1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
const std = @import("std");
const crypto = std.crypto;
const mem = std.mem;
const fmt = std.fmt;
const Sha512 = crypto.hash.sha2.Sha512;
const EncodingError = crypto.errors.EncodingError;
const IdentityElementError = crypto.errors.IdentityElementError;
const WeakPublicKeyError = crypto.errors.WeakPublicKeyError;
/// X25519 DH function.
pub const X25519 = struct {
/// The underlying elliptic curve.
pub const Curve = @import("curve25519.zig").Curve25519;
/// Length (in bytes) of a secret key.
pub const secret_length = 32;
/// Length (in bytes) of a public key.
pub const public_length = 32;
/// Length (in bytes) of the output of the DH function.
pub const shared_length = 32;
/// Seed (for key pair creation) length in bytes.
pub const seed_length = 32;
/// An X25519 key pair.
pub const KeyPair = struct {
/// Public part.
public_key: [public_length]u8,
/// Secret part.
secret_key: [secret_length]u8,
/// Deterministically derive a key pair from a cryptograpically secure secret seed.
///
/// Except in tests, applications should generally call `generate()` instead of this function.
pub fn generateDeterministic(seed: [seed_length]u8) IdentityElementError!KeyPair {
const kp = KeyPair{
.public_key = try X25519.recoverPublicKey(seed),
.secret_key = seed,
};
return kp;
}
/// Generate a new, random key pair.
pub fn generate() KeyPair {
var random_seed: [seed_length]u8 = undefined;
while (true) {
crypto.random.bytes(&random_seed);
return generateDeterministic(random_seed) catch {
@branchHint(.unlikely);
continue;
};
}
}
/// Create a key pair from an Ed25519 key pair
pub fn fromEd25519(ed25519_key_pair: crypto.sign.Ed25519.KeyPair) (IdentityElementError || EncodingError)!KeyPair {
const seed = ed25519_key_pair.secret_key.seed();
var az: [Sha512.digest_length]u8 = undefined;
Sha512.hash(&seed, &az, .{});
var sk = az[0..32].*;
Curve.scalar.clamp(&sk);
const pk = try publicKeyFromEd25519(ed25519_key_pair.public_key);
return KeyPair{
.public_key = pk,
.secret_key = sk,
};
}
};
/// Compute the public key for a given private key.
pub fn recoverPublicKey(secret_key: [secret_length]u8) IdentityElementError![public_length]u8 {
const q = try Curve.basePoint.clampedMul(secret_key);
return q.toBytes();
}
/// Compute the X25519 equivalent to an Ed25519 public eky.
pub fn publicKeyFromEd25519(ed25519_public_key: crypto.sign.Ed25519.PublicKey) (IdentityElementError || EncodingError)![public_length]u8 {
const pk_ed = try crypto.ecc.Edwards25519.fromBytes(ed25519_public_key.bytes);
const pk = try Curve.fromEdwards25519(pk_ed);
return pk.toBytes();
}
/// Compute the scalar product of a public key and a secret scalar.
/// Note that the output should not be used as a shared secret without
/// hashing it first.
pub fn scalarmult(secret_key: [secret_length]u8, public_key: [public_length]u8) IdentityElementError![shared_length]u8 {
const q = try Curve.fromBytes(public_key).clampedMul(secret_key);
return q.toBytes();
}
};
const htest = @import("../test.zig");
test "public key calculation from secret key" {
var sk: [32]u8 = undefined;
var pk_expected: [32]u8 = undefined;
_ = try fmt.hexToBytes(sk[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
_ = try fmt.hexToBytes(pk_expected[0..], "f1814f0e8ff1043d8a44d25babff3cedcae6c22c3edaa48f857ae70de2baae50");
const pk_calculated = try X25519.recoverPublicKey(sk);
try std.testing.expectEqual(pk_calculated, pk_expected);
}
test "rfc7748 vector1" {
const secret_key = [32]u8{ 0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d, 0x3b, 0x16, 0x15, 0x4b, 0x82, 0x46, 0x5e, 0xdd, 0x62, 0x14, 0x4c, 0x0a, 0xc1, 0xfc, 0x5a, 0x18, 0x50, 0x6a, 0x22, 0x44, 0xba, 0x44, 0x9a, 0xc4 };
const public_key = [32]u8{ 0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb, 0x35, 0x94, 0xc1, 0xa4, 0x24, 0xb1, 0x5f, 0x7c, 0x72, 0x66, 0x24, 0xec, 0x26, 0xb3, 0x35, 0x3b, 0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab, 0x1c, 0x4c };
const expected_output = [32]u8{ 0xc3, 0xda, 0x55, 0x37, 0x9d, 0xe9, 0xc6, 0x90, 0x8e, 0x94, 0xea, 0x4d, 0xf2, 0x8d, 0x08, 0x4f, 0x32, 0xec, 0xcf, 0x03, 0x49, 0x1c, 0x71, 0xf7, 0x54, 0xb4, 0x07, 0x55, 0x77, 0xa2, 0x85, 0x52 };
const output = try X25519.scalarmult(secret_key, public_key);
try std.testing.expectEqual(output, expected_output);
}
test "rfc7748 vector2" {
const secret_key = [32]u8{ 0x4b, 0x66, 0xe9, 0xd4, 0xd1, 0xb4, 0x67, 0x3c, 0x5a, 0xd2, 0x26, 0x91, 0x95, 0x7d, 0x6a, 0xf5, 0xc1, 0x1b, 0x64, 0x21, 0xe0, 0xea, 0x01, 0xd4, 0x2c, 0xa4, 0x16, 0x9e, 0x79, 0x18, 0xba, 0x0d };
const public_key = [32]u8{ 0xe5, 0x21, 0x0f, 0x12, 0x78, 0x68, 0x11, 0xd3, 0xf4, 0xb7, 0x95, 0x9d, 0x05, 0x38, 0xae, 0x2c, 0x31, 0xdb, 0xe7, 0x10, 0x6f, 0xc0, 0x3c, 0x3e, 0xfc, 0x4c, 0xd5, 0x49, 0xc7, 0x15, 0xa4, 0x93 };
const expected_output = [32]u8{ 0x95, 0xcb, 0xde, 0x94, 0x76, 0xe8, 0x90, 0x7d, 0x7a, 0xad, 0xe4, 0x5c, 0xb4, 0xb8, 0x73, 0xf8, 0x8b, 0x59, 0x5a, 0x68, 0x79, 0x9f, 0xa1, 0x52, 0xe6, 0xf8, 0xf7, 0x64, 0x7a, 0xac, 0x79, 0x57 };
const output = try X25519.scalarmult(secret_key, public_key);
try std.testing.expectEqual(output, expected_output);
}
test "rfc7748 one iteration" {
const initial_value = [32]u8{ 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
const expected_output = [32]u8{ 0x42, 0x2c, 0x8e, 0x7a, 0x62, 0x27, 0xd7, 0xbc, 0xa1, 0x35, 0x0b, 0x3e, 0x2b, 0xb7, 0x27, 0x9f, 0x78, 0x97, 0xb8, 0x7b, 0xb6, 0x85, 0x4b, 0x78, 0x3c, 0x60, 0xe8, 0x03, 0x11, 0xae, 0x30, 0x79 };
var k: [32]u8 = initial_value;
var u: [32]u8 = initial_value;
var i: usize = 0;
while (i < 1) : (i += 1) {
const output = try X25519.scalarmult(k, u);
u = k;
k = output;
}
try std.testing.expectEqual(k, expected_output);
}
test "rfc7748 1,000 iterations" {
// These iteration tests are slow so we always skip them. Results have been verified.
if (true) {
return error.SkipZigTest;
}
const initial_value = [32]u8{ 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
const expected_output = [32]u8{ 0x68, 0x4c, 0xf5, 0x9b, 0xa8, 0x33, 0x09, 0x55, 0x28, 0x00, 0xef, 0x56, 0x6f, 0x2f, 0x4d, 0x3c, 0x1c, 0x38, 0x87, 0xc4, 0x93, 0x60, 0xe3, 0x87, 0x5f, 0x2e, 0xb9, 0x4d, 0x99, 0x53, 0x2c, 0x51 };
var k: [32]u8 = initial_value.*;
var u: [32]u8 = initial_value.*;
var i: usize = 0;
while (i < 1000) : (i += 1) {
const output = try X25519.scalarmult(&k, &u);
u = k;
k = output;
}
try std.testing.expectEqual(k, expected_output);
}
test "rfc7748 1,000,000 iterations" {
if (true) {
return error.SkipZigTest;
}
const initial_value = [32]u8{ 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
const expected_output = [32]u8{ 0x7c, 0x39, 0x11, 0xe0, 0xab, 0x25, 0x86, 0xfd, 0x86, 0x44, 0x97, 0x29, 0x7e, 0x57, 0x5e, 0x6f, 0x3b, 0xc6, 0x01, 0xc0, 0x88, 0x3c, 0x30, 0xdf, 0x5f, 0x4d, 0xd2, 0xd2, 0x4f, 0x66, 0x54, 0x24 };
var k: [32]u8 = initial_value.*;
var u: [32]u8 = initial_value.*;
var i: usize = 0;
while (i < 1000000) : (i += 1) {
const output = try X25519.scalarmult(&k, &u);
u = k;
k = output;
}
try std.testing.expectEqual(k[0..], expected_output);
}
test "edwards25519 -> curve25519 map" {
const ed_kp = try crypto.sign.Ed25519.KeyPair.generateDeterministic([_]u8{0x42} ** 32);
const mont_kp = try X25519.KeyPair.fromEd25519(ed_kp);
try htest.assertEqual("90e7595fc89e52fdfddce9c6a43d74dbf6047025ee0462d2d172e8b6a2841d6e", &mont_kp.secret_key);
try htest.assertEqual("cc4f2cdb695dd766f34118eb67b98652fed1d8bc49c330b119bbfa8a64989378", &mont_kp.public_key);
}
|