1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
const std = @import("../std.zig");
const assert = std.debug.assert;
const build = std.build;
const fs = std.fs;
const macho = std.macho;
const mem = std.mem;
const testing = std.testing;
const CheckObjectStep = @This();
const Allocator = mem.Allocator;
const Builder = build.Builder;
const Step = build.Step;
pub const base_id = .check_obj;
step: Step,
builder: *Builder,
source: build.FileSource,
max_bytes: usize = 20 * 1024 * 1024,
checks: std.ArrayList(Check),
dump_symtab: bool = false,
obj_format: std.Target.ObjectFormat,
pub fn create(builder: *Builder, source: build.FileSource, obj_format: std.Target.ObjectFormat) *CheckObjectStep {
const gpa = builder.allocator;
const self = gpa.create(CheckObjectStep) catch unreachable;
self.* = .{
.builder = builder,
.step = Step.init(.check_file, "CheckObject", gpa, make),
.source = source.dupe(builder),
.checks = std.ArrayList(Check).init(gpa),
.obj_format = obj_format,
};
self.source.addStepDependencies(&self.step);
return self;
}
const Action = union(enum) {
match: MatchAction,
compute_eq: ComputeEqAction,
};
/// MatchAction is the main building block of standard matchers with optional eat-all token `{*}`
/// and extractors by name such as `{n_value}`. Please note this action is very simplistic in nature
/// i.e., it won't really handle edge cases/nontrivial examples. But given that we do want to use
/// it mainly to test the output of our object format parser-dumpers when testing the linkers, etc.
/// it should be plenty useful in its current form.
const MatchAction = struct {
needle: []const u8,
/// Will return true if the `needle` was found in the `haystack`.
/// Some examples include:
///
/// LC 0 => will match in its entirety
/// vmaddr {vmaddr} => will match `vmaddr` and then extract the following value as u64
/// and save under `vmaddr` global name (see `global_vars` param)
/// name {*}libobjc{*}.dylib => will match `name` followed by a token which contains `libobjc` and `.dylib`
/// in that order with other letters in between
fn match(act: MatchAction, haystack: []const u8, global_vars: anytype) !bool {
var hay_it = mem.tokenize(u8, mem.trim(u8, haystack, " "), " ");
var needle_it = mem.tokenize(u8, mem.trim(u8, act.needle, " "), " ");
while (needle_it.next()) |needle_tok| {
const hay_tok = hay_it.next() orelse return false;
if (mem.indexOf(u8, needle_tok, "{*}")) |index| {
// We have fuzzy matchers within the search pattern, so we match substrings.
var start = index;
var n_tok = needle_tok;
var h_tok = hay_tok;
while (true) {
n_tok = n_tok[start + 3 ..];
const inner = if (mem.indexOf(u8, n_tok, "{*}")) |sub_end|
n_tok[0..sub_end]
else
n_tok;
if (mem.indexOf(u8, h_tok, inner) == null) return false;
start = mem.indexOf(u8, n_tok, "{*}") orelse break;
}
} else if (mem.startsWith(u8, needle_tok, "{")) {
const closing_brace = mem.indexOf(u8, needle_tok, "}") orelse return error.MissingClosingBrace;
if (closing_brace != needle_tok.len - 1) return error.ClosingBraceNotLast;
const name = needle_tok[1..closing_brace];
if (name.len == 0) return error.MissingBraceValue;
const value = try std.fmt.parseInt(u64, hay_tok, 16);
try global_vars.putNoClobber(name, value);
} else {
if (!mem.eql(u8, hay_tok, needle_tok)) return false;
}
}
return true;
}
};
/// ComputeEqAction can be used to perform an operation on the extracted global variables
/// using the MatchAction. It currently only supports an addition. The operation is required
/// to be specified in Reverse Polish Notation to ease in operator-precedence parsing (well,
/// to avoid any parsing really).
/// For example, if the two extracted values were saved as `vmaddr` and `entryoff` respectively
/// they could then be added with this simple program `vmaddr entryoff +`.
const ComputeEqAction = struct {
expected: []const u8,
var_stack: std.ArrayList([]const u8),
op_stack: std.ArrayList(Op),
const Op = enum {
add,
};
};
const Check = struct {
builder: *Builder,
actions: std.ArrayList(Action),
fn create(b: *Builder) Check {
return .{
.builder = b,
.actions = std.ArrayList(Action).init(b.allocator),
};
}
fn match(self: *Check, needle: []const u8) void {
self.actions.append(.{
.match = .{ .needle = self.builder.dupe(needle) },
}) catch unreachable;
}
fn computeEq(self: *Check, act: ComputeEqAction) void {
self.actions.append(.{
.compute_eq = act,
}) catch unreachable;
}
};
/// Creates a new sequence of actions with `phrase` as the first anchor searched phrase.
pub fn checkStart(self: *CheckObjectStep, phrase: []const u8) void {
var new_check = Check.create(self.builder);
new_check.match(phrase);
self.checks.append(new_check) catch unreachable;
}
/// Adds another searched phrase to the latest created Check with `CheckObjectStep.checkStart(...)`.
/// Asserts at least one check already exists.
pub fn checkNext(self: *CheckObjectStep, phrase: []const u8) void {
assert(self.checks.items.len > 0);
const last = &self.checks.items[self.checks.items.len - 1];
last.match(phrase);
}
/// Creates a new check checking specifically symbol table parsed and dumped from the object
/// file.
/// Issuing this check will force parsing and dumping of the symbol table.
pub fn checkInSymtab(self: *CheckObjectStep) void {
self.dump_symtab = true;
const symtab_label = switch (self.obj_format) {
.macho => MachODumper.symtab_label,
else => @panic("TODO other parsers"),
};
self.checkStart(symtab_label);
}
/// Creates a new standalone, singular check which allows running simple binary operations
/// on the extracted variables. It will then compare the reduced program with the value of
/// the expected variable.
pub fn checkComputeEq(self: *CheckObjectStep, program: []const u8, expected: []const u8) void {
const gpa = self.builder.allocator;
var ca = ComputeEqAction{
.expected = expected,
.var_stack = std.ArrayList([]const u8).init(gpa),
.op_stack = std.ArrayList(ComputeEqAction.Op).init(gpa),
};
var it = mem.tokenize(u8, program, " ");
while (it.next()) |next| {
if (mem.eql(u8, next, "+")) {
ca.op_stack.append(.add) catch unreachable;
} else {
ca.var_stack.append(self.builder.dupe(next)) catch unreachable;
}
}
var new_check = Check.create(self.builder);
new_check.computeEq(ca);
self.checks.append(new_check) catch unreachable;
}
fn make(step: *Step) !void {
const self = @fieldParentPtr(CheckObjectStep, "step", step);
const gpa = self.builder.allocator;
const src_path = self.source.getPath(self.builder);
const contents = try fs.cwd().readFileAlloc(gpa, src_path, self.max_bytes);
const output = switch (self.obj_format) {
.macho => try MachODumper.parseAndDump(contents, .{
.gpa = gpa,
.dump_symtab = self.dump_symtab,
}),
.elf => @panic("TODO elf parser"),
.coff => @panic("TODO coff parser"),
.wasm => @panic("TODO wasm parser"),
else => unreachable,
};
var vars = std.StringHashMap(u64).init(gpa);
for (self.checks.items) |chk| {
var it = mem.tokenize(u8, output, "\r\n");
for (chk.actions.items) |act| {
switch (act) {
.match => |match_act| {
while (it.next()) |line| {
if (try match_act.match(line, &vars)) break;
} else {
std.debug.print(
\\
\\========= Expected to find: ==========================
\\{s}
\\========= But parsed file does not contain it: =======
\\{s}
\\
, .{ match_act.needle, output });
return error.TestFailed;
}
},
.compute_eq => |c_eq| {
var values = std.ArrayList(u64).init(gpa);
try values.ensureTotalCapacity(c_eq.var_stack.items.len);
for (c_eq.var_stack.items) |vv| {
const val = vars.get(vv) orelse {
std.debug.print(
\\
\\========= Variable was not extracted: ===========
\\{s}
\\========= From parsed file: =====================
\\{s}
\\
, .{ vv, output });
return error.TestFailed;
};
values.appendAssumeCapacity(val);
}
var op_i: usize = 1;
var reduced: u64 = values.items[0];
for (c_eq.op_stack.items) |op| {
const other = values.items[op_i];
switch (op) {
.add => {
reduced += other;
},
}
}
const expected = vars.get(c_eq.expected) orelse {
std.debug.print(
\\
\\========= Variable was not extracted: ===========
\\{s}
\\========= From parsed file: =====================
\\{s}
\\
, .{ c_eq.expected, output });
return error.TestFailed;
};
try testing.expectEqual(reduced, expected);
},
}
}
}
}
const Opts = struct {
gpa: ?Allocator = null,
dump_symtab: bool = false,
};
const MachODumper = struct {
const symtab_label = "symtab";
fn parseAndDump(bytes: []const u8, opts: Opts) ![]const u8 {
const gpa = opts.gpa orelse unreachable; // MachO dumper requires an allocator
var stream = std.io.fixedBufferStream(bytes);
const reader = stream.reader();
const hdr = try reader.readStruct(macho.mach_header_64);
if (hdr.magic != macho.MH_MAGIC_64) {
return error.InvalidMagicNumber;
}
var output = std.ArrayList(u8).init(gpa);
const writer = output.writer();
var symtab_cmd: ?macho.symtab_command = null;
var i: u16 = 0;
while (i < hdr.ncmds) : (i += 1) {
var cmd = try macho.LoadCommand.read(gpa, reader);
if (opts.dump_symtab and cmd.cmd() == .SYMTAB) {
symtab_cmd = cmd.symtab;
}
try dumpLoadCommand(cmd, i, writer);
try writer.writeByte('\n');
}
if (symtab_cmd) |cmd| {
try writer.writeAll(symtab_label ++ "\n");
const strtab = bytes[cmd.stroff..][0..cmd.strsize];
const raw_symtab = bytes[cmd.symoff..][0 .. cmd.nsyms * @sizeOf(macho.nlist_64)];
const symtab = mem.bytesAsSlice(macho.nlist_64, raw_symtab);
for (symtab) |sym| {
if (sym.stab()) continue;
const sym_name = mem.sliceTo(@ptrCast([*:0]const u8, strtab.ptr + sym.n_strx), 0);
try writer.print("{s} {x}\n", .{ sym_name, sym.n_value });
}
}
return output.toOwnedSlice();
}
fn dumpLoadCommand(lc: macho.LoadCommand, index: u16, writer: anytype) !void {
// print header first
try writer.print(
\\LC {d}
\\cmd {s}
\\cmdsize {d}
, .{ index, @tagName(lc.cmd()), lc.cmdsize() });
switch (lc.cmd()) {
.SEGMENT_64 => {
// TODO dump section headers
const seg = lc.segment.inner;
try writer.writeByte('\n');
try writer.print(
\\segname {s}
\\vmaddr {x}
\\vmsize {x}
\\fileoff {x}
\\filesz {x}
, .{
seg.segName(),
seg.vmaddr,
seg.vmsize,
seg.fileoff,
seg.filesize,
});
},
.ID_DYLIB,
.LOAD_DYLIB,
=> {
const dylib = lc.dylib.inner.dylib;
try writer.writeByte('\n');
try writer.print(
\\name {s}
\\timestamp {d}
\\current version {x}
\\compatibility version {x}
, .{
mem.sliceTo(lc.dylib.data, 0),
dylib.timestamp,
dylib.current_version,
dylib.compatibility_version,
});
},
.MAIN => {
try writer.writeByte('\n');
try writer.print(
\\entryoff {x}
\\stacksize {x}
, .{ lc.main.entryoff, lc.main.stacksize });
},
.RPATH => {
try writer.writeByte('\n');
try writer.print(
\\path {s}
, .{
mem.sliceTo(lc.rpath.data, 0),
});
},
else => {},
}
}
};
|