out.repr[i] = asm (
                    \\ vaesenclast %[rk], %[in], %[out]
                    : [out] "=x" (-> Repr),
                    : [in] "x" (block_vec.repr[i]),
                      [rk] "x" (round_key_vec.repr[i]),
                );
            }
            return out;
        }

        /// Apply the inverse AES operation to the block vector with a vector of round keys.
        pub fn decrypt(block_vec: Self, inv_round_key_vec: Self) Self {
            var out: Self = undefined;
            inline for (0..native_words) |i| {
                out.repr[i] = asm (
                    \\ vaesdec %[rk], %[in], %[out]
                    : [out] "=x" (-> Repr),
                    : [in] "x" (block_vec.repr[i]),
                      [rk] "x" (inv_round_key_vec.repr[i]),
                );
            }
            return out;
        }

        /// Apply the inverse AES operation to the block vector with a vector of last round keys.
        pub fn decryptLast(block_vec: Self, inv_round_key_vec: Self) Self {
            var out: Self = undefined;
            inline for (0..native_words) |i| {
                out.repr[i] = asm (
                    \\ vaesdeclast %[rk], %[in], %[out]
                    : [out] "=x" (-> Repr),
                    : [in] "x" (block_vec.repr[i]),
                      [rk] "x" (inv_round_key_vec.repr[i]),
                );
            }
            return out;
        }

        /// Apply the bitwise XOR operation to the content of two block vectors.
        pub fn xorBlocks(block_vec1: Self, block_vec2: Self) Self {
            var out: Self = undefined;
            inline for (0..native_words) |i| {
                out.repr[i] = block_vec1.repr[i] ^ block_vec2.repr[i];
            }
            return out;
        }

        /// Apply the bitwise AND operation to the content of two block vectors.
        pub fn andBlocks(block_vec1: Self, block_vec2: Self) Self {
            var out: Self = undefined;
            inline for (0..native_words) |i| {
                out.repr[i] = block_vec1.repr[i] & block_vec2.repr[i];
            }
            return out;
        }

        /// Apply the bitwise OR operation to the content of two block vectors.
        pub fn orBlocks(block_vec1: Self, block_vec2: Block) Self {
            var out: Self = undefined;
            inline for (0..native_words) |i| {
                out.repr[i] = block_vec1.repr[i] | block_vec2.repr[i];
            }
            return out;
        }
    };
}

fn KeySchedule(comptime Aes: type) type {
    std.debug.assert(Aes.rounds == 10 or Aes.rounds == 14);
    const rounds = Aes.rounds;

    return struct {
        const Self = @This();

        const Repr = Aes.block.Repr;

        round_keys: [rounds + 1]Block,

        fn drc(comptime second: bool, comptime rc: u8, t: Repr, tx: Repr) Repr {
            var s: Repr = undefined;
            var ts: Repr = undefined;
            return asm (
                \\ vaeskeygenassist %[rc], %[t], %[s]
                \\ vpslldq $4, %[tx], %[ts]
                \\ vpxor   %[ts], %[tx], %[r]
                \\ vpslldq $8, %[r], %[ts]
                \\ vpxor   %[ts], %[r], %[r]
                \\ vpshufd %[mask], %[s], %[ts]
                \\ vpxor   %[ts], %[r], %[r]
                : [r] "=&x" (-> Repr),
                  [s] "=&x" (s),
                  [ts] "=&x" (ts),
                : [rc] "n" (rc),
                  [t] "x" (t),
                  [tx] "x" (tx),
                  [mask] "n" (@as(u8, if (second) 0xaa else 0xff)),
            );
        }

        fn expand128(t1: *Block) Self {
            var round_keys: [11]Block = undefined;
            const rcs = [_]u8{ 1, 2, 4, 8, 16, 32, 64, 128, 27, 54 };
            inline for (rcs, 0..) |rc, round| {
                round_keys[round] = t1.*;
                t1.repr = drc(false, rc, t1.repr, t1.repr);
            }
            round_keys[rcs.len] = t1.*;
            return Self{ .round_keys = round_keys };
        }

        fn expand256(t1: *Block, t2: *Block) Self {
            var round_keys: [15]Block = undefined;
            const rcs = [_]u8{ 1, 2, 4, 8, 16, 32 };
            round_keys[0] = t1.*;
            inline for (rcs, 0..) |rc, round| {
                round_keys[round * 2 + 1] = t2.*;
                t1.repr = drc(false, rc, t2.repr, t1.repr);
                round_keys[round * 2 + 2] = t1.*;
                t2.repr = drc(true, rc, t1.repr, t2.repr);
            }
            round_keys[rcs.len * 2 + 1] = t2.*;
            t1.repr = drc(false, 64, t2.repr, t1.repr);
            round_keys[rcs.len * 2 + 2] = t1.*;
            return Self{ .round_keys = round_keys };
        }

        /// Invert the key schedule.
        pub fn invert(key_schedule: Self) Self {
            const round_keys = &key_schedule.round_keys;
            var inv_round_keys: [rounds + 1]Block = undefined;
            inv_round_keys[0] = round_keys[rounds];
            comptime var i = 1;
            inline while (i < rounds) : (i += 1) {
                inv_round_keys[i] = Block{
                    .repr = asm (
                        \\ vaesimc %[rk], %[inv_rk]
                        : [inv_rk] "=x" (-> Repr),
                        : [rk] "x" (round_keys[rounds - i].repr),
                    ),
                };
            }
            inv_round_keys[rounds] = round_keys[0];
            return Self{ .round_keys = inv_round_keys };
        }
    };
}

/// A context to perform encryption using the standard AES key schedule.
pub fn AesEncryptCtx(comptime Aes: type) type {
    std.debug.assert(Aes.key_bits == 128 or Aes.key_bits == 256);
    const rounds = Aes.rounds;

    return struct {
        const Self = @This();
        pub const block = Aes.block;
        pub const block_length = block.block_length;
        key_schedule: KeySchedule(Aes),

        /// Create a new encryption context with the given key.
        pub fn init(key: [Aes.key_bits / 8]u8) Self {
            var t1 = Block.fromBytes(key[0..16]);
            const key_schedule = if (Aes.key_bits == 128) ks: {
                break :ks KeySchedule(Aes).expand128(&t1);
            } else ks: {
                var t2 = Block.fromBytes(key[16..32]);
                break :ks KeySchedule(Aes).expand256(&t1, &t2);
            };
            return Self{
                .key_schedule = key_schedule,
            };
        }

        /// Encrypt a single block.
        pub fn encrypt(ctx: Self, dst: *[16]u8, src: *const [16]u8) void {
            const round_keys = ctx.key_schedule.round_keys;
            var t = Block.fromBytes(src).xorBlocks(round_keys[0]);
            comptime var i = 1;
            inline while (i < rounds) : (i += 1) {
                t = t.encrypt(round_keys[i]);
            }
            t = t.encryptLast(round_keys[rounds]);
            dst.* = t.toBytes();
        }

        /// Encrypt+XOR a single block.
        pub fn xor(ctx: Self, dst: *[16]u8, src: *const [16]u8, counter: [16]u8) void {
            const round_keys = ctx.key_schedule.round_keys;
            var t = Block.fromBytes(&counter).xorBlocks(round_keys[0]);
            comptime var i = 1;
            inline while (i < rounds) : (i += 1) {
                t = t.encrypt(round_keys[i]);
            }
            t = t.encryptLast(round_keys[rounds]);
            dst.* = t.xorBytes(src);
        }

        /// Encrypt multiple blocks, possibly leveraging parallelization.
        pub fn encryptWide(ctx: Self, comptime count: usize, dst: *[16 * count]u8, src: *const [16 * count]u8) void {
            const round_keys = ctx.key_schedule.round_keys;
            var ts: [count]Block = undefined;
            comptime var j = 0;
            inline while (j < count) : (j += 1) {
                ts[j] = Block.fromBytes(src[j * 16 .. j * 16 + 16][0..16]).xorBlocks(round_keys[0]);
            }
            comptime var i = 1;
            inline while (i < rounds) : (i += 1) {
                ts = Block.parallel.encryptWide(count, ts, round_keys[i]);
            }
            ts = Block.parallel.encryptLastWide(count, ts, round_keys[i]);
            j = 0;
            inline while (j < count) : (j += 1) {
                dst[16 * j .. 16 * j + 16].* = ts[j].toBytes();
            }
        }

        /// Encrypt+XOR multiple blocks, possibly leveraging parallelization.
        pub fn xorWide(ctx: Self, comptime count: usize, dst: *[16 * count]u8, src: *const [16 * count]u8, counters: [16 * count]u8) void {
            const round_keys = ctx.key_schedule.round_keys;
            var ts: [count]Block = undefined;
            comptime var j = 0;
            inline while (j < count) : (j += 1) {
                ts[j] = Block.fromBytes(counters[j * 16 .. j * 16 + 16][0..16]).xorBlocks(round_keys[0]);
            }
            comptime var i = 1;
            inline while (i < rounds) : (i += 1) {
                ts = Block.parallel.encryptWide(count, ts, round_keys[i]);
            }
            ts = Block.parallel.encryptLastWide(count, ts, round_keys[i]);
            j = 0;
            inline while (j < count) : (j += 1) {
                dst[16 * j .. 16 * j + 16].* = ts[j].xorBytes(src[16 * j .. 16 * j + 16]);
            }
        }
    };
}

/// A context to perform decryption using the standard AES key schedule.
pub fn AesDecryptCtx(comptime Aes: type) type {
    std.debug.assert(Aes.key_bits == 128 or Aes.key_bits == 256);
    const rounds = Aes.rounds;

    return struct {
        const Self = @This();
        pub const block = Aes.block;
        pub const block_length = block.block_length;
        key_schedule: KeySchedule(Aes),

        /// Create a decryption context from an existing encryption context.
        pub fn initFromEnc(ctx: AesEncryptCtx(Aes)) Self {
            return Self{
                .key_schedule = ctx.key_schedule.invert(),
            };
        }

        /// Create a new decryption context with the given key.
        pub fn init(key: [Aes.key_bits / 8]u8) Self {
            const enc_ctx = AesEncryptCtx(Aes).init(key);
            return initFromEnc(enc_ctx);
        }

        /// Decrypt a single block.
        pub fn decrypt(ctx: Self, dst: *[16]u8, src: *const [16]u8) void {
            const inv_round_keys = ctx.key_schedule.round_keys;
            var t = Block.fromBytes(src).xorBlocks(inv_round_keys[0]);
            comptime var i = 1;
            inline while (i < rounds) : (i += 1) {
                t = t.decrypt(inv_round_keys[i]);
            }
            t = t.decryptLast(inv_round_keys[rounds]);
            dst.* = t.toBytes();
        }

        /// Decrypt multiple blocks, possibly leveraging parallelization.
        pub fn decryptWide(ctx: Self, comptime count: usize, dst: *[16 * count]u8, src: *const [16 * count]u8) void {
            const inv_round_keys = ctx.key_schedule.round_keys;
            var ts: [count]Block = undefined;
            comptime var j = 0;
            inline while (j < count) : (j += 1) {
                ts[j] = Block.fromBytes(src[j * 16 .. j * 16 + 16][0..16]).xorBlocks(inv_round_keys[0]);
            }
            comptime var i = 1;
            inline while (i < rounds) : (i += 1) {
                ts = Block.parallel.decryptWide(count, ts, inv_round_keys[i]);
            }
            ts = Block.parallel.decryptLastWide(count, ts, inv_round_keys[i]);
            j = 0;
            inline while (j < count) : (j += 1) {
                dst[16 * j .. 16 * j + 16].* = ts[j].toBytes();
            }
        }
    };
}

/// AES-128 with the standard key schedule.
pub const Aes128 = struct {
    pub const key_bits: usize = 128;
    pub const rounds = ((key_bits - 64) / 32 + 8);
    pub const block = Block;

    /// Create a new context for encryption.
    pub fn initEnc(key: [key_bits / 8]u8) AesEncryptCtx(Aes128) {
        return AesEncryptCtx(Aes128).init(key);
    }

    /// Create a new context for decryption.
    pub fn initDec(key: [key_bits / 8]u8) AesDecryptCtx(Aes128) {
        return AesDecryptCtx(Aes128).init(key);
    }
};

/// AES-256 with the standard key schedule.
pub const Aes256 = struct {
    pub const key_bits: usize = 256;
    pub const rounds = ((key_bits - 64) / 32 + 8);
    pub const block = Block;

    /// Create a new context for encryption.
    pub fn initEnc(key: [key_bits / 8]u8) AesEncryptCtx(Aes256) {
        return AesEncryptCtx(Aes256).init(key);
    }

    /// Create a new context for decryption.
    pub fn initDec(key: [key_bits / 8]u8) AesDecryptCtx(Aes256) {
        return AesDecryptCtx(Aes256).init(key);
    }
};