1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("std");
pub inline fn __builtin_bswap16(val: u16) callconv(.C) u16 { return @byteSwap(u16, val); }
pub inline fn __builtin_bswap32(val: u32) callconv(.C) u32 { return @byteSwap(u32, val); }
pub inline fn __builtin_bswap64(val: u64) callconv(.C) u64 { return @byteSwap(u64, val); }
pub inline fn __builtin_signbit(val: f64) callconv(.C) c_int { return @boolToInt(std.math.signbit(val)); }
pub inline fn __builtin_signbitf(val: f32) callconv(.C) c_int { return @boolToInt(std.math.signbit(val)); }
pub inline fn __builtin_popcount(val: c_uint) callconv(.C) c_int {
// popcount of a c_uint will never exceed the capacity of a c_int
@setRuntimeSafety(false);
return @bitCast(c_int, @as(c_uint, @popCount(c_uint, val)));
}
pub inline fn __builtin_ctz(val: c_uint) callconv(.C) c_int {
// Returns the number of trailing 0-bits in val, starting at the least significant bit position.
// In C if `val` is 0, the result is undefined; in zig it's the number of bits in a c_uint
@setRuntimeSafety(false);
return @bitCast(c_int, @as(c_uint, @ctz(c_uint, val)));
}
pub inline fn __builtin_clz(val: c_uint) callconv(.C) c_int {
// Returns the number of leading 0-bits in x, starting at the most significant bit position.
// In C if `val` is 0, the result is undefined; in zig it's the number of bits in a c_uint
@setRuntimeSafety(false);
return @bitCast(c_int, @as(c_uint, @clz(c_uint, val)));
}
pub inline fn __builtin_sqrt(val: f64) callconv(.C) f64 { return @sqrt(val); }
pub inline fn __builtin_sqrtf(val: f32) callconv(.C) f32 { return @sqrt(val); }
pub inline fn __builtin_sin(val: f64) callconv(.C) f64 { return @sin(val); }
pub inline fn __builtin_sinf(val: f32) callconv(.C) f32 { return @sin(val); }
pub inline fn __builtin_cos(val: f64) callconv(.C) f64 { return @cos(val); }
pub inline fn __builtin_cosf(val: f32) callconv(.C) f32 { return @cos(val); }
pub inline fn __builtin_exp(val: f64) callconv(.C) f64 { return @exp(val); }
pub inline fn __builtin_expf(val: f32) callconv(.C) f32 { return @exp(val); }
pub inline fn __builtin_exp2(val: f64) callconv(.C) f64 { return @exp2(val); }
pub inline fn __builtin_exp2f(val: f32) callconv(.C) f32 { return @exp2(val); }
pub inline fn __builtin_log(val: f64) callconv(.C) f64 { return @log(val); }
pub inline fn __builtin_logf(val: f32) callconv(.C) f32 { return @log(val); }
pub inline fn __builtin_log2(val: f64) callconv(.C) f64 { return @log2(val); }
pub inline fn __builtin_log2f(val: f32) callconv(.C) f32 { return @log2(val); }
pub inline fn __builtin_log10(val: f64) callconv(.C) f64 { return @log10(val); }
pub inline fn __builtin_log10f(val: f32) callconv(.C) f32 { return @log10(val); }
// Standard C Library bug: The absolute value of the most negative integer remains negative.
pub inline fn __builtin_abs(val: c_int) callconv(.C) c_int { return std.math.absInt(val) catch std.math.minInt(c_int); }
pub inline fn __builtin_fabs(val: f64) callconv(.C) f64 { return @fabs(val); }
pub inline fn __builtin_fabsf(val: f32) callconv(.C) f32 { return @fabs(val); }
pub inline fn __builtin_floor(val: f64) callconv(.C) f64 { return @floor(val); }
pub inline fn __builtin_floorf(val: f32) callconv(.C) f32 { return @floor(val); }
pub inline fn __builtin_ceil(val: f64) callconv(.C) f64 { return @ceil(val); }
pub inline fn __builtin_ceilf(val: f32) callconv(.C) f32 { return @ceil(val); }
pub inline fn __builtin_trunc(val: f64) callconv(.C) f64 { return @trunc(val); }
pub inline fn __builtin_truncf(val: f32) callconv(.C) f32 { return @trunc(val); }
pub inline fn __builtin_round(val: f64) callconv(.C) f64 { return @round(val); }
pub inline fn __builtin_roundf(val: f32) callconv(.C) f32 { return @round(val); }
pub inline fn __builtin_strlen(s: [*c]const u8) callconv(.C) usize { return std.mem.lenZ(s); }
pub inline fn __builtin_strcmp(s1: [*c]const u8, s2: [*c]const u8) callconv(.C) c_int {
return @as(c_int, std.cstr.cmp(s1, s2));
}
pub inline fn __builtin_object_size(ptr: ?*const c_void, ty: c_int) callconv(.C) usize {
// clang semantics match gcc's: https://gcc.gnu.org/onlinedocs/gcc/Object-Size-Checking.html
// If it is not possible to determine which objects ptr points to at compile time,
// __builtin_object_size should return (size_t) -1 for type 0 or 1 and (size_t) 0
// for type 2 or 3.
if (ty == 0 or ty == 1) return @bitCast(usize, -@as(c_long, 1));
if (ty == 2 or ty == 3) return 0;
unreachable;
}
pub inline fn __builtin___memset_chk(
dst: ?*c_void,
val: c_int,
len: usize,
remaining: usize,
) callconv(.C) ?*c_void {
if (len > remaining) @panic("std.c.builtins.memset_chk called with len > remaining");
return __builtin_memset(dst, val, len);
}
pub inline fn __builtin_memset(dst: ?*c_void, val: c_int, len: usize) callconv(.C) ?*c_void {
const dst_cast = @ptrCast([*c]u8, dst);
@memset(dst_cast, @bitCast(u8, @truncate(i8, val)), len);
return dst;
}
pub inline fn __builtin___memcpy_chk(
noalias dst: ?*c_void,
noalias src: ?*const c_void,
len: usize,
remaining: usize,
) callconv(.C) ?*c_void {
if (len > remaining) @panic("std.c.builtins.memcpy_chk called with len > remaining");
return __builtin_memcpy(dst, src, len);
}
pub inline fn __builtin_memcpy(
noalias dst: ?*c_void,
noalias src: ?*const c_void,
len: usize,
) callconv(.C) ?*c_void {
const dst_cast = @ptrCast([*c]u8, dst);
const src_cast = @ptrCast([*c]const u8, src);
@memcpy(dst_cast, src_cast, len);
return dst;
}
|