aboutsummaryrefslogtreecommitdiff
path: root/lib/std/compress/deflate/decompressor.zig
blob: a906bb1037ade5d1e728ff95b60d2dbb2ce4d8e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
const std = @import("std");
const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;

const Allocator = std.mem.Allocator;
const ArrayList = std.ArrayList;

const bu = @import("bits_utils.zig");
const ddec = @import("dict_decoder.zig");
const deflate_const = @import("deflate_const.zig");
const mu = @import("mem_utils.zig");

const max_match_offset = deflate_const.max_match_offset;
const end_block_marker = deflate_const.end_block_marker;

const max_code_len = 16; // max length of Huffman code
// The next three numbers come from the RFC section 3.2.7, with the
// additional proviso in section 3.2.5 which implies that distance codes
// 30 and 31 should never occur in compressed data.
const max_num_lit = 286;
const max_num_dist = 30;
const num_codes = 19; // number of codes in Huffman meta-code

var corrupt_input_error_offset: u64 = undefined;

const InflateError = error{
    CorruptInput, // A CorruptInput error reports the presence of corrupt input at a given offset.
    BadInternalState, // An BadInternalState reports an error in the flate code itself.
    BadReaderState, // An error was encountered while accessing the inner reader
    UnexpectedEndOfStream,
    EndOfStreamWithNoError,
};

// The data structure for decoding Huffman tables is based on that of
// zlib. There is a lookup table of a fixed bit width (huffman_chunk_bits),
// For codes smaller than the table width, there are multiple entries
// (each combination of trailing bits has the same value). For codes
// larger than the table width, the table contains a link to an overflow
// table. The width of each entry in the link table is the maximum code
// size minus the chunk width.
//
// Note that you can do a lookup in the table even without all bits
// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
// have the property that shorter codes come before longer ones, the
// bit length estimate in the result is a lower bound on the actual
// number of bits.
//
// See the following:
//	https://github.com/madler/zlib/raw/master/doc/algorithm.txt

// chunk & 15 is number of bits
// chunk >> 4 is value, including table link

const huffman_chunk_bits = 9;
const huffman_num_chunks = 1 << huffman_chunk_bits; // 512
const huffman_count_mask = 15; // 0b1111
const huffman_value_shift = 4;

const HuffmanDecoder = struct {
    const Self = @This();

    allocator: Allocator = undefined,

    min: u32 = 0, // the minimum code length
    chunks: [huffman_num_chunks]u16 = [1]u16{0} ** huffman_num_chunks, // chunks as described above
    links: [][]u16 = undefined, // overflow links
    link_mask: u32 = 0, // mask the width of the link table
    initialized: bool = false,
    sub_chunks: ArrayList(u32) = undefined,

    // Initialize Huffman decoding tables from array of code lengths.
    // Following this function, self is guaranteed to be initialized into a complete
    // tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
    // degenerate case where the tree has only a single symbol with length 1. Empty
    // trees are permitted.
    fn init(self: *Self, allocator: Allocator, lengths: []u32) !bool {

        // Sanity enables additional runtime tests during Huffman
        // table construction. It's intended to be used during
        // development and debugging
        const sanity = false;

        if (self.min != 0) {
            self.* = HuffmanDecoder{};
        }

        self.allocator = allocator;

        // Count number of codes of each length,
        // compute min and max length.
        var count: [max_code_len]u32 = [1]u32{0} ** max_code_len;
        var min: u32 = 0;
        var max: u32 = 0;
        for (lengths) |n| {
            if (n == 0) {
                continue;
            }
            if (min == 0) {
                min = n;
            }
            min = @minimum(n, min);
            max = @maximum(n, max);
            count[n] += 1;
        }

        // Empty tree. The decompressor.huffSym function will fail later if the tree
        // is used. Technically, an empty tree is only valid for the HDIST tree and
        // not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
        // is guaranteed to fail since it will attempt to use the tree to decode the
        // codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
        // guaranteed to fail later since the compressed data section must be
        // composed of at least one symbol (the end-of-block marker).
        if (max == 0) {
            return true;
        }

        var next_code: [max_code_len]u32 = [1]u32{0} ** max_code_len;
        var code: u32 = 0;
        {
            var i = min;
            while (i <= max) : (i += 1) {
                code <<= 1;
                next_code[i] = code;
                code += count[i];
            }
        }

        // Check that the coding is complete (i.e., that we've
        // assigned all 2-to-the-max possible bit sequences).
        // Exception: To be compatible with zlib, we also need to
        // accept degenerate single-code codings. See also
        // TestDegenerateHuffmanCoding.
        if (code != @as(u32, 1) << @intCast(u5, max) and !(code == 1 and max == 1)) {
            return false;
        }

        self.min = min;
        if (max > huffman_chunk_bits) {
            var num_links = @as(u32, 1) << @intCast(u5, max - huffman_chunk_bits);
            self.link_mask = @intCast(u32, num_links - 1);

            // create link tables
            var link = next_code[huffman_chunk_bits + 1] >> 1;
            self.links = try self.allocator.alloc([]u16, huffman_num_chunks - link);
            self.sub_chunks = ArrayList(u32).init(self.allocator);
            self.initialized = true;
            var j = @intCast(u32, link);
            while (j < huffman_num_chunks) : (j += 1) {
                var reverse = @intCast(u32, bu.bitReverse(u16, @intCast(u16, j), 16));
                reverse >>= @intCast(u32, 16 - huffman_chunk_bits);
                var off = j - @intCast(u32, link);
                if (sanity) {
                    // check we are not overwriting an existing chunk
                    assert(self.chunks[reverse] == 0);
                }
                self.chunks[reverse] = @intCast(u16, off << huffman_value_shift | (huffman_chunk_bits + 1));
                self.links[off] = try self.allocator.alloc(u16, num_links);
                if (sanity) {
                    // initialize to a known invalid chunk code (0) to see if we overwrite
                    // this value later on
                    mem.set(u16, self.links[off], 0);
                }
                try self.sub_chunks.append(off);
            }
        }

        for (lengths) |n, li| {
            if (n == 0) {
                continue;
            }
            var ncode = next_code[n];
            next_code[n] += 1;
            var chunk = @intCast(u16, (li << huffman_value_shift) | n);
            var reverse = @intCast(u16, bu.bitReverse(u16, @intCast(u16, ncode), 16));
            reverse >>= @intCast(u4, 16 - n);
            if (n <= huffman_chunk_bits) {
                var off = reverse;
                while (off < self.chunks.len) : (off += @as(u16, 1) << @intCast(u4, n)) {
                    // We should never need to overwrite
                    // an existing chunk. Also, 0 is
                    // never a valid chunk, because the
                    // lower 4 "count" bits should be
                    // between 1 and 15.
                    if (sanity) {
                        assert(self.chunks[off] == 0);
                    }
                    self.chunks[off] = chunk;
                }
            } else {
                var j = reverse & (huffman_num_chunks - 1);
                if (sanity) {
                    // Expect an indirect chunk
                    assert(self.chunks[j] & huffman_count_mask == huffman_chunk_bits + 1);
                    // Longer codes should have been
                    // associated with a link table above.
                }
                var value = self.chunks[j] >> huffman_value_shift;
                var link_tab = self.links[value];
                reverse >>= huffman_chunk_bits;
                var off = reverse;
                while (off < link_tab.len) : (off += @as(u16, 1) << @intCast(u4, n - huffman_chunk_bits)) {
                    if (sanity) {
                        // check we are not overwriting an existing chunk
                        assert(link_tab[off] == 0);
                    }
                    link_tab[off] = @intCast(u16, chunk);
                }
            }
        }

        if (sanity) {
            // Above we've sanity checked that we never overwrote
            // an existing entry. Here we additionally check that
            // we filled the tables completely.
            for (self.chunks) |chunk, i| {
                // As an exception, in the degenerate
                // single-code case, we allow odd
                // chunks to be missing.
                if (code == 1 and i % 2 == 1) {
                    continue;
                }

                // Assert we are not missing a chunk.
                // All chunks should have been written once
                // thus losing their initial value of 0
                assert(chunk != 0);
            }

            if (self.initialized) {
                for (self.links) |link_tab| {
                    for (link_tab) |chunk| {
                        // Assert we are not missing a chunk.
                        assert(chunk != 0);
                    }
                }
            }
        }

        return true;
    }

    /// Release all allocated memory.
    pub fn deinit(self: *Self) void {
        if (self.initialized and self.links.len > 0) {
            for (self.sub_chunks.items) |off| {
                self.allocator.free(self.links[off]);
            }
            self.allocator.free(self.links);
            self.sub_chunks.deinit();
            self.initialized = false;
        }
    }
};

var fixed_huffman_decoder: ?HuffmanDecoder = null;

fn fixedHuffmanDecoderInit(allocator: Allocator) !HuffmanDecoder {
    if (fixed_huffman_decoder != null) {
        return fixed_huffman_decoder.?;
    }

    // These come from the RFC section 3.2.6.
    var bits: [288]u32 = undefined;
    var i: u32 = 0;
    while (i < 144) : (i += 1) {
        bits[i] = 8;
    }
    while (i < 256) : (i += 1) {
        bits[i] = 9;
    }
    while (i < 280) : (i += 1) {
        bits[i] = 7;
    }
    while (i < 288) : (i += 1) {
        bits[i] = 8;
    }

    fixed_huffman_decoder = HuffmanDecoder{};
    _ = try fixed_huffman_decoder.?.init(allocator, &bits);
    return fixed_huffman_decoder.?;
}

const DecompressorState = enum {
    init,
    dict,
};

/// Returns a new Decompressor that can be used to read the uncompressed version of `reader`.
/// `dictionary` is optional and initializes the Decompressor with a preset dictionary.
/// The returned Decompressor behaves as if the uncompressed data stream started with the given
/// dictionary, which has already been read. Use the same `dictionary` as the compressor used to
/// compress the data.
/// This decompressor may use at most 300 KiB of heap memory from the provided allocator.
/// The uncompressed data will be written into the provided buffer, see `reader()` and `read()`.
pub fn decompressor(allocator: Allocator, reader: anytype, dictionary: ?[]const u8) !Decompressor(@TypeOf(reader)) {
    return Decompressor(@TypeOf(reader)).init(allocator, reader, dictionary);
}

pub fn Decompressor(comptime ReaderType: type) type {
    return struct {
        const Self = @This();

        pub const Error =
            ReaderType.Error ||
            error{EndOfStream} ||
            InflateError ||
            Allocator.Error;
        pub const Reader = io.Reader(*Self, Error, read);

        allocator: Allocator,

        // Input source.
        inner_reader: ReaderType,
        roffset: u64,

        // Input bits, in top of b.
        b: u32,
        nb: u32,

        // Huffman decoders for literal/length, distance.
        hd1: HuffmanDecoder,
        hd2: HuffmanDecoder,

        // Length arrays used to define Huffman codes.
        bits: *[max_num_lit + max_num_dist]u32,
        codebits: *[num_codes]u32,

        // Output history, buffer.
        dict: ddec.DictDecoder,

        // Temporary buffer (avoids repeated allocation).
        buf: [4]u8,

        // Next step in the decompression,
        // and decompression state.
        step: if (@import("builtin").zig_backend == .stage1)
            fn (*Self) Error!void
        else
            *const fn (*Self) Error!void,
        step_state: DecompressorState,
        final: bool,
        err: ?Error,
        to_read: []u8,
        // Huffman states for the lit/length values
        hl: ?*HuffmanDecoder,
        // Huffman states for the distance values.
        hd: ?*HuffmanDecoder,
        copy_len: u32,
        copy_dist: u32,

        /// Returns a Reader that reads compressed data from an underlying reader and outputs
        /// uncompressed data.
        pub fn reader(self: *Self) Reader {
            return .{ .context = self };
        }

        fn init(allocator: Allocator, in_reader: ReaderType, dict: ?[]const u8) !Self {
            fixed_huffman_decoder = try fixedHuffmanDecoderInit(allocator);

            var bits = try allocator.create([max_num_lit + max_num_dist]u32);
            var codebits = try allocator.create([num_codes]u32);

            var dd = ddec.DictDecoder{};
            try dd.init(allocator, max_match_offset, dict);

            return Self{
                .allocator = allocator,

                // Input source.
                .inner_reader = in_reader,
                .roffset = 0,

                // Input bits, in top of b.
                .b = 0,
                .nb = 0,

                // Huffman decoders for literal/length, distance.
                .hd1 = HuffmanDecoder{},
                .hd2 = HuffmanDecoder{},

                // Length arrays used to define Huffman codes.
                .bits = bits,
                .codebits = codebits,

                // Output history, buffer.
                .dict = dd,

                // Temporary buffer (avoids repeated allocation).
                .buf = [_]u8{0} ** 4,

                // Next step in the decompression and decompression state.
                .step = nextBlock,
                .step_state = .init,
                .final = false,
                .err = null,
                .to_read = &[0]u8{},
                .hl = null,
                .hd = null,
                .copy_len = 0,
                .copy_dist = 0,
            };
        }

        /// Release all allocated memory.
        pub fn deinit(self: *Self) void {
            self.hd2.deinit();
            self.hd1.deinit();
            self.dict.deinit();
            self.allocator.destroy(self.codebits);
            self.allocator.destroy(self.bits);
        }

        fn nextBlock(self: *Self) Error!void {
            while (self.nb < 1 + 2) {
                self.moreBits() catch |e| {
                    self.err = e;
                    return e;
                };
            }
            self.final = self.b & 1 == 1;
            self.b >>= 1;
            var typ = self.b & 3;
            self.b >>= 2;
            self.nb -= 1 + 2;
            switch (typ) {
                0 => try self.dataBlock(),
                1 => {
                    // compressed, fixed Huffman tables
                    self.hl = &fixed_huffman_decoder.?;
                    self.hd = null;
                    try self.huffmanBlock();
                },
                2 => {
                    // compressed, dynamic Huffman tables
                    self.hd2.deinit();
                    self.hd1.deinit();
                    try self.readHuffman();
                    self.hl = &self.hd1;
                    self.hd = &self.hd2;
                    try self.huffmanBlock();
                },
                else => {
                    // 3 is reserved.
                    corrupt_input_error_offset = self.roffset;
                    self.err = InflateError.CorruptInput;
                    return InflateError.CorruptInput;
                },
            }
        }

        /// Reads compressed data from the underlying reader and outputs uncompressed data into
        /// `output`.
        pub fn read(self: *Self, output: []u8) Error!usize {
            while (true) {
                if (self.to_read.len > 0) {
                    var n = mu.copy(output, self.to_read);
                    self.to_read = self.to_read[n..];
                    if (self.to_read.len == 0 and
                        self.err != null)
                    {
                        if (self.err.? == InflateError.EndOfStreamWithNoError) {
                            return n;
                        }
                        return self.err.?;
                    }
                    return n;
                }
                if (self.err != null) {
                    if (self.err.? == InflateError.EndOfStreamWithNoError) {
                        return 0;
                    }
                    return self.err.?;
                }
                self.step(self) catch |e| {
                    self.err = e;
                    if (self.to_read.len == 0) {
                        self.to_read = self.dict.readFlush(); // Flush what's left in case of error
                    }
                };
            }
        }

        pub fn close(self: *Self) ?Error {
            if (@import("builtin").zig_backend == .stage1) {
                if (self.err == Error.EndOfStreamWithNoError) {
                    return null;
                }
                return self.err;
            }
            if (self.err == @as(?Error, error.EndOfStreamWithNoError)) {
                return null;
            }
            return self.err;
        }

        // RFC 1951 section 3.2.7.
        // Compression with dynamic Huffman codes

        const code_order = [_]u32{ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };

        fn readHuffman(self: *Self) Error!void {
            // HLIT[5], HDIST[5], HCLEN[4].
            while (self.nb < 5 + 5 + 4) {
                try self.moreBits();
            }
            var nlit = @intCast(u32, self.b & 0x1F) + 257;
            if (nlit > max_num_lit) {
                corrupt_input_error_offset = self.roffset;
                self.err = InflateError.CorruptInput;
                return InflateError.CorruptInput;
            }
            self.b >>= 5;
            var ndist = @intCast(u32, self.b & 0x1F) + 1;
            if (ndist > max_num_dist) {
                corrupt_input_error_offset = self.roffset;
                self.err = InflateError.CorruptInput;
                return InflateError.CorruptInput;
            }
            self.b >>= 5;
            var nclen = @intCast(u32, self.b & 0xF) + 4;
            // num_codes is 19, so nclen is always valid.
            self.b >>= 4;
            self.nb -= 5 + 5 + 4;

            // (HCLEN+4)*3 bits: code lengths in the magic code_order order.
            var i: u32 = 0;
            while (i < nclen) : (i += 1) {
                while (self.nb < 3) {
                    try self.moreBits();
                }
                self.codebits[code_order[i]] = @intCast(u32, self.b & 0x7);
                self.b >>= 3;
                self.nb -= 3;
            }
            i = nclen;
            while (i < code_order.len) : (i += 1) {
                self.codebits[code_order[i]] = 0;
            }
            if (!try self.hd1.init(self.allocator, self.codebits[0..])) {
                corrupt_input_error_offset = self.roffset;
                self.err = InflateError.CorruptInput;
                return InflateError.CorruptInput;
            }

            // HLIT + 257 code lengths, HDIST + 1 code lengths,
            // using the code length Huffman code.
            i = 0;
            var n = nlit + ndist;
            while (i < n) {
                var x = try self.huffSym(&self.hd1);
                if (x < 16) {
                    // Actual length.
                    self.bits[i] = x;
                    i += 1;
                    continue;
                }
                // Repeat previous length or zero.
                var rep: u32 = 0;
                var nb: u32 = 0;
                var b: u32 = 0;
                switch (x) {
                    16 => {
                        rep = 3;
                        nb = 2;
                        if (i == 0) {
                            corrupt_input_error_offset = self.roffset;
                            self.err = InflateError.CorruptInput;
                            return InflateError.CorruptInput;
                        }
                        b = self.bits[i - 1];
                    },
                    17 => {
                        rep = 3;
                        nb = 3;
                        b = 0;
                    },
                    18 => {
                        rep = 11;
                        nb = 7;
                        b = 0;
                    },
                    else => return error.BadInternalState, // unexpected length code
                }
                while (self.nb < nb) {
                    try self.moreBits();
                }
                rep += @intCast(u32, self.b & (@as(u32, 1) << @intCast(u5, nb)) - 1);
                self.b >>= @intCast(u5, nb);
                self.nb -= nb;
                if (i + rep > n) {
                    corrupt_input_error_offset = self.roffset;
                    self.err = InflateError.CorruptInput;
                    return InflateError.CorruptInput;
                }
                var j: u32 = 0;
                while (j < rep) : (j += 1) {
                    self.bits[i] = b;
                    i += 1;
                }
            }

            if (!try self.hd1.init(self.allocator, self.bits[0..nlit]) or
                !try self.hd2.init(self.allocator, self.bits[nlit .. nlit + ndist]))
            {
                corrupt_input_error_offset = self.roffset;
                self.err = InflateError.CorruptInput;
                return InflateError.CorruptInput;
            }

            // As an optimization, we can initialize the min bits to read at a time
            // for the HLIT tree to the length of the EOB marker since we know that
            // every block must terminate with one. This preserves the property that
            // we never read any extra bytes after the end of the DEFLATE stream.
            if (self.hd1.min < self.bits[end_block_marker]) {
                self.hd1.min = self.bits[end_block_marker];
            }

            return;
        }

        // Decode a single Huffman block.
        // hl and hd are the Huffman states for the lit/length values
        // and the distance values, respectively. If hd == null, using the
        // fixed distance encoding associated with fixed Huffman blocks.
        fn huffmanBlock(self: *Self) Error!void {
            while (true) {
                switch (self.step_state) {
                    .init => {
                        // Read literal and/or (length, distance) according to RFC section 3.2.3.
                        var v = try self.huffSym(self.hl.?);
                        var n: u32 = 0; // number of bits extra
                        var length: u32 = 0;
                        switch (v) {
                            0...255 => {
                                self.dict.writeByte(@intCast(u8, v));
                                if (self.dict.availWrite() == 0) {
                                    self.to_read = self.dict.readFlush();
                                    self.step = huffmanBlock;
                                    self.step_state = .init;
                                    return;
                                }
                                self.step_state = .init;
                                continue;
                            },
                            256 => {
                                self.finishBlock();
                                return;
                            },
                            // otherwise, reference to older data
                            257...264 => {
                                length = v - (257 - 3);
                                n = 0;
                            },
                            265...268 => {
                                length = v * 2 - (265 * 2 - 11);
                                n = 1;
                            },
                            269...272 => {
                                length = v * 4 - (269 * 4 - 19);
                                n = 2;
                            },
                            273...276 => {
                                length = v * 8 - (273 * 8 - 35);
                                n = 3;
                            },
                            277...280 => {
                                length = v * 16 - (277 * 16 - 67);
                                n = 4;
                            },
                            281...284 => {
                                length = v * 32 - (281 * 32 - 131);
                                n = 5;
                            },
                            max_num_lit - 1 => { // 285
                                length = 258;
                                n = 0;
                            },
                            else => {
                                corrupt_input_error_offset = self.roffset;
                                self.err = InflateError.CorruptInput;
                                return InflateError.CorruptInput;
                            },
                        }
                        if (n > 0) {
                            while (self.nb < n) {
                                try self.moreBits();
                            }
                            length += @intCast(u32, self.b) & ((@as(u32, 1) << @intCast(u5, n)) - 1);
                            self.b >>= @intCast(u5, n);
                            self.nb -= n;
                        }

                        var dist: u32 = 0;
                        if (self.hd == null) {
                            while (self.nb < 5) {
                                try self.moreBits();
                            }
                            dist = @intCast(
                                u32,
                                bu.bitReverse(u8, @intCast(u8, (self.b & 0x1F) << 3), 8),
                            );
                            self.b >>= 5;
                            self.nb -= 5;
                        } else {
                            dist = try self.huffSym(self.hd.?);
                        }

                        switch (dist) {
                            0...3 => dist += 1,
                            4...max_num_dist - 1 => { // 4...29
                                var nb = @intCast(u32, dist - 2) >> 1;
                                // have 1 bit in bottom of dist, need nb more.
                                var extra = (dist & 1) << @intCast(u5, nb);
                                while (self.nb < nb) {
                                    try self.moreBits();
                                }
                                extra |= @intCast(u32, self.b & (@as(u32, 1) << @intCast(u5, nb)) - 1);
                                self.b >>= @intCast(u5, nb);
                                self.nb -= nb;
                                dist = (@as(u32, 1) << @intCast(u5, nb + 1)) + 1 + extra;
                            },
                            else => {
                                corrupt_input_error_offset = self.roffset;
                                self.err = InflateError.CorruptInput;
                                return InflateError.CorruptInput;
                            },
                        }

                        // No check on length; encoding can be prescient.
                        if (dist > self.dict.histSize()) {
                            corrupt_input_error_offset = self.roffset;
                            self.err = InflateError.CorruptInput;
                            return InflateError.CorruptInput;
                        }

                        self.copy_len = length;
                        self.copy_dist = dist;
                        self.step_state = .dict;
                    },

                    .dict => {
                        // Perform a backwards copy according to RFC section 3.2.3.
                        var cnt = self.dict.tryWriteCopy(self.copy_dist, self.copy_len);
                        if (cnt == 0) {
                            cnt = self.dict.writeCopy(self.copy_dist, self.copy_len);
                        }
                        self.copy_len -= cnt;

                        if (self.dict.availWrite() == 0 or self.copy_len > 0) {
                            self.to_read = self.dict.readFlush();
                            self.step = huffmanBlock; // We need to continue this work
                            self.step_state = .dict;
                            return;
                        }
                        self.step_state = .init;
                    },
                }
            }
        }

        // Copy a single uncompressed data block from input to output.
        fn dataBlock(self: *Self) Error!void {
            // Uncompressed.
            // Discard current half-byte.
            self.nb = 0;
            self.b = 0;

            // Length then ones-complement of length.
            var nr: u32 = 4;
            self.inner_reader.readNoEof(self.buf[0..nr]) catch {
                self.err = InflateError.UnexpectedEndOfStream;
                return InflateError.UnexpectedEndOfStream;
            };
            self.roffset += @intCast(u64, nr);
            var n = @intCast(u32, self.buf[0]) | @intCast(u32, self.buf[1]) << 8;
            var nn = @intCast(u32, self.buf[2]) | @intCast(u32, self.buf[3]) << 8;
            if (@intCast(u16, nn) != @truncate(u16, ~n)) {
                corrupt_input_error_offset = self.roffset;
                self.err = InflateError.CorruptInput;
                return InflateError.CorruptInput;
            }

            if (n == 0) {
                self.to_read = self.dict.readFlush();
                self.finishBlock();
                return;
            }

            self.copy_len = n;
            try self.copyData();
        }

        // copyData copies self.copy_len bytes from the underlying reader into self.hist.
        // It pauses for reads when self.hist is full.
        fn copyData(self: *Self) Error!void {
            var buf = self.dict.writeSlice();
            if (buf.len > self.copy_len) {
                buf = buf[0..self.copy_len];
            }

            var cnt = try self.inner_reader.read(buf);
            if (cnt < buf.len) {
                self.err = InflateError.UnexpectedEndOfStream;
            }
            self.roffset += @intCast(u64, cnt);
            self.copy_len -= @intCast(u32, cnt);
            self.dict.writeMark(@intCast(u32, cnt));
            if (self.err != null) {
                return InflateError.UnexpectedEndOfStream;
            }

            if (self.dict.availWrite() == 0 or self.copy_len > 0) {
                self.to_read = self.dict.readFlush();
                self.step = copyData;
                return;
            }
            self.finishBlock();
        }

        fn finishBlock(self: *Self) void {
            if (self.final) {
                if (self.dict.availRead() > 0) {
                    self.to_read = self.dict.readFlush();
                }
                self.err = InflateError.EndOfStreamWithNoError;
            }
            self.step = nextBlock;
        }

        fn moreBits(self: *Self) InflateError!void {
            var c = self.inner_reader.readByte() catch |e| {
                if (e == error.EndOfStream) {
                    return InflateError.UnexpectedEndOfStream;
                }
                return InflateError.BadReaderState;
            };
            self.roffset += 1;
            self.b |= @as(u32, c) << @intCast(u5, self.nb);
            self.nb += 8;
            return;
        }

        // Read the next Huffman-encoded symbol according to h.
        fn huffSym(self: *Self, h: *HuffmanDecoder) InflateError!u32 {
            // Since a HuffmanDecoder can be empty or be composed of a degenerate tree
            // with single element, huffSym must error on these two edge cases. In both
            // cases, the chunks slice will be 0 for the invalid sequence, leading it
            // satisfy the n == 0 check below.
            var n: u32 = h.min;
            // Optimization. Go compiler isn't smart enough to keep self.b, self.nb in registers,
            // but is smart enough to keep local variables in registers, so use nb and b,
            // inline call to moreBits and reassign b, nb back to self on return.
            var nb = self.nb;
            var b = self.b;
            while (true) {
                while (nb < n) {
                    var c = self.inner_reader.readByte() catch |e| {
                        self.b = b;
                        self.nb = nb;
                        if (e == error.EndOfStream) {
                            return error.UnexpectedEndOfStream;
                        }
                        return InflateError.BadReaderState;
                    };
                    self.roffset += 1;
                    b |= @intCast(u32, c) << @intCast(u5, nb & 31);
                    nb += 8;
                }
                var chunk = h.chunks[b & (huffman_num_chunks - 1)];
                n = @intCast(u32, chunk & huffman_count_mask);
                if (n > huffman_chunk_bits) {
                    chunk = h.links[chunk >> huffman_value_shift][(b >> huffman_chunk_bits) & h.link_mask];
                    n = @intCast(u32, chunk & huffman_count_mask);
                }
                if (n <= nb) {
                    if (n == 0) {
                        self.b = b;
                        self.nb = nb;
                        corrupt_input_error_offset = self.roffset;
                        self.err = InflateError.CorruptInput;
                        return InflateError.CorruptInput;
                    }
                    self.b = b >> @intCast(u5, n & 31);
                    self.nb = nb - n;
                    return @intCast(u32, chunk >> huffman_value_shift);
                }
            }
        }

        /// Replaces the inner reader and dictionary with new_reader and new_dict.
        /// new_reader must be of the same type as the reader being replaced.
        pub fn reset(s: *Self, new_reader: ReaderType, new_dict: ?[]const u8) !void {
            s.inner_reader = new_reader;
            s.step = nextBlock;
            s.err = null;

            s.dict.deinit();
            try s.dict.init(s.allocator, max_match_offset, new_dict);

            return;
        }
    };
}

// tests
const expect = std.testing.expect;
const expectError = std.testing.expectError;
const io = std.io;
const testing = std.testing;

test "truncated input" {
    const TruncatedTest = struct {
        input: []const u8,
        output: []const u8,
    };

    const tests = [_]TruncatedTest{
        .{ .input = "\x00", .output = "" },
        .{ .input = "\x00\x0c", .output = "" },
        .{ .input = "\x00\x0c\x00", .output = "" },
        .{ .input = "\x00\x0c\x00\xf3\xff", .output = "" },
        .{ .input = "\x00\x0c\x00\xf3\xffhello", .output = "hello" },
        .{ .input = "\x00\x0c\x00\xf3\xffhello, world", .output = "hello, world" },
        .{ .input = "\x02", .output = "" },
        .{ .input = "\xf2H\xcd", .output = "He" },
        .{ .input = "\xf2H͙0a\u{0084}\t", .output = "Hel\x90\x90\x90\x90\x90" },
        .{ .input = "\xf2H͙0a\u{0084}\t\x00", .output = "Hel\x90\x90\x90\x90\x90" },
    };

    for (tests) |t| {
        var fib = io.fixedBufferStream(t.input);
        const r = fib.reader();
        var z = try decompressor(testing.allocator, r, null);
        defer z.deinit();
        var zr = z.reader();

        var output = [1]u8{0} ** 12;
        try expectError(error.UnexpectedEndOfStream, zr.readAll(&output));
        try expect(mem.eql(u8, output[0..t.output.len], t.output));
    }
}

test "Go non-regression test for 9842" {
    // See https://golang.org/issue/9842

    const Test = struct {
        err: ?anyerror,
        input: []const u8,
    };

    const tests = [_]Test{
        .{ .err = error.UnexpectedEndOfStream, .input = ("\x95\x90=o\xc20\x10\x86\xf30") },
        .{ .err = error.CorruptInput, .input = ("\x950\x00\x0000000") },

        // Huffman.construct errors

        // lencode
        .{ .err = error.CorruptInput, .input = ("\x950000") },
        .{ .err = error.CorruptInput, .input = ("\x05000") },
        // hlen
        .{ .err = error.CorruptInput, .input = ("\x05\xea\x01\t\x00\x00\x00\x01\x00\\\xbf.\t\x00") },
        // hdist
        .{ .err = error.CorruptInput, .input = ("\x05\xe0\x01A\x00\x00\x00\x00\x10\\\xbf.") },

        // like the "empty distance alphabet" test but for ndist instead of nlen
        .{ .err = error.CorruptInput, .input = ("\x05\xe0\x01\t\x00\x00\x00\x00\x10\\\xbf\xce") },
        .{ .err = null, .input = "\x15\xe0\x01\t\x00\x00\x00\x00\x10\\\xbf.0" },
    };

    for (tests) |t| {
        var fib = std.io.fixedBufferStream(t.input);
        const reader = fib.reader();
        var decomp = try decompressor(testing.allocator, reader, null);
        defer decomp.deinit();

        var output: [10]u8 = undefined;
        if (t.err != null) {
            try expectError(t.err.?, decomp.reader().read(&output));
        } else {
            _ = try decomp.reader().read(&output);
        }
    }
}

test "inflate A Tale of Two Cities (1859) intro" {
    const compressed = [_]u8{
        0x74, 0xeb, 0xcd, 0x0d, 0x80, 0x20, 0x0c, 0x47, 0x71, 0xdc, 0x9d, 0xa2, 0x03, 0xb8, 0x88,
        0x63, 0xf0, 0xf1, 0x47, 0x9a, 0x00, 0x35, 0xb4, 0x86, 0xf5, 0x0d, 0x27, 0x63, 0x82, 0xe7,
        0xdf, 0x7b, 0x87, 0xd1, 0x70, 0x4a, 0x96, 0x41, 0x1e, 0x6a, 0x24, 0x89, 0x8c, 0x2b, 0x74,
        0xdf, 0xf8, 0x95, 0x21, 0xfd, 0x8f, 0xdc, 0x89, 0x09, 0x83, 0x35, 0x4a, 0x5d, 0x49, 0x12,
        0x29, 0xac, 0xb9, 0x41, 0xbf, 0x23, 0x2e, 0x09, 0x79, 0x06, 0x1e, 0x85, 0x91, 0xd6, 0xc6,
        0x2d, 0x74, 0xc4, 0xfb, 0xa1, 0x7b, 0x0f, 0x52, 0x20, 0x84, 0x61, 0x28, 0x0c, 0x63, 0xdf,
        0x53, 0xf4, 0x00, 0x1e, 0xc3, 0xa5, 0x97, 0x88, 0xf4, 0xd9, 0x04, 0xa5, 0x2d, 0x49, 0x54,
        0xbc, 0xfd, 0x90, 0xa5, 0x0c, 0xae, 0xbf, 0x3f, 0x84, 0x77, 0x88, 0x3f, 0xaf, 0xc0, 0x40,
        0xd6, 0x5b, 0x14, 0x8b, 0x54, 0xf6, 0x0f, 0x9b, 0x49, 0xf7, 0xbf, 0xbf, 0x36, 0x54, 0x5a,
        0x0d, 0xe6, 0x3e, 0xf0, 0x9e, 0x29, 0xcd, 0xa1, 0x41, 0x05, 0x36, 0x48, 0x74, 0x4a, 0xe9,
        0x46, 0x66, 0x2a, 0x19, 0x17, 0xf4, 0x71, 0x8e, 0xcb, 0x15, 0x5b, 0x57, 0xe4, 0xf3, 0xc7,
        0xe7, 0x1e, 0x9d, 0x50, 0x08, 0xc3, 0x50, 0x18, 0xc6, 0x2a, 0x19, 0xa0, 0xdd, 0xc3, 0x35,
        0x82, 0x3d, 0x6a, 0xb0, 0x34, 0x92, 0x16, 0x8b, 0xdb, 0x1b, 0xeb, 0x7d, 0xbc, 0xf8, 0x16,
        0xf8, 0xc2, 0xe1, 0xaf, 0x81, 0x7e, 0x58, 0xf4, 0x9f, 0x74, 0xf8, 0xcd, 0x39, 0xd3, 0xaa,
        0x0f, 0x26, 0x31, 0xcc, 0x8d, 0x9a, 0xd2, 0x04, 0x3e, 0x51, 0xbe, 0x7e, 0xbc, 0xc5, 0x27,
        0x3d, 0xa5, 0xf3, 0x15, 0x63, 0x94, 0x42, 0x75, 0x53, 0x6b, 0x61, 0xc8, 0x01, 0x13, 0x4d,
        0x23, 0xba, 0x2a, 0x2d, 0x6c, 0x94, 0x65, 0xc7, 0x4b, 0x86, 0x9b, 0x25, 0x3e, 0xba, 0x01,
        0x10, 0x84, 0x81, 0x28, 0x80, 0x55, 0x1c, 0xc0, 0xa5, 0xaa, 0x36, 0xa6, 0x09, 0xa8, 0xa1,
        0x85, 0xf9, 0x7d, 0x45, 0xbf, 0x80, 0xe4, 0xd1, 0xbb, 0xde, 0xb9, 0x5e, 0xf1, 0x23, 0x89,
        0x4b, 0x00, 0xd5, 0x59, 0x84, 0x85, 0xe3, 0xd4, 0xdc, 0xb2, 0x66, 0xe9, 0xc1, 0x44, 0x0b,
        0x1e, 0x84, 0xec, 0xe6, 0xa1, 0xc7, 0x42, 0x6a, 0x09, 0x6d, 0x9a, 0x5e, 0x70, 0xa2, 0x36,
        0x94, 0x29, 0x2c, 0x85, 0x3f, 0x24, 0x39, 0xf3, 0xae, 0xc3, 0xca, 0xca, 0xaf, 0x2f, 0xce,
        0x8e, 0x58, 0x91, 0x00, 0x25, 0xb5, 0xb3, 0xe9, 0xd4, 0xda, 0xef, 0xfa, 0x48, 0x7b, 0x3b,
        0xe2, 0x63, 0x12, 0x00, 0x00, 0x20, 0x04, 0x80, 0x70, 0x36, 0x8c, 0xbd, 0x04, 0x71, 0xff,
        0xf6, 0x0f, 0x66, 0x38, 0xcf, 0xa1, 0x39, 0x11, 0x0f,
    };

    const expected =
        \\It was the best of times,
        \\it was the worst of times,
        \\it was the age of wisdom,
        \\it was the age of foolishness,
        \\it was the epoch of belief,
        \\it was the epoch of incredulity,
        \\it was the season of Light,
        \\it was the season of Darkness,
        \\it was the spring of hope,
        \\it was the winter of despair,
        \\
        \\we had everything before us, we had nothing before us, we were all going direct to Heaven, we were all going direct the other way---in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.
        \\
    ;

    var fib = std.io.fixedBufferStream(&compressed);
    const reader = fib.reader();
    var decomp = try decompressor(testing.allocator, reader, null);
    defer decomp.deinit();

    var got: [700]u8 = undefined;
    var got_len = try decomp.reader().read(&got);
    try expect(got_len == 616);
    try expect(mem.eql(u8, got[0..expected.len], expected));
}

test "lengths overflow" {
    // malformed final dynamic block, tries to write 321 code lengths (MAXCODES is 316)
    // f dy  hlit hdist hclen 16  17  18   0 (18)    x138 (18)    x138 (18)     x39 (16) x6
    // 1 10 11101 11101 0000 010 010 010 010 (11) 1111111 (11) 1111111 (11) 0011100 (01) 11
    const stream = [_]u8{
        0b11101101, 0b00011101, 0b00100100, 0b11101001, 0b11111111, 0b11111111, 0b00111001,
        0b00001110,
    };
    try expectError(error.CorruptInput, decompress(stream[0..]));
}

test "empty distance alphabet" {
    // dynamic block with empty distance alphabet is valid if only literals and end of data symbol are used
    // f dy  hlit hdist hclen 16  17  18   0   8   7   9   6  10   5  11   4  12   3  13   2  14   1  15 (18)    x128 (18)    x128 (1)  ( 0) (256)
    // 1 10 00000 00000 1111 000 000 010 010 000 000 000 000 000 000 000 000 000 000 000 000 000 001 000 (11) 1110101 (11) 1110101 (0)  (10)  (0)
    const stream = [_]u8{
        0b00000101, 0b11100000, 0b00000001, 0b00001001, 0b00000000, 0b00000000,
        0b00000000, 0b00000000, 0b00010000, 0b01011100, 0b10111111, 0b00101110,
    };
    try decompress(stream[0..]);
}

test "distance past beginning of output stream" {
    // f fx ('A')      ('B')      ('C')      <len=4,   dist=4> (end)
    // 1 01 (01110001) (01110010) (01110011) (0000010) (00011) (0000000)
    const stream = [_]u8{ 0b01110011, 0b01110100, 0b01110010, 0b00000110, 0b01100001, 0b00000000 };
    try std.testing.expectError(error.CorruptInput, decompress(stream[0..]));
}

test "fuzzing" {
    const compressed = [_]u8{
        0x0a, 0x08, 0x50, 0xeb, 0x25, 0x05, 0xfc, 0x30, 0x0b, 0x0a, 0x08, 0x50, 0xeb, 0x25, 0x05,
    } ++ [_]u8{0xe1} ** 15 ++ [_]u8{0x30} ++ [_]u8{0xe1} ** 1481;
    try expectError(error.UnexpectedEndOfStream, decompress(&compressed));

    // see https://github.com/ziglang/zig/issues/9842
    try expectError(error.UnexpectedEndOfStream, decompress("\x95\x90=o\xc20\x10\x86\xf30"));
    try expectError(error.CorruptInput, decompress("\x950\x00\x0000000"));

    // Huffman errors
    // lencode
    try expectError(error.CorruptInput, decompress("\x950000"));
    try expectError(error.CorruptInput, decompress("\x05000"));
    // hlen
    try expectError(error.CorruptInput, decompress("\x05\xea\x01\t\x00\x00\x00\x01\x00\\\xbf.\t\x00"));
    // hdist
    try expectError(error.CorruptInput, decompress("\x05\xe0\x01A\x00\x00\x00\x00\x10\\\xbf."));

    // like the "empty distance alphabet" test but for ndist instead of nlen
    try expectError(error.CorruptInput, decompress("\x05\xe0\x01\t\x00\x00\x00\x00\x10\\\xbf\xce"));
    try decompress("\x15\xe0\x01\t\x00\x00\x00\x00\x10\\\xbf.0");
}

fn decompress(input: []const u8) !void {
    const allocator = testing.allocator;
    var fib = std.io.fixedBufferStream(input);
    const reader = fib.reader();
    var decomp = try decompressor(allocator, reader, null);
    defer decomp.deinit();
    var output = try decomp.reader().readAllAlloc(allocator, math.maxInt(usize));
    defer std.testing.allocator.free(output);
}