1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
|
const std = @import("../std.zig");
const assert = std.debug.assert;
const build = std.build;
const fs = std.fs;
const macho = std.macho;
const math = std.math;
const mem = std.mem;
const testing = std.testing;
const CheckObjectStep = @This();
const Allocator = mem.Allocator;
const Builder = build.Builder;
const Step = build.Step;
const EmulatableRunStep = build.EmulatableRunStep;
pub const base_id = .check_object;
step: Step,
builder: *Builder,
source: build.FileSource,
max_bytes: usize = 20 * 1024 * 1024,
checks: std.ArrayList(Check),
dump_symtab: bool = false,
obj_format: std.Target.ObjectFormat,
pub fn create(builder: *Builder, source: build.FileSource, obj_format: std.Target.ObjectFormat) *CheckObjectStep {
const gpa = builder.allocator;
const self = gpa.create(CheckObjectStep) catch unreachable;
self.* = .{
.builder = builder,
.step = Step.init(.check_file, "CheckObject", gpa, make),
.source = source.dupe(builder),
.checks = std.ArrayList(Check).init(gpa),
.obj_format = obj_format,
};
self.source.addStepDependencies(&self.step);
return self;
}
/// Runs and (optionally) compares the output of a binary.
/// Asserts `self` was generated from an executable step.
pub fn runAndCompare(self: *CheckObjectStep) *EmulatableRunStep {
const dependencies_len = self.step.dependencies.items.len;
assert(dependencies_len > 0);
const exe_step = self.step.dependencies.items[dependencies_len - 1];
const exe = exe_step.cast(std.build.LibExeObjStep).?;
const emulatable_step = EmulatableRunStep.create(self.builder, "EmulatableRun", exe);
emulatable_step.step.dependOn(&self.step);
return emulatable_step;
}
/// There two types of actions currently suported:
/// * `.match` - is the main building block of standard matchers with optional eat-all token `{*}`
/// and extractors by name such as `{n_value}`. Please note this action is very simplistic in nature
/// i.e., it won't really handle edge cases/nontrivial examples. But given that we do want to use
/// it mainly to test the output of our object format parser-dumpers when testing the linkers, etc.
/// it should be plenty useful in its current form.
/// * `.compute_cmp` - can be used to perform an operation on the extracted global variables
/// using the MatchAction. It currently only supports an addition. The operation is required
/// to be specified in Reverse Polish Notation to ease in operator-precedence parsing (well,
/// to avoid any parsing really).
/// For example, if the two extracted values were saved as `vmaddr` and `entryoff` respectively
/// they could then be added with this simple program `vmaddr entryoff +`.
const Action = struct {
tag: enum { match, not_present, compute_cmp },
phrase: []const u8,
expected: ?ComputeCompareExpected = null,
/// Will return true if the `phrase` was found in the `haystack`.
/// Some examples include:
///
/// LC 0 => will match in its entirety
/// vmaddr {vmaddr} => will match `vmaddr` and then extract the following value as u64
/// and save under `vmaddr` global name (see `global_vars` param)
/// name {*}libobjc{*}.dylib => will match `name` followed by a token which contains `libobjc` and `.dylib`
/// in that order with other letters in between
fn match(act: Action, haystack: []const u8, global_vars: anytype) !bool {
assert(act.tag == .match or act.tag == .not_present);
var candidate_var: ?struct { name: []const u8, value: u64 } = null;
var hay_it = mem.tokenize(u8, mem.trim(u8, haystack, " "), " ");
var needle_it = mem.tokenize(u8, mem.trim(u8, act.phrase, " "), " ");
while (needle_it.next()) |needle_tok| {
const hay_tok = hay_it.next() orelse return false;
if (mem.indexOf(u8, needle_tok, "{*}")) |index| {
// We have fuzzy matchers within the search pattern, so we match substrings.
var start = index;
var n_tok = needle_tok;
var h_tok = hay_tok;
while (true) {
n_tok = n_tok[start + 3 ..];
const inner = if (mem.indexOf(u8, n_tok, "{*}")) |sub_end|
n_tok[0..sub_end]
else
n_tok;
if (mem.indexOf(u8, h_tok, inner) == null) return false;
start = mem.indexOf(u8, n_tok, "{*}") orelse break;
}
} else if (mem.startsWith(u8, needle_tok, "{")) {
const closing_brace = mem.indexOf(u8, needle_tok, "}") orelse return error.MissingClosingBrace;
if (closing_brace != needle_tok.len - 1) return error.ClosingBraceNotLast;
const name = needle_tok[1..closing_brace];
if (name.len == 0) return error.MissingBraceValue;
const value = try std.fmt.parseInt(u64, hay_tok, 16);
candidate_var = .{
.name = name,
.value = value,
};
} else {
if (!mem.eql(u8, hay_tok, needle_tok)) return false;
}
}
if (candidate_var) |v| {
try global_vars.putNoClobber(v.name, v.value);
}
return true;
}
/// Will return true if the `phrase` is correctly parsed into an RPN program and
/// its reduced, computed value compares using `op` with the expected value, either
/// a literal or another extracted variable.
fn computeCmp(act: Action, gpa: Allocator, global_vars: anytype) !bool {
var op_stack = std.ArrayList(enum { add }).init(gpa);
var values = std.ArrayList(u64).init(gpa);
var it = mem.tokenize(u8, act.phrase, " ");
while (it.next()) |next| {
if (mem.eql(u8, next, "+")) {
try op_stack.append(.add);
} else {
const val = global_vars.get(next) orelse {
std.debug.print(
\\
\\========= Variable was not extracted: ===========
\\{s}
\\
, .{next});
return error.UnknownVariable;
};
try values.append(val);
}
}
var op_i: usize = 1;
var reduced: u64 = values.items[0];
for (op_stack.items) |op| {
const other = values.items[op_i];
switch (op) {
.add => {
reduced += other;
},
}
}
const exp_value = switch (act.expected.?.value) {
.variable => |name| global_vars.get(name) orelse {
std.debug.print(
\\
\\========= Variable was not extracted: ===========
\\{s}
\\
, .{name});
return error.UnknownVariable;
},
.literal => |x| x,
};
return math.compare(reduced, act.expected.?.op, exp_value);
}
};
const ComputeCompareExpected = struct {
op: math.CompareOperator,
value: union(enum) {
variable: []const u8,
literal: u64,
},
pub fn format(
value: @This(),
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
writer: anytype,
) !void {
_ = fmt;
_ = options;
try writer.print("{s} ", .{@tagName(value.op)});
switch (value.value) {
.variable => |name| try writer.writeAll(name),
.literal => |x| try writer.print("{x}", .{x}),
}
}
};
const Check = struct {
builder: *Builder,
actions: std.ArrayList(Action),
fn create(b: *Builder) Check {
return .{
.builder = b,
.actions = std.ArrayList(Action).init(b.allocator),
};
}
fn match(self: *Check, phrase: []const u8) void {
self.actions.append(.{
.tag = .match,
.phrase = self.builder.dupe(phrase),
}) catch unreachable;
}
fn notPresent(self: *Check, phrase: []const u8) void {
self.actions.append(.{
.tag = .not_present,
.phrase = self.builder.dupe(phrase),
}) catch unreachable;
}
fn computeCmp(self: *Check, phrase: []const u8, expected: ComputeCompareExpected) void {
self.actions.append(.{
.tag = .compute_cmp,
.phrase = self.builder.dupe(phrase),
.expected = expected,
}) catch unreachable;
}
};
/// Creates a new sequence of actions with `phrase` as the first anchor searched phrase.
pub fn checkStart(self: *CheckObjectStep, phrase: []const u8) void {
var new_check = Check.create(self.builder);
new_check.match(phrase);
self.checks.append(new_check) catch unreachable;
}
/// Adds another searched phrase to the latest created Check with `CheckObjectStep.checkStart(...)`.
/// Asserts at least one check already exists.
pub fn checkNext(self: *CheckObjectStep, phrase: []const u8) void {
assert(self.checks.items.len > 0);
const last = &self.checks.items[self.checks.items.len - 1];
last.match(phrase);
}
/// Adds another searched phrase to the latest created Check with `CheckObjectStep.checkStart(...)`
/// however ensures there is no matching phrase in the output.
/// Asserts at least one check already exists.
pub fn checkNotPresent(self: *CheckObjectStep, phrase: []const u8) void {
assert(self.checks.items.len > 0);
const last = &self.checks.items[self.checks.items.len - 1];
last.notPresent(phrase);
}
/// Creates a new check checking specifically symbol table parsed and dumped from the object
/// file.
/// Issuing this check will force parsing and dumping of the symbol table.
pub fn checkInSymtab(self: *CheckObjectStep) void {
self.dump_symtab = true;
const symtab_label = switch (self.obj_format) {
.macho => MachODumper.symtab_label,
else => @panic("TODO other parsers"),
};
self.checkStart(symtab_label);
}
/// Creates a new standalone, singular check which allows running simple binary operations
/// on the extracted variables. It will then compare the reduced program with the value of
/// the expected variable.
pub fn checkComputeCompare(
self: *CheckObjectStep,
program: []const u8,
expected: ComputeCompareExpected,
) void {
var new_check = Check.create(self.builder);
new_check.computeCmp(program, expected);
self.checks.append(new_check) catch unreachable;
}
fn make(step: *Step) !void {
const self = @fieldParentPtr(CheckObjectStep, "step", step);
const gpa = self.builder.allocator;
const src_path = self.source.getPath(self.builder);
const contents = try fs.cwd().readFileAllocOptions(
gpa,
src_path,
self.max_bytes,
null,
@alignOf(u64),
null,
);
const output = switch (self.obj_format) {
.macho => try MachODumper.parseAndDump(contents, .{
.gpa = gpa,
.dump_symtab = self.dump_symtab,
}),
.elf => @panic("TODO elf parser"),
.coff => @panic("TODO coff parser"),
.wasm => try WasmDumper.parseAndDump(contents, .{
.gpa = gpa,
.dump_symtab = self.dump_symtab,
}),
else => unreachable,
};
var vars = std.StringHashMap(u64).init(gpa);
for (self.checks.items) |chk| {
var it = mem.tokenize(u8, output, "\r\n");
for (chk.actions.items) |act| {
switch (act.tag) {
.match => {
while (it.next()) |line| {
if (try act.match(line, &vars)) break;
} else {
std.debug.print(
\\
\\========= Expected to find: ==========================
\\{s}
\\========= But parsed file does not contain it: =======
\\{s}
\\
, .{ act.phrase, output });
return error.TestFailed;
}
},
.not_present => {
while (it.next()) |line| {
if (try act.match(line, &vars)) {
std.debug.print(
\\
\\========= Expected not to find: ===================
\\{s}
\\========= But parsed file does contain it: ========
\\{s}
\\
, .{ act.phrase, output });
return error.TestFailed;
}
}
},
.compute_cmp => {
const res = act.computeCmp(gpa, vars) catch |err| switch (err) {
error.UnknownVariable => {
std.debug.print(
\\========= From parsed file: =====================
\\{s}
\\
, .{output});
return error.TestFailed;
},
else => |e| return e,
};
if (!res) {
std.debug.print(
\\
\\========= Comparison failed for action: ===========
\\{s} {s}
\\========= From parsed file: =======================
\\{s}
\\
, .{ act.phrase, act.expected.?, output });
return error.TestFailed;
}
},
}
}
}
}
const Opts = struct {
gpa: ?Allocator = null,
dump_symtab: bool = false,
};
const MachODumper = struct {
const LoadCommandIterator = macho.LoadCommandIterator;
const symtab_label = "symtab";
fn parseAndDump(bytes: []align(@alignOf(u64)) const u8, opts: Opts) ![]const u8 {
const gpa = opts.gpa orelse unreachable; // MachO dumper requires an allocator
var stream = std.io.fixedBufferStream(bytes);
const reader = stream.reader();
const hdr = try reader.readStruct(macho.mach_header_64);
if (hdr.magic != macho.MH_MAGIC_64) {
return error.InvalidMagicNumber;
}
var output = std.ArrayList(u8).init(gpa);
const writer = output.writer();
var symtab: []const macho.nlist_64 = undefined;
var strtab: []const u8 = undefined;
var sections = std.ArrayList(macho.section_64).init(gpa);
var imports = std.ArrayList([]const u8).init(gpa);
var it = LoadCommandIterator{
.ncmds = hdr.ncmds,
.buffer = bytes[@sizeOf(macho.mach_header_64)..][0..hdr.sizeofcmds],
};
var i: usize = 0;
while (it.next()) |cmd| {
switch (cmd.cmd()) {
.SEGMENT_64 => {
const seg = cmd.cast(macho.segment_command_64).?;
try sections.ensureUnusedCapacity(seg.nsects);
for (cmd.getSections()) |sect| {
sections.appendAssumeCapacity(sect);
}
},
.SYMTAB => if (opts.dump_symtab) {
const lc = cmd.cast(macho.symtab_command).?;
symtab = @ptrCast(
[*]const macho.nlist_64,
@alignCast(@alignOf(macho.nlist_64), &bytes[lc.symoff]),
)[0..lc.nsyms];
strtab = bytes[lc.stroff..][0..lc.strsize];
},
.LOAD_DYLIB,
.LOAD_WEAK_DYLIB,
.REEXPORT_DYLIB,
=> {
try imports.append(cmd.getDylibPathName());
},
else => {},
}
try dumpLoadCommand(cmd, i, writer);
try writer.writeByte('\n');
i += 1;
}
if (opts.dump_symtab) {
try writer.print("{s}\n", .{symtab_label});
for (symtab) |sym| {
if (sym.stab()) continue;
const sym_name = mem.sliceTo(@ptrCast([*:0]const u8, strtab.ptr + sym.n_strx), 0);
if (sym.sect()) {
const sect = sections.items[sym.n_sect - 1];
try writer.print("{x} ({s},{s})", .{
sym.n_value,
sect.segName(),
sect.sectName(),
});
if (sym.ext()) {
try writer.writeAll(" external");
}
try writer.print(" {s}\n", .{sym_name});
} else if (sym.undf()) {
const ordinal = @divTrunc(@bitCast(i16, sym.n_desc), macho.N_SYMBOL_RESOLVER);
const import_name = blk: {
if (ordinal <= 0) {
if (ordinal == macho.BIND_SPECIAL_DYLIB_SELF)
break :blk "self import";
if (ordinal == macho.BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE)
break :blk "main executable";
if (ordinal == macho.BIND_SPECIAL_DYLIB_FLAT_LOOKUP)
break :blk "flat lookup";
unreachable;
}
const full_path = imports.items[@bitCast(u16, ordinal) - 1];
const basename = fs.path.basename(full_path);
assert(basename.len > 0);
const ext = mem.lastIndexOfScalar(u8, basename, '.') orelse basename.len;
break :blk basename[0..ext];
};
try writer.writeAll("(undefined)");
if (sym.weakRef()) {
try writer.writeAll(" weak");
}
if (sym.ext()) {
try writer.writeAll(" external");
}
try writer.print(" {s} (from {s})\n", .{
sym_name,
import_name,
});
} else unreachable;
}
}
return output.toOwnedSlice();
}
fn dumpLoadCommand(lc: macho.LoadCommandIterator.LoadCommand, index: usize, writer: anytype) !void {
// print header first
try writer.print(
\\LC {d}
\\cmd {s}
\\cmdsize {d}
, .{ index, @tagName(lc.cmd()), lc.cmdsize() });
switch (lc.cmd()) {
.SEGMENT_64 => {
const seg = lc.cast(macho.segment_command_64).?;
try writer.writeByte('\n');
try writer.print(
\\segname {s}
\\vmaddr {x}
\\vmsize {x}
\\fileoff {x}
\\filesz {x}
, .{
seg.segName(),
seg.vmaddr,
seg.vmsize,
seg.fileoff,
seg.filesize,
});
for (lc.getSections()) |sect| {
try writer.writeByte('\n');
try writer.print(
\\sectname {s}
\\addr {x}
\\size {x}
\\offset {x}
\\align {x}
, .{
sect.sectName(),
sect.addr,
sect.size,
sect.offset,
sect.@"align",
});
}
},
.ID_DYLIB,
.LOAD_DYLIB,
.LOAD_WEAK_DYLIB,
.REEXPORT_DYLIB,
=> {
const dylib = lc.cast(macho.dylib_command).?;
try writer.writeByte('\n');
try writer.print(
\\name {s}
\\timestamp {d}
\\current version {x}
\\compatibility version {x}
, .{
lc.getDylibPathName(),
dylib.dylib.timestamp,
dylib.dylib.current_version,
dylib.dylib.compatibility_version,
});
},
.MAIN => {
const main = lc.cast(macho.entry_point_command).?;
try writer.writeByte('\n');
try writer.print(
\\entryoff {x}
\\stacksize {x}
, .{ main.entryoff, main.stacksize });
},
.RPATH => {
try writer.writeByte('\n');
try writer.print(
\\path {s}
, .{
lc.getRpathPathName(),
});
},
else => {},
}
}
};
const WasmDumper = struct {
const symtab_label = "symbols";
fn parseAndDump(bytes: []const u8, opts: Opts) ![]const u8 {
const gpa = opts.gpa orelse unreachable; // Wasm dumper requires an allocator
if (opts.dump_symtab) {
@panic("TODO: Implement symbol table parsing and dumping");
}
var fbs = std.io.fixedBufferStream(bytes);
const reader = fbs.reader();
const buf = try reader.readBytesNoEof(8);
if (!mem.eql(u8, buf[0..4], &std.wasm.magic)) {
return error.InvalidMagicByte;
}
if (!mem.eql(u8, buf[4..], &std.wasm.version)) {
return error.UnsupportedWasmVersion;
}
var output = std.ArrayList(u8).init(gpa);
errdefer output.deinit();
const writer = output.writer();
while (reader.readByte()) |current_byte| {
const section = std.meta.intToEnum(std.wasm.Section, current_byte) catch |err| {
std.debug.print("Found invalid section id '{d}'\n", .{current_byte});
return err;
};
const section_length = try std.leb.readULEB128(u32, reader);
try parseAndDumpSection(section, bytes[fbs.pos..][0..section_length], writer);
fbs.pos += section_length;
} else |_| {} // reached end of stream
return output.toOwnedSlice();
}
fn parseAndDumpSection(section: std.wasm.Section, data: []const u8, writer: anytype) !void {
var fbs = std.io.fixedBufferStream(data);
const reader = fbs.reader();
try writer.print(
\\Section {s}
\\size {d}
, .{ @tagName(section), data.len });
switch (section) {
.type,
.import,
.function,
.table,
.memory,
.global,
.@"export",
.element,
.code,
.data,
=> {
const entries = try std.leb.readULEB128(u32, reader);
try writer.print("\nentries {d}\n", .{entries});
try dumpSection(section, data[fbs.pos..], entries, writer);
},
.custom => {
const name_length = try std.leb.readULEB128(u32, reader);
const name = data[fbs.pos..][0..name_length];
fbs.pos += name_length;
try writer.print("\nname {s}\n", .{name});
if (mem.eql(u8, name, "name")) {
try parseDumpNames(reader, writer, data);
} else if (mem.eql(u8, name, "producers")) {
try parseDumpProducers(reader, writer, data);
} else if (mem.eql(u8, name, "target_features")) {
try parseDumpFeatures(reader, writer, data);
}
// TODO: Implement parsing and dumping other custom sections (such as relocations)
},
.start => {
const start = try std.leb.readULEB128(u32, reader);
try writer.print("\nstart {d}\n", .{start});
},
else => {}, // skip unknown sections
}
}
fn dumpSection(section: std.wasm.Section, data: []const u8, entries: u32, writer: anytype) !void {
var fbs = std.io.fixedBufferStream(data);
const reader = fbs.reader();
switch (section) {
.type => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
const func_type = try reader.readByte();
if (func_type != std.wasm.function_type) {
std.debug.print("Expected function type, found byte '{d}'\n", .{func_type});
return error.UnexpectedByte;
}
const params = try std.leb.readULEB128(u32, reader);
try writer.print("params {d}\n", .{params});
var index: u32 = 0;
while (index < params) : (index += 1) {
try parseDumpType(std.wasm.Valtype, reader, writer);
} else index = 0;
const returns = try std.leb.readULEB128(u32, reader);
try writer.print("returns {d}\n", .{returns});
while (index < returns) : (index += 1) {
try parseDumpType(std.wasm.Valtype, reader, writer);
}
}
},
.import => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
const module_name_len = try std.leb.readULEB128(u32, reader);
const module_name = data[fbs.pos..][0..module_name_len];
fbs.pos += module_name_len;
const name_len = try std.leb.readULEB128(u32, reader);
const name = data[fbs.pos..][0..name_len];
fbs.pos += name_len;
const kind = std.meta.intToEnum(std.wasm.ExternalKind, try reader.readByte()) catch |err| {
std.debug.print("Invalid import kind\n", .{});
return err;
};
try writer.print(
\\module {s}
\\name {s}
\\kind {s}
, .{ module_name, name, @tagName(kind) });
try writer.writeByte('\n');
switch (kind) {
.function => {
try writer.print("index {d}\n", .{try std.leb.readULEB128(u32, reader)});
},
.memory => {
try parseDumpLimits(reader, writer);
},
.global => {
try parseDumpType(std.wasm.Valtype, reader, writer);
try writer.print("mutable {}\n", .{0x01 == try std.leb.readULEB128(u32, reader)});
},
.table => {
try parseDumpType(std.wasm.RefType, reader, writer);
try parseDumpLimits(reader, writer);
},
}
}
},
.function => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
try writer.print("index {d}\n", .{try std.leb.readULEB128(u32, reader)});
}
},
.table => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
try parseDumpType(std.wasm.RefType, reader, writer);
try parseDumpLimits(reader, writer);
}
},
.memory => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
try parseDumpLimits(reader, writer);
}
},
.global => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
try parseDumpType(std.wasm.Valtype, reader, writer);
try writer.print("mutable {}\n", .{0x01 == try std.leb.readULEB128(u1, reader)});
try parseDumpInit(reader, writer);
}
},
.@"export" => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
const name_len = try std.leb.readULEB128(u32, reader);
const name = data[fbs.pos..][0..name_len];
fbs.pos += name_len;
const kind_byte = try std.leb.readULEB128(u8, reader);
const kind = std.meta.intToEnum(std.wasm.ExternalKind, kind_byte) catch |err| {
std.debug.print("invalid export kind value '{d}'\n", .{kind_byte});
return err;
};
const index = try std.leb.readULEB128(u32, reader);
try writer.print(
\\name {s}
\\kind {s}
\\index {d}
, .{ name, @tagName(kind), index });
try writer.writeByte('\n');
}
},
.element => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
try writer.print("table index {d}\n", .{try std.leb.readULEB128(u32, reader)});
try parseDumpInit(reader, writer);
const function_indexes = try std.leb.readULEB128(u32, reader);
var function_index: u32 = 0;
try writer.print("indexes {d}\n", .{function_indexes});
while (function_index < function_indexes) : (function_index += 1) {
try writer.print("index {d}\n", .{try std.leb.readULEB128(u32, reader)});
}
}
},
.code => {}, // code section is considered opaque to linker
.data => {
var i: u32 = 0;
while (i < entries) : (i += 1) {
const index = try std.leb.readULEB128(u32, reader);
try writer.print("memory index 0x{x}\n", .{index});
try parseDumpInit(reader, writer);
const size = try std.leb.readULEB128(u32, reader);
try writer.print("size {d}\n", .{size});
try reader.skipBytes(size, .{}); // we do not care about the content of the segments
}
},
else => unreachable,
}
}
fn parseDumpType(comptime WasmType: type, reader: anytype, writer: anytype) !void {
const type_byte = try reader.readByte();
const valtype = std.meta.intToEnum(WasmType, type_byte) catch |err| {
std.debug.print("Invalid wasm type value '{d}'\n", .{type_byte});
return err;
};
try writer.print("type {s}\n", .{@tagName(valtype)});
}
fn parseDumpLimits(reader: anytype, writer: anytype) !void {
const flags = try std.leb.readULEB128(u8, reader);
const min = try std.leb.readULEB128(u32, reader);
try writer.print("min {x}\n", .{min});
if (flags != 0) {
try writer.print("max {x}\n", .{try std.leb.readULEB128(u32, reader)});
}
}
fn parseDumpInit(reader: anytype, writer: anytype) !void {
const byte = try std.leb.readULEB128(u8, reader);
const opcode = std.meta.intToEnum(std.wasm.Opcode, byte) catch |err| {
std.debug.print("invalid wasm opcode '{d}'\n", .{byte});
return err;
};
switch (opcode) {
.i32_const => try writer.print("i32.const {x}\n", .{try std.leb.readILEB128(i32, reader)}),
.i64_const => try writer.print("i64.const {x}\n", .{try std.leb.readILEB128(i64, reader)}),
.f32_const => try writer.print("f32.const {x}\n", .{@bitCast(f32, try reader.readIntLittle(u32))}),
.f64_const => try writer.print("f64.const {x}\n", .{@bitCast(f64, try reader.readIntLittle(u64))}),
.global_get => try writer.print("global.get {x}\n", .{try std.leb.readULEB128(u32, reader)}),
else => unreachable,
}
const end_opcode = try std.leb.readULEB128(u8, reader);
if (end_opcode != std.wasm.opcode(.end)) {
std.debug.print("expected 'end' opcode in init expression\n", .{});
return error.MissingEndOpcode;
}
}
fn parseDumpNames(reader: anytype, writer: anytype, data: []const u8) !void {
while (reader.context.pos < data.len) {
try parseDumpType(std.wasm.NameSubsection, reader, writer);
const size = try std.leb.readULEB128(u32, reader);
const entries = try std.leb.readULEB128(u32, reader);
try writer.print(
\\size {d}
\\names {d}
, .{ size, entries });
try writer.writeByte('\n');
var i: u32 = 0;
while (i < entries) : (i += 1) {
const index = try std.leb.readULEB128(u32, reader);
const name_len = try std.leb.readULEB128(u32, reader);
const pos = reader.context.pos;
const name = data[pos..][0..name_len];
reader.context.pos += name_len;
try writer.print(
\\index {d}
\\name {s}
, .{ index, name });
try writer.writeByte('\n');
}
}
}
fn parseDumpProducers(reader: anytype, writer: anytype, data: []const u8) !void {
const field_count = try std.leb.readULEB128(u32, reader);
try writer.print("fields {d}\n", .{field_count});
var current_field: u32 = 0;
while (current_field < field_count) : (current_field += 1) {
const field_name_length = try std.leb.readULEB128(u32, reader);
const field_name = data[reader.context.pos..][0..field_name_length];
reader.context.pos += field_name_length;
const value_count = try std.leb.readULEB128(u32, reader);
try writer.print(
\\field_name {s}
\\values {d}
, .{ field_name, value_count });
try writer.writeByte('\n');
var current_value: u32 = 0;
while (current_value < value_count) : (current_value += 1) {
const value_length = try std.leb.readULEB128(u32, reader);
const value = data[reader.context.pos..][0..value_length];
reader.context.pos += value_length;
const version_length = try std.leb.readULEB128(u32, reader);
const version = data[reader.context.pos..][0..version_length];
reader.context.pos += version_length;
try writer.print(
\\value_name {s}
\\version {s}
, .{ value, version });
try writer.writeByte('\n');
}
}
}
fn parseDumpFeatures(reader: anytype, writer: anytype, data: []const u8) !void {
const feature_count = try std.leb.readULEB128(u32, reader);
try writer.print("features {d}\n", .{feature_count});
var index: u32 = 0;
while (index < feature_count) : (index += 1) {
const prefix_byte = try std.leb.readULEB128(u8, reader);
const name_length = try std.leb.readULEB128(u32, reader);
const feature_name = data[reader.context.pos..][0..name_length];
reader.context.pos += name_length;
try writer.print("{c} {s}\n", .{ prefix_byte, feature_name });
}
}
};
|