aboutsummaryrefslogtreecommitdiff
path: root/lib/std/array_list.zig
blob: b57d051d2b6c1560db53f44a5a1f853d06e034eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const Allocator = mem.Allocator;

/// A contiguous, growable list of items in memory.
/// This is a wrapper around an array of T values. Initialize with `init`.
pub fn ArrayList(comptime T: type) type {
    return ArrayListAligned(T, null);
}

pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
    if (alignment) |a| {
        if (a == @alignOf(T)) {
            return ArrayListAligned(T, null);
        }
    }
    return struct {
        const Self = @This();

        /// Content of the ArrayList
        items: Slice,
        capacity: usize,
        allocator: *Allocator,

        pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
        pub const SliceConst = if (alignment) |a| ([]align(a) const T) else []const T;

        /// Deinitialize with `deinit` or use `toOwnedSlice`.
        pub fn init(allocator: *Allocator) Self {
            return Self{
                .items = &[_]T{},
                .capacity = 0,
                .allocator = allocator,
            };
        }

        /// Initialize with capacity to hold at least num elements.
        /// Deinitialize with `deinit` or use `toOwnedSlice`.
        pub fn initCapacity(allocator: *Allocator, num: usize) !Self {
            var self = Self.init(allocator);
            try self.ensureCapacity(num);
            return self;
        }

        /// Release all allocated memory.
        pub fn deinit(self: Self) void {
            self.allocator.free(self.allocatedSlice());
        }

        /// Deprecated: use `items` field directly.
        /// Return contents as a slice. Only valid while the list
        /// doesn't change size.
        pub fn span(self: var) @TypeOf(self.items) {
            return self.items;
        }

        pub const toSlice = @compileError("deprecated: use `items` field directly");
        pub const toSliceConst = @compileError("deprecated: use `items` field directly");
        pub const at = @compileError("deprecated: use `list.items[i]`");
        pub const ptrAt = @compileError("deprecated: use `&list.items[i]`");
        pub const setOrError = @compileError("deprecated: use `if (i >= list.items.len) return error.OutOfBounds else list.items[i] = item`");
        pub const set = @compileError("deprecated: use `list.items[i] = item`");
        pub const swapRemoveOrError = @compileError("deprecated: use `if (i >= list.items.len) return error.OutOfBounds else list.swapRemove(i)`");

        /// ArrayList takes ownership of the passed in slice. The slice must have been
        /// allocated with `allocator`.
        /// Deinitialize with `deinit` or use `toOwnedSlice`.
        pub fn fromOwnedSlice(allocator: *Allocator, slice: Slice) Self {
            return Self{
                .items = slice,
                .capacity = slice.len,
                .allocator = allocator,
            };
        }

        pub fn toUnmanaged(self: Self) ArrayListAlignedUnmanaged(T, alignment) {
            return .{ .items = self.items, .capacity = self.capacity };
        }

        /// The caller owns the returned memory. ArrayList becomes empty.
        pub fn toOwnedSlice(self: *Self) Slice {
            const allocator = self.allocator;
            const result = allocator.shrink(self.allocatedSlice(), self.items.len);
            self.* = init(allocator);
            return result;
        }

        /// Insert `item` at index `n` by moving `list[n .. list.len]` to make room.
        /// This operation is O(N).
        pub fn insert(self: *Self, n: usize, item: T) !void {
            try self.ensureCapacity(self.items.len + 1);
            self.items.len += 1;

            mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
            self.items[n] = item;
        }

        /// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
        /// This operation is O(N).
        pub fn insertSlice(self: *Self, i: usize, items: SliceConst) !void {
            try self.ensureCapacity(self.items.len + items.len);
            self.items.len += items.len;

            mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
            mem.copy(T, self.items[i .. i + items.len], items);
        }

        /// Extend the list by 1 element. Allocates more memory as necessary.
        pub fn append(self: *Self, item: T) !void {
            const new_item_ptr = try self.addOne();
            new_item_ptr.* = item;
        }

        /// Extend the list by 1 element, but asserting `self.capacity`
        /// is sufficient to hold an additional item.
        pub fn appendAssumeCapacity(self: *Self, item: T) void {
            const new_item_ptr = self.addOneAssumeCapacity();
            new_item_ptr.* = item;
        }

        /// Remove the element at index `i` from the list and return its value.
        /// Asserts the array has at least one item.
        /// This operation is O(N).
        pub fn orderedRemove(self: *Self, i: usize) T {
            const newlen = self.items.len - 1;
            if (newlen == i) return self.pop();

            const old_item = self.items[i];
            for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
            self.items[newlen] = undefined;
            self.items.len = newlen;
            return old_item;
        }

        /// Removes the element at the specified index and returns it.
        /// The empty slot is filled from the end of the list.
        /// This operation is O(1).
        pub fn swapRemove(self: *Self, i: usize) T {
            if (self.items.len - 1 == i) return self.pop();

            const old_item = self.items[i];
            self.items[i] = self.pop();
            return old_item;
        }

        /// Append the slice of items to the list. Allocates more
        /// memory as necessary.
        pub fn appendSlice(self: *Self, items: SliceConst) !void {
            try self.ensureCapacity(self.items.len + items.len);
            self.appendSliceAssumeCapacity(items);
        }

        /// Append the slice of items to the list, asserting the capacity is already
        /// enough to store the new items.
        pub fn appendSliceAssumeCapacity(self: *Self, items: SliceConst) void {
            const oldlen = self.items.len;
            const newlen = self.items.len + items.len;
            self.items.len = newlen;
            mem.copy(T, self.items[oldlen..], items);
        }

        pub usingnamespace if (T != u8) struct {} else struct {
            pub const Writer = std.io.Writer(*Self, error{OutOfMemory}, appendWrite);

            /// Initializes a Writer which will append to the list.
            pub fn writer(self: *Self) Writer {
                return .{ .context = self };
            }

            /// Deprecated: use `writer`
            pub const outStream = writer;

            /// Same as `append` except it returns the number of bytes written, which is always the same
            /// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API.
            fn appendWrite(self: *Self, m: []const u8) !usize {
                try self.appendSlice(m);
                return m.len;
            }
        };

        /// Append a value to the list `n` times.
        /// Allocates more memory as necessary.
        pub fn appendNTimes(self: *Self, value: T, n: usize) !void {
            const old_len = self.items.len;
            try self.resize(self.items.len + n);
            mem.set(T, self.items[old_len..self.items.len], value);
        }

        /// Adjust the list's length to `new_len`.
        /// Does not initialize added items if any.
        pub fn resize(self: *Self, new_len: usize) !void {
            try self.ensureCapacity(new_len);
            self.items.len = new_len;
        }

        /// Reduce allocated capacity to `new_len`.
        /// Invalidates element pointers.
        pub fn shrink(self: *Self, new_len: usize) void {
            assert(new_len <= self.items.len);

            self.items = self.allocator.realloc(self.allocatedSlice(), new_len) catch |e| switch (e) {
                error.OutOfMemory => { // no problem, capacity is still correct then.
                    self.items.len = new_len;
                    return;
                },
            };
            self.capacity = new_len;
        }

        pub fn ensureCapacity(self: *Self, new_capacity: usize) !void {
            var better_capacity = self.capacity;
            if (better_capacity >= new_capacity) return;

            while (true) {
                better_capacity += better_capacity / 2 + 8;
                if (better_capacity >= new_capacity) break;
            }

            const new_memory = try self.allocator.reallocAtLeast(self.allocatedSlice(), better_capacity);
            self.items.ptr = new_memory.ptr;
            self.capacity = new_memory.len;
        }

        /// Increases the array's length to match the full capacity that is already allocated.
        /// The new elements have `undefined` values. This operation does not invalidate any
        /// element pointers.
        pub fn expandToCapacity(self: *Self) void {
            self.items.len = self.capacity;
        }

        /// Increase length by 1, returning pointer to the new item.
        /// The returned pointer becomes invalid when the list is resized.
        pub fn addOne(self: *Self) !*T {
            const newlen = self.items.len + 1;
            try self.ensureCapacity(newlen);
            return self.addOneAssumeCapacity();
        }

        /// Increase length by 1, returning pointer to the new item.
        /// Asserts that there is already space for the new item without allocating more.
        /// The returned pointer becomes invalid when the list is resized.
        pub fn addOneAssumeCapacity(self: *Self) *T {
            assert(self.items.len < self.capacity);

            self.items.len += 1;
            return &self.items[self.items.len - 1];
        }

        /// Remove and return the last element from the list.
        /// Asserts the list has at least one item.
        pub fn pop(self: *Self) T {
            const val = self.items[self.items.len - 1];
            self.items.len -= 1;
            return val;
        }

        /// Remove and return the last element from the list.
        /// If the list is empty, returns `null`.
        pub fn popOrNull(self: *Self) ?T {
            if (self.items.len == 0) return null;
            return self.pop();
        }

        // For a nicer API, `items.len` is the length, not the capacity.
        // This requires "unsafe" slicing.
        fn allocatedSlice(self: Self) Slice {
            return self.items.ptr[0..self.capacity];
        }
    };
}

/// Bring-your-own allocator with every function call.
/// Initialize directly and deinitialize with `deinit` or use `toOwnedSlice`.
pub fn ArrayListUnmanaged(comptime T: type) type {
    return ArrayListAlignedUnmanaged(T, null);
}

pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) type {
    if (alignment) |a| {
        if (a == @alignOf(T)) {
            return ArrayListAlignedUnmanaged(T, null);
        }
    }
    return struct {
        const Self = @This();

        /// Content of the ArrayList.
        items: Slice = &[_]T{},
        capacity: usize = 0,

        pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
        pub const SliceConst = if (alignment) |a| ([]align(a) const T) else []const T;

        /// Initialize with capacity to hold at least num elements.
        /// Deinitialize with `deinit` or use `toOwnedSlice`.
        pub fn initCapacity(allocator: *Allocator, num: usize) !Self {
            var self = Self{};
            try self.ensureCapacity(allocator, num);
            return self;
        }

        /// Release all allocated memory.
        pub fn deinit(self: *Self, allocator: *Allocator) void {
            allocator.free(self.allocatedSlice());
            self.* = undefined;
        }

        pub fn toManaged(self: *Self, allocator: *Allocator) ArrayListAligned(T, alignment) {
            return .{ .items = self.items, .capacity = self.capacity, .allocator = allocator };
        }

        /// The caller owns the returned memory. ArrayList becomes empty.
        pub fn toOwnedSlice(self: *Self, allocator: *Allocator) Slice {
            const result = allocator.shrink(self.allocatedSlice(), self.items.len);
            self.* = Self{};
            return result;
        }

        /// Insert `item` at index `n`. Moves `list[n .. list.len]`
        /// to make room.
        pub fn insert(self: *Self, allocator: *Allocator, n: usize, item: T) !void {
            try self.ensureCapacity(allocator, self.items.len + 1);
            self.items.len += 1;

            mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
            self.items[n] = item;
        }

        /// Insert slice `items` at index `i`. Moves
        /// `list[i .. list.len]` to make room.
        /// This operation is O(N).
        pub fn insertSlice(self: *Self, allocator: *Allocator, i: usize, items: SliceConst) !void {
            try self.ensureCapacity(allocator, self.items.len + items.len);
            self.items.len += items.len;

            mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
            mem.copy(T, self.items[i .. i + items.len], items);
        }

        /// Extend the list by 1 element. Allocates more memory as necessary.
        pub fn append(self: *Self, allocator: *Allocator, item: T) !void {
            const new_item_ptr = try self.addOne(allocator);
            new_item_ptr.* = item;
        }

        /// Extend the list by 1 element, but asserting `self.capacity`
        /// is sufficient to hold an additional item.
        pub fn appendAssumeCapacity(self: *Self, item: T) void {
            const new_item_ptr = self.addOneAssumeCapacity();
            new_item_ptr.* = item;
        }

        /// Remove the element at index `i` from the list and return its value.
        /// Asserts the array has at least one item.
        /// This operation is O(N).
        pub fn orderedRemove(self: *Self, i: usize) T {
            const newlen = self.items.len - 1;
            if (newlen == i) return self.pop();

            const old_item = self.items[i];
            for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
            self.items[newlen] = undefined;
            self.items.len = newlen;
            return old_item;
        }

        /// Removes the element at the specified index and returns it.
        /// The empty slot is filled from the end of the list.
        /// This operation is O(1).
        pub fn swapRemove(self: *Self, i: usize) T {
            if (self.items.len - 1 == i) return self.pop();

            const old_item = self.items[i];
            self.items[i] = self.pop();
            return old_item;
        }

        /// Append the slice of items to the list. Allocates more
        /// memory as necessary.
        pub fn appendSlice(self: *Self, allocator: *Allocator, items: SliceConst) !void {
            try self.ensureCapacity(allocator, self.items.len + items.len);
            self.appendSliceAssumeCapacity(items);
        }

        /// Append the slice of items to the list, asserting the capacity is enough
        /// to store the new items.
        pub fn appendSliceAssumeCapacity(self: *Self, items: SliceConst) void {
            const oldlen = self.items.len;
            const newlen = self.items.len + items.len;

            self.items.len = newlen;
            mem.copy(T, self.items[oldlen..], items);
        }

        /// Same as `append` except it returns the number of bytes written, which is always the same
        /// as `m.len`. The purpose of this function existing is to match `std.io.OutStream` API.
        /// This function may be called only when `T` is `u8`.
        fn appendWrite(self: *Self, allocator: *Allocator, m: []const u8) !usize {
            try self.appendSlice(allocator, m);
            return m.len;
        }

        /// Append a value to the list `n` times.
        /// Allocates more memory as necessary.
        pub fn appendNTimes(self: *Self, allocator: *Allocator, value: T, n: usize) !void {
            const old_len = self.items.len;
            try self.resize(allocator, self.items.len + n);
            mem.set(T, self.items[old_len..self.items.len], value);
        }

        /// Adjust the list's length to `new_len`.
        /// Does not initialize added items if any.
        pub fn resize(self: *Self, allocator: *Allocator, new_len: usize) !void {
            try self.ensureCapacity(allocator, new_len);
            self.items.len = new_len;
        }

        /// Reduce allocated capacity to `new_len`.
        /// Invalidates element pointers.
        pub fn shrink(self: *Self, allocator: *Allocator, new_len: usize) void {
            assert(new_len <= self.items.len);

            self.items = allocator.realloc(self.allocatedSlice(), new_len) catch |e| switch (e) {
                error.OutOfMemory => { // no problem, capacity is still correct then.
                    self.items.len = new_len;
                    return;
                },
            };
            self.capacity = new_len;
        }

        pub fn ensureCapacity(self: *Self, allocator: *Allocator, new_capacity: usize) !void {
            var better_capacity = self.capacity;
            if (better_capacity >= new_capacity) return;

            while (true) {
                better_capacity += better_capacity / 2 + 8;
                if (better_capacity >= new_capacity) break;
            }

            const new_memory = try allocator.reallocAtLeast(self.allocatedSlice(), better_capacity);
            self.items.ptr = new_memory.ptr;
            self.capacity = new_memory.len;
        }

        /// Increases the array's length to match the full capacity that is already allocated.
        /// The new elements have `undefined` values.
        /// This operation does not invalidate any element pointers.
        pub fn expandToCapacity(self: *Self) void {
            self.items.len = self.capacity;
        }

        /// Increase length by 1, returning pointer to the new item.
        /// The returned pointer becomes invalid when the list is resized.
        pub fn addOne(self: *Self, allocator: *Allocator) !*T {
            const newlen = self.items.len + 1;
            try self.ensureCapacity(allocator, newlen);
            return self.addOneAssumeCapacity();
        }

        /// Increase length by 1, returning pointer to the new item.
        /// Asserts that there is already space for the new item without allocating more.
        /// The returned pointer becomes invalid when the list is resized.
        /// This operation does not invalidate any element pointers.
        pub fn addOneAssumeCapacity(self: *Self) *T {
            assert(self.items.len < self.capacity);

            self.items.len += 1;
            return &self.items[self.items.len - 1];
        }

        /// Remove and return the last element from the list.
        /// Asserts the list has at least one item.
        /// This operation does not invalidate any element pointers.
        pub fn pop(self: *Self) T {
            const val = self.items[self.items.len - 1];
            self.items.len -= 1;
            return val;
        }

        /// Remove and return the last element from the list.
        /// If the list is empty, returns `null`.
        /// This operation does not invalidate any element pointers.
        pub fn popOrNull(self: *Self) ?T {
            if (self.items.len == 0) return null;
            return self.pop();
        }

        /// For a nicer API, `items.len` is the length, not the capacity.
        /// This requires "unsafe" slicing.
        fn allocatedSlice(self: Self) Slice {
            return self.items.ptr[0..self.capacity];
        }
    };
}

test "std.ArrayList.init" {
    var list = ArrayList(i32).init(testing.allocator);
    defer list.deinit();

    testing.expect(list.items.len == 0);
    testing.expect(list.capacity == 0);
}

test "std.ArrayList.initCapacity" {
    var list = try ArrayList(i8).initCapacity(testing.allocator, 200);
    defer list.deinit();
    testing.expect(list.items.len == 0);
    testing.expect(list.capacity >= 200);
}

test "std.ArrayList.basic" {
    var list = ArrayList(i32).init(testing.allocator);
    defer list.deinit();

    {
        var i: usize = 0;
        while (i < 10) : (i += 1) {
            list.append(@intCast(i32, i + 1)) catch unreachable;
        }
    }

    {
        var i: usize = 0;
        while (i < 10) : (i += 1) {
            testing.expect(list.items[i] == @intCast(i32, i + 1));
        }
    }

    for (list.items) |v, i| {
        testing.expect(v == @intCast(i32, i + 1));
    }

    testing.expect(list.pop() == 10);
    testing.expect(list.items.len == 9);

    list.appendSlice(&[_]i32{ 1, 2, 3 }) catch unreachable;
    testing.expect(list.items.len == 12);
    testing.expect(list.pop() == 3);
    testing.expect(list.pop() == 2);
    testing.expect(list.pop() == 1);
    testing.expect(list.items.len == 9);

    list.appendSlice(&[_]i32{}) catch unreachable;
    testing.expect(list.items.len == 9);

    // can only set on indices < self.items.len
    list.items[7] = 33;
    list.items[8] = 42;

    testing.expect(list.pop() == 42);
    testing.expect(list.pop() == 33);
}

test "std.ArrayList.appendNTimes" {
    var list = ArrayList(i32).init(testing.allocator);
    defer list.deinit();

    try list.appendNTimes(2, 10);
    testing.expectEqual(@as(usize, 10), list.items.len);
    for (list.items) |element| {
        testing.expectEqual(@as(i32, 2), element);
    }
}

test "std.ArrayList.appendNTimes with failing allocator" {
    var list = ArrayList(i32).init(testing.failing_allocator);
    defer list.deinit();
    testing.expectError(error.OutOfMemory, list.appendNTimes(2, 10));
}

test "std.ArrayList.orderedRemove" {
    var list = ArrayList(i32).init(testing.allocator);
    defer list.deinit();

    try list.append(1);
    try list.append(2);
    try list.append(3);
    try list.append(4);
    try list.append(5);
    try list.append(6);
    try list.append(7);

    //remove from middle
    testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
    testing.expectEqual(@as(i32, 5), list.items[3]);
    testing.expectEqual(@as(usize, 6), list.items.len);

    //remove from end
    testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
    testing.expectEqual(@as(usize, 5), list.items.len);

    //remove from front
    testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
    testing.expectEqual(@as(i32, 2), list.items[0]);
    testing.expectEqual(@as(usize, 4), list.items.len);
}

test "std.ArrayList.swapRemove" {
    var list = ArrayList(i32).init(testing.allocator);
    defer list.deinit();

    try list.append(1);
    try list.append(2);
    try list.append(3);
    try list.append(4);
    try list.append(5);
    try list.append(6);
    try list.append(7);

    //remove from middle
    testing.expect(list.swapRemove(3) == 4);
    testing.expect(list.items[3] == 7);
    testing.expect(list.items.len == 6);

    //remove from end
    testing.expect(list.swapRemove(5) == 6);
    testing.expect(list.items.len == 5);

    //remove from front
    testing.expect(list.swapRemove(0) == 1);
    testing.expect(list.items[0] == 5);
    testing.expect(list.items.len == 4);
}

test "std.ArrayList.insert" {
    var list = ArrayList(i32).init(testing.allocator);
    defer list.deinit();

    try list.append(1);
    try list.append(2);
    try list.append(3);
    try list.insert(0, 5);
    testing.expect(list.items[0] == 5);
    testing.expect(list.items[1] == 1);
    testing.expect(list.items[2] == 2);
    testing.expect(list.items[3] == 3);
}

test "std.ArrayList.insertSlice" {
    var list = ArrayList(i32).init(testing.allocator);
    defer list.deinit();

    try list.append(1);
    try list.append(2);
    try list.append(3);
    try list.append(4);
    try list.insertSlice(1, &[_]i32{ 9, 8 });
    testing.expect(list.items[0] == 1);
    testing.expect(list.items[1] == 9);
    testing.expect(list.items[2] == 8);
    testing.expect(list.items[3] == 2);
    testing.expect(list.items[4] == 3);
    testing.expect(list.items[5] == 4);

    const items = [_]i32{1};
    try list.insertSlice(0, items[0..0]);
    testing.expect(list.items.len == 6);
    testing.expect(list.items[0] == 1);
}

const Item = struct {
    integer: i32,
    sub_items: ArrayList(Item),
};

test "std.ArrayList: ArrayList(T) of struct T" {
    var root = Item{ .integer = 1, .sub_items = ArrayList(Item).init(testing.allocator) };
    defer root.sub_items.deinit();
    try root.sub_items.append(Item{ .integer = 42, .sub_items = ArrayList(Item).init(testing.allocator) });
    testing.expect(root.sub_items.items[0].integer == 42);
}

test "std.ArrayList(u8) implements outStream" {
    var buffer = ArrayList(u8).init(std.testing.allocator);
    defer buffer.deinit();

    const x: i32 = 42;
    const y: i32 = 1234;
    try buffer.outStream().print("x: {}\ny: {}\n", .{ x, y });

    testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.span());
}

test "std.ArrayList.shrink still sets length on error.OutOfMemory" {
    // use an arena allocator to make sure realloc returns error.OutOfMemory
    var arena = std.heap.ArenaAllocator.init(testing.allocator);
    defer arena.deinit();

    var list = ArrayList(i32).init(&arena.allocator);

    try list.append(1);
    try list.append(2);
    try list.append(3);

    list.shrink(1);
    testing.expect(list.items.len == 1);
}

test "std.ArrayList.writer" {
    var list = ArrayList(u8).init(std.testing.allocator);
    defer list.deinit();

    const writer = list.writer();
    try writer.writeAll("a");
    try writer.writeAll("bc");
    try writer.writeAll("d");
    try writer.writeAll("efg");
    testing.expectEqualSlices(u8, list.items, "abcdefg");
}