1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
|
const std = @import("std");
const crypto = std.crypto;
const debug = std.debug;
const fmt = std.fmt;
const mem = std.mem;
const EncodingError = crypto.errors.EncodingError;
const IdentityElementError = crypto.errors.IdentityElementError;
const NonCanonicalError = crypto.errors.NonCanonicalError;
const NotSquareError = crypto.errors.NotSquareError;
const WeakPublicKeyError = crypto.errors.WeakPublicKeyError;
const UnexpectedSubgroupError = crypto.errors.UnexpectedSubgroupError;
/// Group operations over Edwards25519.
pub const Edwards25519 = struct {
/// The underlying prime field.
pub const Fe = @import("field.zig").Fe;
/// Field arithmetic mod the order of the main subgroup.
pub const scalar = @import("scalar.zig");
/// Length in bytes of a compressed representation of a point.
pub const encoded_length: usize = 32;
x: Fe,
y: Fe,
z: Fe,
t: Fe,
is_base: bool = false,
/// Decode an Edwards25519 point from its compressed (Y+sign) coordinates.
pub fn fromBytes(s: [encoded_length]u8) EncodingError!Edwards25519 {
const z = Fe.one;
const y = Fe.fromBytes(s);
var u = y.sq();
var v = u.mul(Fe.edwards25519d);
u = u.sub(z);
v = v.add(z);
var x = u.mul(v).pow2523().mul(u);
const vxx = x.sq().mul(v);
const has_m_root = vxx.sub(u).isZero();
const has_p_root = vxx.add(u).isZero();
if ((@intFromBool(has_m_root) | @intFromBool(has_p_root)) == 0) { // best-effort to avoid two conditional branches
return error.InvalidEncoding;
}
x.cMov(x.mul(Fe.sqrtm1), 1 - @intFromBool(has_m_root));
x.cMov(x.neg(), @intFromBool(x.isNegative()) ^ (s[31] >> 7));
const t = x.mul(y);
return Edwards25519{ .x = x, .y = y, .z = z, .t = t };
}
/// Encode an Edwards25519 point.
pub fn toBytes(p: Edwards25519) [encoded_length]u8 {
const zi = p.z.invert();
var s = p.y.mul(zi).toBytes();
s[31] ^= @as(u8, @intFromBool(p.x.mul(zi).isNegative())) << 7;
return s;
}
/// Check that the encoding of a point is canonical.
pub fn rejectNonCanonical(s: [32]u8) NonCanonicalError!void {
return Fe.rejectNonCanonical(s, true);
}
/// The edwards25519 base point.
pub const basePoint = Edwards25519{
.x = Fe{ .limbs = .{ 1738742601995546, 1146398526822698, 2070867633025821, 562264141797630, 587772402128613 } },
.y = Fe{ .limbs = .{ 1801439850948184, 1351079888211148, 450359962737049, 900719925474099, 1801439850948198 } },
.z = Fe.one,
.t = Fe{ .limbs = .{ 1841354044333475, 16398895984059, 755974180946558, 900171276175154, 1821297809914039 } },
.is_base = true,
};
pub const identityElement = Edwards25519{ .x = Fe.zero, .y = Fe.one, .z = Fe.one, .t = Fe.zero };
/// Reject the neutral element.
pub fn rejectIdentity(p: Edwards25519) IdentityElementError!void {
if (p.x.isZero()) {
return error.IdentityElement;
}
}
/// Reject a point if it is not in the prime order subgroup generated by the standard base point.
///
/// If the point is not in the main subgroup:
///
/// - `WeakPublicKeyError` is returned if the point belongs to a low-order subgroup.
/// - `UnexpectedSubgroupError` is returned otherwise.
pub fn rejectUnexpectedSubgroup(p: Edwards25519) (WeakPublicKeyError || UnexpectedSubgroupError)!void {
try p.rejectLowOrder();
// Multiply p by the order of subgroup - This is a prime order group, so the result should be the neutral element.
const _10 = p.dbl();
const _11 = p.add(_10);
const _100 = p.add(_11);
const _110 = _10.add(_100);
const _1000 = _10.add(_110);
const _1011 = _11.add(_1000);
const _10000 = _1000.dbl();
const _100000 = _10000.dbl();
const _100110 = _110.add(_100000);
const _1000000 = _100000.dbl();
const _1010000 = _10000.add(_1000000);
const _1010011 = _11.add(_1010000);
const _1100011 = _10000.add(_1010011);
const _1100111 = _100.add(_1100011);
const _1101011 = _100.add(_1100111);
const _10010011 = _1000000.add(_1010011);
const _10010111 = _100.add(_10010011);
const _10111101 = _100110.add(_10010111);
const _11010011 = _1000000.add(_10010011);
const _11100111 = _1010000.add(_10010111);
const _11101101 = _110.add(_11100111);
const _11110101 = _1000.add(_11101101);
const q = ((_11110101.add(((((_1101011.add(((((_10.add(((_1011.add(_11110101)).shift(126)
.add(_1010011)).shift(9).add(_11110101))).shift(7).add(_1100111)).shift(9).add(_11110101).shift(11)
.add(_10111101)).shift(8).add(_11100111)).shift(9))).shift(6).add(_1011)).shift(14).add(_10010011).shift(10)
.add(_1100011)).shift(9).add(_10010111)).shift(10))).shift(8).add(_11010011)).shift(8).add(_11101101);
q.rejectIdentity() catch return;
return error.UnexpectedSubgroup;
}
/// Multiply a point by the cofactor
pub fn clearCofactor(p: Edwards25519) Edwards25519 {
return p.dbl().dbl().dbl();
}
/// Check that the point does not generate a low-order group.
/// Return a `WeakPublicKey` error if it does.
pub fn rejectLowOrder(p: Edwards25519) WeakPublicKeyError!void {
const zi = p.z.invert();
const x = p.x.mul(zi);
const y = p.y.mul(zi);
const x_neg = x.neg();
const iy = Fe.sqrtm1.mul(y);
if (x.isZero() or y.isZero() or iy.equivalent(x) or iy.equivalent(x_neg)) {
return error.WeakPublicKey;
}
}
/// Flip the sign of the X coordinate.
pub fn neg(p: Edwards25519) Edwards25519 {
return .{ .x = p.x.neg(), .y = p.y, .z = p.z, .t = p.t.neg() };
}
/// Double an Edwards25519 point.
pub fn dbl(p: Edwards25519) Edwards25519 {
const t0 = p.x.add(p.y).sq();
var x = p.x.sq();
var z = p.y.sq();
const y = z.add(x);
z = z.sub(x);
x = t0.sub(y);
const t = p.z.sq2().sub(z);
return .{
.x = x.mul(t),
.y = y.mul(z),
.z = z.mul(t),
.t = x.mul(y),
};
}
/// Add two Edwards25519 points.
pub fn add(p: Edwards25519, q: Edwards25519) Edwards25519 {
const a = p.y.sub(p.x).mul(q.y.sub(q.x));
const b = p.x.add(p.y).mul(q.x.add(q.y));
const c = p.t.mul(q.t).mul(Fe.edwards25519d2);
var d = p.z.mul(q.z);
d = d.add(d);
const x = b.sub(a);
const y = b.add(a);
const z = d.add(c);
const t = d.sub(c);
return .{
.x = x.mul(t),
.y = y.mul(z),
.z = z.mul(t),
.t = x.mul(y),
};
}
/// Subtract two Edwards25519 points.
pub fn sub(p: Edwards25519, q: Edwards25519) Edwards25519 {
return p.add(q.neg());
}
/// Double a point `n` times.
fn shift(p: Edwards25519, n: comptime_int) Edwards25519 {
var q = p;
for (0..n) |_| q = q.dbl();
return q;
}
fn cMov(p: *Edwards25519, a: Edwards25519, c: u64) void {
p.x.cMov(a.x, c);
p.y.cMov(a.y, c);
p.z.cMov(a.z, c);
p.t.cMov(a.t, c);
}
fn pcSelect(comptime n: usize, pc: *const [n]Edwards25519, b: u8) Edwards25519 {
var t = Edwards25519.identityElement;
comptime var i: u8 = 1;
inline while (i < pc.len) : (i += 1) {
t.cMov(pc[i], ((@as(usize, b ^ i) -% 1) >> 8) & 1);
}
return t;
}
fn slide(s: [32]u8) [2 * 32]i8 {
const reduced = if ((s[s.len - 1] & 0x80) == 0) s else scalar.reduce(s);
var e: [2 * 32]i8 = undefined;
for (reduced, 0..) |x, i| {
e[i * 2 + 0] = @as(i8, @as(u4, @truncate(x)));
e[i * 2 + 1] = @as(i8, @as(u4, @truncate(x >> 4)));
}
// Now, e[0..63] is between 0 and 15, e[63] is between 0 and 7
var carry: i8 = 0;
for (e[0..63]) |*x| {
x.* += carry;
carry = (x.* + 8) >> 4;
x.* -= carry * 16;
}
e[63] += carry;
// Now, e[*] is between -8 and 8, including e[63]
return e;
}
// Scalar multiplication with a 4-bit window and the first 8 multiples.
// This requires the scalar to be converted to non-adjacent form.
// Based on real-world benchmarks, we only use this for multi-scalar multiplication.
// NAF could be useful to half the size of precomputation tables, but we intentionally
// avoid these to keep the standard library lightweight.
fn pcMul(pc: *const [9]Edwards25519, s: [32]u8, comptime vartime: bool) IdentityElementError!Edwards25519 {
std.debug.assert(vartime);
const e = slide(s);
var q = Edwards25519.identityElement;
var pos: usize = 2 * 32 - 1;
while (true) : (pos -= 1) {
const slot = e[pos];
if (slot > 0) {
q = q.add(pc[@as(usize, @intCast(slot))]);
} else if (slot < 0) {
q = q.sub(pc[@as(usize, @intCast(-slot))]);
}
if (pos == 0) break;
q = q.dbl().dbl().dbl().dbl();
}
try q.rejectIdentity();
return q;
}
// Scalar multiplication with a 4-bit window and the first 15 multiples.
fn pcMul16(pc: *const [16]Edwards25519, s: [32]u8, comptime vartime: bool) IdentityElementError!Edwards25519 {
var q = Edwards25519.identityElement;
var pos: usize = 252;
while (true) : (pos -= 4) {
const slot: u4 = @truncate((s[pos >> 3] >> @as(u3, @truncate(pos))));
if (vartime) {
if (slot != 0) {
q = q.add(pc[slot]);
}
} else {
q = q.add(pcSelect(16, pc, slot));
}
if (pos == 0) break;
q = q.dbl().dbl().dbl().dbl();
}
try q.rejectIdentity();
return q;
}
fn precompute(p: Edwards25519, comptime count: usize) [1 + count]Edwards25519 {
var pc: [1 + count]Edwards25519 = undefined;
pc[0] = Edwards25519.identityElement;
pc[1] = p;
var i: usize = 2;
while (i <= count) : (i += 1) {
pc[i] = if (i % 2 == 0) pc[i / 2].dbl() else pc[i - 1].add(p);
}
return pc;
}
const basePointPc = pc: {
@setEvalBranchQuota(10000);
break :pc precompute(Edwards25519.basePoint, 15);
};
/// Multiply an Edwards25519 point by a scalar without clamping it.
/// Return error.WeakPublicKey if the base generates a small-order group,
/// and error.IdentityElement if the result is the identity element.
pub fn mul(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
const pc = if (p.is_base) basePointPc else pc: {
const xpc = precompute(p, 15);
xpc[4].rejectIdentity() catch return error.WeakPublicKey;
break :pc xpc;
};
return pcMul16(&pc, s, false);
}
/// Multiply an Edwards25519 point by a *PUBLIC* scalar *IN VARIABLE TIME*
/// This can be used for signature verification.
pub fn mulPublic(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
if (p.is_base) {
return pcMul16(&basePointPc, s, true);
} else {
const pc = precompute(p, 8);
pc[4].rejectIdentity() catch return error.WeakPublicKey;
return pcMul(&pc, s, true);
}
}
/// Double-base multiplication of public parameters - Compute (p1*s1)+(p2*s2) *IN VARIABLE TIME*
/// This can be used for signature verification.
pub fn mulDoubleBasePublic(p1: Edwards25519, s1: [32]u8, p2: Edwards25519, s2: [32]u8) WeakPublicKeyError!Edwards25519 {
var pc1_array: [9]Edwards25519 = undefined;
const pc1 = if (p1.is_base) basePointPc[0..9] else pc: {
pc1_array = precompute(p1, 8);
pc1_array[4].rejectIdentity() catch return error.WeakPublicKey;
break :pc &pc1_array;
};
var pc2_array: [9]Edwards25519 = undefined;
const pc2 = if (p2.is_base) basePointPc[0..9] else pc: {
pc2_array = precompute(p2, 8);
pc2_array[4].rejectIdentity() catch return error.WeakPublicKey;
break :pc &pc2_array;
};
const e1 = slide(s1);
const e2 = slide(s2);
var q = Edwards25519.identityElement;
var pos: usize = 2 * 32 - 1;
while (true) : (pos -= 1) {
const slot1 = e1[pos];
if (slot1 > 0) {
q = q.add(pc1[@as(usize, @intCast(slot1))]);
} else if (slot1 < 0) {
q = q.sub(pc1[@as(usize, @intCast(-slot1))]);
}
const slot2 = e2[pos];
if (slot2 > 0) {
q = q.add(pc2[@as(usize, @intCast(slot2))]);
} else if (slot2 < 0) {
q = q.sub(pc2[@as(usize, @intCast(-slot2))]);
}
if (pos == 0) break;
q = q.dbl().dbl().dbl().dbl();
}
return q;
}
/// Multiscalar multiplication *IN VARIABLE TIME* for public data
/// Computes ps0*ss0 + ps1*ss1 + ps2*ss2... faster than doing many of these operations individually
pub fn mulMulti(comptime count: usize, ps: [count]Edwards25519, ss: [count][32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
var pcs: [count][9]Edwards25519 = undefined;
var bpc: [9]Edwards25519 = undefined;
@memcpy(&bpc, basePointPc[0..bpc.len]);
for (ps, 0..) |p, i| {
if (p.is_base) {
pcs[i] = bpc;
} else {
pcs[i] = precompute(p, 8);
pcs[i][4].rejectIdentity() catch return error.WeakPublicKey;
}
}
var es: [count][2 * 32]i8 = undefined;
for (ss, 0..) |s, i| {
es[i] = slide(s);
}
var q = Edwards25519.identityElement;
var pos: usize = 2 * 32 - 1;
while (true) : (pos -= 1) {
for (es, 0..) |e, i| {
const slot = e[pos];
if (slot > 0) {
q = q.add(pcs[i][@as(usize, @intCast(slot))]);
} else if (slot < 0) {
q = q.sub(pcs[i][@as(usize, @intCast(-slot))]);
}
}
if (pos == 0) break;
q = q.dbl().dbl().dbl().dbl();
}
try q.rejectIdentity();
return q;
}
/// Multiply an Edwards25519 point by a scalar after "clamping" it.
/// Clamping forces the scalar to be a multiple of the cofactor in
/// order to prevent small subgroups attacks.
/// This is strongly recommended for DH operations.
/// Return error.WeakPublicKey if the resulting point is
/// the identity element.
pub fn clampedMul(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
var t: [32]u8 = s;
scalar.clamp(&t);
return mul(p, t);
}
// montgomery -- recover y = sqrt(x^3 + A*x^2 + x)
fn xmontToYmont(x: Fe) NotSquareError!Fe {
var x2 = x.sq();
const x3 = x.mul(x2);
x2 = x2.mul32(Fe.edwards25519a_32);
return x.add(x2).add(x3).sqrt();
}
// montgomery affine coordinates to edwards extended coordinates
fn montToEd(x: Fe, y: Fe) Edwards25519 {
const x_plus_one = x.add(Fe.one);
const x_minus_one = x.sub(Fe.one);
const x_plus_one_y_inv = x_plus_one.mul(y).invert(); // 1/((x+1)*y)
// xed = sqrt(-A-2)*x/y
const xed = x.mul(Fe.edwards25519sqrtam2).mul(x_plus_one_y_inv).mul(x_plus_one);
// yed = (x-1)/(x+1) or 1 if the denominator is 0
var yed = x_plus_one_y_inv.mul(y).mul(x_minus_one);
yed.cMov(Fe.one, @intFromBool(x_plus_one_y_inv.isZero()));
return Edwards25519{
.x = xed,
.y = yed,
.z = Fe.one,
.t = xed.mul(yed),
};
}
/// Elligator2 map - Returns Montgomery affine coordinates
pub fn elligator2(r: Fe) struct { x: Fe, y: Fe, not_square: bool } {
const rr2 = r.sq2().add(Fe.one).invert();
var x = rr2.mul32(Fe.edwards25519a_32).neg(); // x=x1
var x2 = x.sq();
const x3 = x2.mul(x);
x2 = x2.mul32(Fe.edwards25519a_32); // x2 = A*x1^2
const gx1 = x3.add(x).add(x2); // gx1 = x1^3 + A*x1^2 + x1
const not_square = !gx1.isSquare();
// gx1 not a square => x = -x1-A
x.cMov(x.neg(), @intFromBool(not_square));
x2 = Fe.zero;
x2.cMov(Fe.edwards25519a, @intFromBool(not_square));
x = x.sub(x2);
// We have y = sqrt(gx1) or sqrt(gx2) with gx2 = gx1*(A+x1)/(-x1)
// but it is about as fast to just recompute y from the curve equation.
const y = xmontToYmont(x) catch unreachable;
return .{ .x = x, .y = y, .not_square = not_square };
}
/// Map a 64-bit hash into an Edwards25519 point
pub fn fromHash(h: [64]u8) Edwards25519 {
const fe_f = Fe.fromBytes64(h);
var elr = elligator2(fe_f);
const y_sign = !elr.not_square;
const y_neg = elr.y.neg();
elr.y.cMov(y_neg, @intFromBool(elr.y.isNegative()) ^ @intFromBool(y_sign));
return montToEd(elr.x, elr.y).clearCofactor();
}
fn stringToPoints(comptime n: usize, ctx: []const u8, s: []const u8) [n]Edwards25519 {
debug.assert(n <= 2);
const H = crypto.hash.sha2.Sha512;
const h_l: usize = 48;
var xctx = ctx;
var hctx: [H.digest_length]u8 = undefined;
if (ctx.len > 0xff) {
var st = H.init(.{});
st.update("H2C-OVERSIZE-DST-");
st.update(ctx);
st.final(&hctx);
xctx = hctx[0..];
}
const empty_block = [_]u8{0} ** H.block_length;
var t = [3]u8{ 0, n * h_l, 0 };
var xctx_len_u8 = [1]u8{@as(u8, @intCast(xctx.len))};
var st = H.init(.{});
st.update(empty_block[0..]);
st.update(s);
st.update(t[0..]);
st.update(xctx);
st.update(xctx_len_u8[0..]);
var u_0: [H.digest_length]u8 = undefined;
st.final(&u_0);
var u: [n * H.digest_length]u8 = undefined;
var i: usize = 0;
while (i < n * H.digest_length) : (i += H.digest_length) {
u[i..][0..H.digest_length].* = u_0;
var j: usize = 0;
while (i > 0 and j < H.digest_length) : (j += 1) {
u[i + j] ^= u[i + j - H.digest_length];
}
t[2] += 1;
st = H.init(.{});
st.update(u[i..][0..H.digest_length]);
st.update(t[2..3]);
st.update(xctx);
st.update(xctx_len_u8[0..]);
st.final(u[i..][0..H.digest_length]);
}
var px: [n]Edwards25519 = undefined;
i = 0;
while (i < n) : (i += 1) {
@memset(u_0[0 .. H.digest_length - h_l], 0);
u_0[H.digest_length - h_l ..][0..h_l].* = u[i * h_l ..][0..h_l].*;
px[i] = fromHash(u_0);
}
return px;
}
/// Hash a context `ctx` and a string `s` into an Edwards25519 point
///
/// This function implements the edwards25519_XMD:SHA-512_ELL2_RO_ and edwards25519_XMD:SHA-512_ELL2_NU_
/// methods from the "Hashing to Elliptic Curves" standard document.
///
/// Although not strictly required by the standard, it is recommended to avoid NUL characters in
/// the context in order to be compatible with other implementations.
pub fn fromString(comptime random_oracle: bool, ctx: []const u8, s: []const u8) Edwards25519 {
if (random_oracle) {
const px = stringToPoints(2, ctx, s);
return px[0].add(px[1]);
} else {
return stringToPoints(1, ctx, s)[0];
}
}
/// Map a 32 bit uniform bit string into an edwards25519 point
pub fn fromUniform(r: [32]u8) Edwards25519 {
var s = r;
const x_sign = s[31] >> 7;
s[31] &= 0x7f;
const elr = elligator2(Fe.fromBytes(s));
var p = montToEd(elr.x, elr.y);
const p_neg = p.neg();
p.cMov(p_neg, @intFromBool(p.x.isNegative()) ^ x_sign);
return p.clearCofactor();
}
};
const htest = @import("../test.zig");
test "packing/unpacking" {
const s = [_]u8{170} ++ [_]u8{0} ** 31;
var b = Edwards25519.basePoint;
const pk = try b.mul(s);
var buf: [128]u8 = undefined;
try std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{&pk.toBytes()}), "074BC7E0FCBD587FDBC0969444245FADC562809C8F6E97E949AF62484B5B81A6");
const small_order_ss: [7][32]u8 = .{
.{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0 (order 4)
},
.{
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 1 (order 1)
},
.{
0x26, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0xf4, 0x89, 0xf2, 0xef, 0x98, 0xf0, 0xd5, 0xdf, 0xac, 0x05, 0xd3, 0xc6, 0x33, 0x39, 0xb1, 0x38, 0x02, 0x88, 0x6d, 0x53, 0xfc, 0x05, // 270738550114484064931822528722565878893680426757531351946374360975030340202(order 8)
},
.{
0xc7, 0x17, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, 0xba, 0x3c, 0x0b, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, 0xfa, 0x2c, 0x39, 0xcc, 0xc6, 0x4e, 0xc7, 0xfd, 0x77, 0x92, 0xac, 0x03, 0x7a, // 55188659117513257062467267217118295137698188065244968500265048394206261417927 (order 8)
},
.{
0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p-1 (order 2)
},
.{
0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p (=0, order 4)
},
.{
0xee, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p+1 (=1, order 1)
},
};
for (small_order_ss) |small_order_s| {
const small_p = try Edwards25519.fromBytes(small_order_s);
try std.testing.expectError(error.WeakPublicKey, small_p.mul(s));
}
}
test "point addition/subtraction" {
var s1: [32]u8 = undefined;
var s2: [32]u8 = undefined;
crypto.random.bytes(&s1);
crypto.random.bytes(&s2);
const p = try Edwards25519.basePoint.clampedMul(s1);
const q = try Edwards25519.basePoint.clampedMul(s2);
const r = p.add(q).add(q).sub(q).sub(q);
try r.rejectIdentity();
try std.testing.expectError(error.IdentityElement, r.sub(p).rejectIdentity());
try std.testing.expectError(error.IdentityElement, p.sub(p).rejectIdentity());
try std.testing.expectError(error.IdentityElement, p.sub(q).add(q).sub(p).rejectIdentity());
}
test "uniform-to-point" {
var r = [32]u8{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 };
var p = Edwards25519.fromUniform(r);
try htest.assertEqual("0691eee3cf70a0056df6bfa03120635636581b5c4ea571dfc680f78c7e0b4137", p.toBytes()[0..]);
r[31] = 0xff;
p = Edwards25519.fromUniform(r);
try htest.assertEqual("f70718e68ef42d90ca1d936bb2d7e159be6c01d8095d39bd70487c82fe5c973a", p.toBytes()[0..]);
}
// Test vectors from draft-irtf-cfrg-hash-to-curve-12
test "hash-to-curve operation" {
var p = Edwards25519.fromString(true, "QUUX-V01-CS02-with-edwards25519_XMD:SHA-512_ELL2_RO_", "abc");
try htest.assertEqual("31558a26887f23fb8218f143e69d5f0af2e7831130bd5b432ef23883b895839a", p.toBytes()[0..]);
p = Edwards25519.fromString(false, "QUUX-V01-CS02-with-edwards25519_XMD:SHA-512_ELL2_NU_", "abc");
try htest.assertEqual("42fa27c8f5a1ae0aa38bb59d5938e5145622ba5dedd11d11736fa2f9502d7367", p.toBytes()[0..]);
}
test "implicit reduction of invalid scalars" {
const s = [_]u8{0} ** 31 ++ [_]u8{255};
const p1 = try Edwards25519.basePoint.mulPublic(s);
const p2 = try Edwards25519.basePoint.mul(s);
const p3 = try p1.mulPublic(s);
const p4 = try p1.mul(s);
try std.testing.expectEqualSlices(u8, p1.toBytes()[0..], p2.toBytes()[0..]);
try std.testing.expectEqualSlices(u8, p3.toBytes()[0..], p4.toBytes()[0..]);
try htest.assertEqual("339f189ecc5fbebe9895345c72dc07bda6e615f8a40e768441b6f529cd6c671a", p1.toBytes()[0..]);
try htest.assertEqual("a501e4c595a3686d8bee7058c7e6af7fd237f945c47546910e37e0e79b1bafb0", p3.toBytes()[0..]);
}
test "subgroup check" {
for (0..100) |_| {
var p = Edwards25519.basePoint;
const s = Edwards25519.scalar.random();
p = try p.mulPublic(s);
try p.rejectUnexpectedSubgroup();
}
var bogus: [Edwards25519.encoded_length]u8 = undefined;
_ = try std.fmt.hexToBytes(&bogus, "4dc95e3c28d78c48a60531525e6327e259b7ba0d2f5c81b694052c766a14b625");
const p = try Edwards25519.fromBytes(bogus);
try std.testing.expectError(error.UnexpectedSubgroup, p.rejectUnexpectedSubgroup());
}
|