aboutsummaryrefslogtreecommitdiff
path: root/lib/std/compress/flate/HuffmanEncoder.zig
blob: 28a405b88662b0c7a78392064fded523d414441d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
const HuffmanEncoder = @This();
const std = @import("std");
const assert = std.debug.assert;
const testing = std.testing;

codes: []Code,
// Reusable buffer with the longest possible frequency table.
freq_cache: [max_num_frequencies + 1]LiteralNode,
bit_count: [17]u32,
lns: []LiteralNode, // sorted by literal, stored to avoid repeated allocation in generate
lfs: []LiteralNode, // sorted by frequency, stored to avoid repeated allocation in generate

pub const LiteralNode = struct {
    literal: u16,
    freq: u16,

    pub fn max() LiteralNode {
        return .{
            .literal = std.math.maxInt(u16),
            .freq = std.math.maxInt(u16),
        };
    }
};

pub const Code = struct {
    code: u16 = 0,
    len: u16 = 0,
};

/// The odd order in which the codegen code sizes are written.
pub const codegen_order = [_]u32{ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
/// The number of codegen codes.
pub const codegen_code_count = 19;

/// The largest distance code.
pub const distance_code_count = 30;

/// Maximum number of literals.
pub const max_num_lit = 286;

/// Max number of frequencies used for a Huffman Code
/// Possible lengths are codegen_code_count (19), distance_code_count (30) and max_num_lit (286).
/// The largest of these is max_num_lit.
pub const max_num_frequencies = max_num_lit;

/// Biggest block size for uncompressed block.
pub const max_store_block_size = 65535;
/// The special code used to mark the end of a block.
pub const end_block_marker = 256;

/// Update this Huffman Code object to be the minimum code for the specified frequency count.
///
/// freq  An array of frequencies, in which frequency[i] gives the frequency of literal i.
/// max_bits  The maximum number of bits to use for any literal.
pub fn generate(self: *HuffmanEncoder, freq: []u16, max_bits: u32) void {
    var list = self.freq_cache[0 .. freq.len + 1];
    // Number of non-zero literals
    var count: u32 = 0;
    // Set list to be the set of all non-zero literals and their frequencies
    for (freq, 0..) |f, i| {
        if (f != 0) {
            list[count] = LiteralNode{ .literal = @as(u16, @intCast(i)), .freq = f };
            count += 1;
        } else {
            list[count] = LiteralNode{ .literal = 0x00, .freq = 0 };
            self.codes[i].len = 0;
        }
    }
    list[freq.len] = LiteralNode{ .literal = 0x00, .freq = 0 };

    list = list[0..count];
    if (count <= 2) {
        // Handle the small cases here, because they are awkward for the general case code. With
        // two or fewer literals, everything has bit length 1.
        for (list, 0..) |node, i| {
            // "list" is in order of increasing literal value.
            self.codes[node.literal] = .{
                .code = @intCast(i),
                .len = 1,
            };
        }
        return;
    }
    self.lfs = list;
    std.mem.sort(LiteralNode, self.lfs, {}, byFreq);

    // Get the number of literals for each bit count
    const bit_count = self.bitCounts(list, max_bits);
    // And do the assignment
    self.assignEncodingAndSize(bit_count, list);
}

pub fn bitLength(self: *HuffmanEncoder, freq: []u16) u32 {
    var total: u32 = 0;
    for (freq, 0..) |f, i| {
        if (f != 0) {
            total += @as(u32, @intCast(f)) * @as(u32, @intCast(self.codes[i].len));
        }
    }
    return total;
}

/// Return the number of literals assigned to each bit size in the Huffman encoding
///
/// This method is only called when list.len >= 3
/// The cases of 0, 1, and 2 literals are handled by special case code.
///
/// list: An array of the literals with non-zero frequencies
/// and their associated frequencies. The array is in order of increasing
/// frequency, and has as its last element a special element with frequency
/// `math.maxInt(i32)`
///
/// max_bits: The maximum number of bits that should be used to encode any literal.
/// Must be less than 16.
///
/// Returns an integer array in which array[i] indicates the number of literals
/// that should be encoded in i bits.
fn bitCounts(self: *HuffmanEncoder, list: []LiteralNode, max_bits_to_use: usize) []u32 {
    var max_bits = max_bits_to_use;
    const n = list.len;
    const max_bits_limit = 16;

    assert(max_bits < max_bits_limit);

    // The tree can't have greater depth than n - 1, no matter what. This
    // saves a little bit of work in some small cases
    max_bits = @min(max_bits, n - 1);

    // Create information about each of the levels.
    // A bogus "Level 0" whose sole purpose is so that
    // level1.prev.needed == 0.  This makes level1.next_pair_freq
    // be a legitimate value that never gets chosen.
    var levels: [max_bits_limit]LevelInfo = std.mem.zeroes([max_bits_limit]LevelInfo);
    // leaf_counts[i] counts the number of literals at the left
    // of ancestors of the rightmost node at level i.
    // leaf_counts[i][j] is the number of literals at the left
    // of the level j ancestor.
    var leaf_counts: [max_bits_limit][max_bits_limit]u32 = @splat(@splat(0));

    {
        var level = @as(u32, 1);
        while (level <= max_bits) : (level += 1) {
            // For every level, the first two items are the first two characters.
            // We initialize the levels as if we had already figured this out.
            levels[level] = LevelInfo{
                .level = level,
                .last_freq = list[1].freq,
                .next_char_freq = list[2].freq,
                .next_pair_freq = list[0].freq + list[1].freq,
                .needed = 0,
            };
            leaf_counts[level][level] = 2;
            if (level == 1) {
                levels[level].next_pair_freq = std.math.maxInt(i32);
            }
        }
    }

    // We need a total of 2*n - 2 items at top level and have already generated 2.
    levels[max_bits].needed = 2 * @as(u32, @intCast(n)) - 4;

    {
        var level = max_bits;
        while (true) {
            var l = &levels[level];
            if (l.next_pair_freq == std.math.maxInt(i32) and l.next_char_freq == std.math.maxInt(i32)) {
                // We've run out of both leaves and pairs.
                // End all calculations for this level.
                // To make sure we never come back to this level or any lower level,
                // set next_pair_freq impossibly large.
                l.needed = 0;
                levels[level + 1].next_pair_freq = std.math.maxInt(i32);
                level += 1;
                continue;
            }

            const prev_freq = l.last_freq;
            if (l.next_char_freq < l.next_pair_freq) {
                // The next item on this row is a leaf node.
                const next = leaf_counts[level][level] + 1;
                l.last_freq = l.next_char_freq;
                // Lower leaf_counts are the same of the previous node.
                leaf_counts[level][level] = next;
                if (next >= list.len) {
                    l.next_char_freq = LiteralNode.max().freq;
                } else {
                    l.next_char_freq = list[next].freq;
                }
            } else {
                // The next item on this row is a pair from the previous row.
                // next_pair_freq isn't valid until we generate two
                // more values in the level below
                l.last_freq = l.next_pair_freq;
                // Take leaf counts from the lower level, except counts[level] remains the same.
                @memcpy(leaf_counts[level][0..level], leaf_counts[level - 1][0..level]);
                levels[l.level - 1].needed = 2;
            }

            l.needed -= 1;
            if (l.needed == 0) {
                // We've done everything we need to do for this level.
                // Continue calculating one level up. Fill in next_pair_freq
                // of that level with the sum of the two nodes we've just calculated on
                // this level.
                if (l.level == max_bits) {
                    // All done!
                    break;
                }
                levels[l.level + 1].next_pair_freq = prev_freq + l.last_freq;
                level += 1;
            } else {
                // If we stole from below, move down temporarily to replenish it.
                while (levels[level - 1].needed > 0) {
                    level -= 1;
                    if (level == 0) {
                        break;
                    }
                }
            }
        }
    }

    // Somethings is wrong if at the end, the top level is null or hasn't used
    // all of the leaves.
    assert(leaf_counts[max_bits][max_bits] == n);

    var bit_count = self.bit_count[0 .. max_bits + 1];
    var bits: u32 = 1;
    const counts = &leaf_counts[max_bits];
    {
        var level = max_bits;
        while (level > 0) : (level -= 1) {
            // counts[level] gives the number of literals requiring at least "bits"
            // bits to encode.
            bit_count[bits] = counts[level] - counts[level - 1];
            bits += 1;
            if (level == 0) {
                break;
            }
        }
    }
    return bit_count;
}

/// Look at the leaves and assign them a bit count and an encoding as specified
/// in RFC 1951 3.2.2
fn assignEncodingAndSize(self: *HuffmanEncoder, bit_count: []u32, list_arg: []LiteralNode) void {
    var code = @as(u16, 0);
    var list = list_arg;

    for (bit_count, 0..) |bits, n| {
        code <<= 1;
        if (n == 0 or bits == 0) {
            continue;
        }
        // The literals list[list.len-bits] .. list[list.len-bits]
        // are encoded using "bits" bits, and get the values
        // code, code + 1, ....  The code values are
        // assigned in literal order (not frequency order).
        const chunk = list[list.len - @as(u32, @intCast(bits)) ..];

        self.lns = chunk;
        std.mem.sort(LiteralNode, self.lns, {}, byLiteral);

        for (chunk) |node| {
            self.codes[node.literal] = .{
                .code = bitReverse(u16, code, @as(u5, @intCast(n))),
                .len = @as(u16, @intCast(n)),
            };
            code += 1;
        }
        list = list[0 .. list.len - @as(u32, @intCast(bits))];
    }
}

fn byFreq(context: void, a: LiteralNode, b: LiteralNode) bool {
    _ = context;
    if (a.freq == b.freq) {
        return a.literal < b.literal;
    }
    return a.freq < b.freq;
}

/// Describes the state of the constructed tree for a given depth.
const LevelInfo = struct {
    /// Our level.  for better printing
    level: u32,
    /// The frequency of the last node at this level
    last_freq: u32,
    /// The frequency of the next character to add to this level
    next_char_freq: u32,
    /// The frequency of the next pair (from level below) to add to this level.
    /// Only valid if the "needed" value of the next lower level is 0.
    next_pair_freq: u32,
    /// The number of chains remaining to generate for this level before moving
    /// up to the next level
    needed: u32,
};

fn byLiteral(context: void, a: LiteralNode, b: LiteralNode) bool {
    _ = context;
    return a.literal < b.literal;
}

/// Reverse bit-by-bit a N-bit code.
fn bitReverse(comptime T: type, value: T, n: usize) T {
    const r = @bitReverse(value);
    return r >> @as(std.math.Log2Int(T), @intCast(@typeInfo(T).int.bits - n));
}

test bitReverse {
    const ReverseBitsTest = struct {
        in: u16,
        bit_count: u5,
        out: u16,
    };

    const reverse_bits_tests = [_]ReverseBitsTest{
        .{ .in = 1, .bit_count = 1, .out = 1 },
        .{ .in = 1, .bit_count = 2, .out = 2 },
        .{ .in = 1, .bit_count = 3, .out = 4 },
        .{ .in = 1, .bit_count = 4, .out = 8 },
        .{ .in = 1, .bit_count = 5, .out = 16 },
        .{ .in = 17, .bit_count = 5, .out = 17 },
        .{ .in = 257, .bit_count = 9, .out = 257 },
        .{ .in = 29, .bit_count = 5, .out = 23 },
    };

    for (reverse_bits_tests) |h| {
        const v = bitReverse(u16, h.in, h.bit_count);
        try std.testing.expectEqual(h.out, v);
    }
}

/// Generates a HuffmanCode corresponding to the fixed literal table
pub fn fixedLiteralEncoder(codes: *[max_num_frequencies]Code) HuffmanEncoder {
    var h: HuffmanEncoder = undefined;
    h.codes = codes;
    var ch: u16 = 0;

    while (ch < max_num_frequencies) : (ch += 1) {
        var bits: u16 = undefined;
        var size: u16 = undefined;
        switch (ch) {
            0...143 => {
                // size 8, 000110000  .. 10111111
                bits = ch + 48;
                size = 8;
            },
            144...255 => {
                // size 9, 110010000 .. 111111111
                bits = ch + 400 - 144;
                size = 9;
            },
            256...279 => {
                // size 7, 0000000 .. 0010111
                bits = ch - 256;
                size = 7;
            },
            else => {
                // size 8, 11000000 .. 11000111
                bits = ch + 192 - 280;
                size = 8;
            },
        }
        h.codes[ch] = .{ .code = bitReverse(u16, bits, @as(u5, @intCast(size))), .len = size };
    }
    return h;
}

pub fn fixedDistanceEncoder(codes: *[distance_code_count]Code) HuffmanEncoder {
    var h: HuffmanEncoder = undefined;
    h.codes = codes;
    for (h.codes, 0..) |_, ch| {
        h.codes[ch] = .{ .code = bitReverse(u16, @as(u16, @intCast(ch)), 5), .len = 5 };
    }
    return h;
}

pub fn huffmanDistanceEncoder(codes: *[distance_code_count]Code) HuffmanEncoder {
    var distance_freq: [distance_code_count]u16 = @splat(0);
    distance_freq[0] = 1;
    // huff_distance is a static distance encoder used for huffman only encoding.
    // It can be reused since we will not be encoding distance values.
    var h: HuffmanEncoder = .{};
    h.codes = codes;
    h.generate(distance_freq[0..], 15);
    return h;
}

test "generate a Huffman code for the fixed literal table specific to Deflate" {
    var codes: [max_num_frequencies]Code = undefined;
    const enc: HuffmanEncoder = .fixedLiteralEncoder(&codes);
    for (enc.codes) |c| {
        switch (c.len) {
            7 => {
                const v = @bitReverse(@as(u7, @intCast(c.code)));
                try testing.expect(v <= 0b0010111);
            },
            8 => {
                const v = @bitReverse(@as(u8, @intCast(c.code)));
                try testing.expect((v >= 0b000110000 and v <= 0b10111111) or
                    (v >= 0b11000000 and v <= 11000111));
            },
            9 => {
                const v = @bitReverse(@as(u9, @intCast(c.code)));
                try testing.expect(v >= 0b110010000 and v <= 0b111111111);
            },
            else => unreachable,
        }
    }
}

test "generate a Huffman code for the 30 possible relative distances (LZ77 distances) of Deflate" {
    var codes: [distance_code_count]Code = undefined;
    const enc = fixedDistanceEncoder(&codes);
    for (enc.codes) |c| {
        const v = @bitReverse(@as(u5, @intCast(c.code)));
        try testing.expect(v <= 29);
        try testing.expect(c.len == 5);
    }
}

pub const fixed_codes = [_]u8{
    0b00001100, 0b10001100, 0b01001100, 0b11001100, 0b00101100, 0b10101100, 0b01101100, 0b11101100,
    0b00011100, 0b10011100, 0b01011100, 0b11011100, 0b00111100, 0b10111100, 0b01111100, 0b11111100,
    0b00000010, 0b10000010, 0b01000010, 0b11000010, 0b00100010, 0b10100010, 0b01100010, 0b11100010,
    0b00010010, 0b10010010, 0b01010010, 0b11010010, 0b00110010, 0b10110010, 0b01110010, 0b11110010,
    0b00001010, 0b10001010, 0b01001010, 0b11001010, 0b00101010, 0b10101010, 0b01101010, 0b11101010,
    0b00011010, 0b10011010, 0b01011010, 0b11011010, 0b00111010, 0b10111010, 0b01111010, 0b11111010,
    0b00000110, 0b10000110, 0b01000110, 0b11000110, 0b00100110, 0b10100110, 0b01100110, 0b11100110,
    0b00010110, 0b10010110, 0b01010110, 0b11010110, 0b00110110, 0b10110110, 0b01110110, 0b11110110,
    0b00001110, 0b10001110, 0b01001110, 0b11001110, 0b00101110, 0b10101110, 0b01101110, 0b11101110,
    0b00011110, 0b10011110, 0b01011110, 0b11011110, 0b00111110, 0b10111110, 0b01111110, 0b11111110,
    0b00000001, 0b10000001, 0b01000001, 0b11000001, 0b00100001, 0b10100001, 0b01100001, 0b11100001,
    0b00010001, 0b10010001, 0b01010001, 0b11010001, 0b00110001, 0b10110001, 0b01110001, 0b11110001,
    0b00001001, 0b10001001, 0b01001001, 0b11001001, 0b00101001, 0b10101001, 0b01101001, 0b11101001,
    0b00011001, 0b10011001, 0b01011001, 0b11011001, 0b00111001, 0b10111001, 0b01111001, 0b11111001,
    0b00000101, 0b10000101, 0b01000101, 0b11000101, 0b00100101, 0b10100101, 0b01100101, 0b11100101,
    0b00010101, 0b10010101, 0b01010101, 0b11010101, 0b00110101, 0b10110101, 0b01110101, 0b11110101,
    0b00001101, 0b10001101, 0b01001101, 0b11001101, 0b00101101, 0b10101101, 0b01101101, 0b11101101,
    0b00011101, 0b10011101, 0b01011101, 0b11011101, 0b00111101, 0b10111101, 0b01111101, 0b11111101,
    0b00010011, 0b00100110, 0b01001110, 0b10011010, 0b00111100, 0b01100101, 0b11101010, 0b10110100,
    0b11101001, 0b00110011, 0b01100110, 0b11001110, 0b10011010, 0b00111101, 0b01100111, 0b11101110,
    0b10111100, 0b11111001, 0b00001011, 0b00010110, 0b00101110, 0b01011010, 0b10111100, 0b01100100,
    0b11101001, 0b10110010, 0b11100101, 0b00101011, 0b01010110, 0b10101110, 0b01011010, 0b10111101,
    0b01100110, 0b11101101, 0b10111010, 0b11110101, 0b00011011, 0b00110110, 0b01101110, 0b11011010,
    0b10111100, 0b01100101, 0b11101011, 0b10110110, 0b11101101, 0b00111011, 0b01110110, 0b11101110,
    0b11011010, 0b10111101, 0b01100111, 0b11101111, 0b10111110, 0b11111101, 0b00000111, 0b00001110,
    0b00011110, 0b00111010, 0b01111100, 0b11100100, 0b11101000, 0b10110001, 0b11100011, 0b00100111,
    0b01001110, 0b10011110, 0b00111010, 0b01111101, 0b11100110, 0b11101100, 0b10111001, 0b11110011,
    0b00010111, 0b00101110, 0b01011110, 0b10111010, 0b01111100, 0b11100101, 0b11101010, 0b10110101,
    0b11101011, 0b00110111, 0b01101110, 0b11011110, 0b10111010, 0b01111101, 0b11100111, 0b11101110,
    0b10111101, 0b11111011, 0b00001111, 0b00011110, 0b00111110, 0b01111010, 0b11111100, 0b11100100,
    0b11101001, 0b10110011, 0b11100111, 0b00101111, 0b01011110, 0b10111110, 0b01111010, 0b11111101,
    0b11100110, 0b11101101, 0b10111011, 0b11110111, 0b00011111, 0b00111110, 0b01111110, 0b11111010,
    0b11111100, 0b11100101, 0b11101011, 0b10110111, 0b11101111, 0b00111111, 0b01111110, 0b11111110,
    0b11111010, 0b11111101, 0b11100111, 0b11101111, 0b10111111, 0b11111111, 0b00000000, 0b00100000,
    0b00001000, 0b00001100, 0b10000001, 0b11000010, 0b11100000, 0b00001000, 0b00100100, 0b00001010,
    0b10001101, 0b11000001, 0b11100010, 0b11110000, 0b00000100, 0b00100010, 0b10001001, 0b01001100,
    0b10100001, 0b11010010, 0b11101000, 0b00000011, 0b10000011, 0b01000011, 0b11000011, 0b00100011,
    0b10100011,
};