1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
//! Lock may be held only once. If the same thread tries to acquire
//! the same mutex twice, it deadlocks. This type supports static
//! initialization and is at most `@sizeOf(usize)` in size. When an
//! application is built in single threaded release mode, all the
//! functions are no-ops. In single threaded debug mode, there is
//! deadlock detection.
//!
//! Example usage:
//! var m = Mutex{};
//!
//! const lock = m.acquire();
//! defer lock.release();
//! ... critical code
//!
//! Non-blocking:
//! if (m.tryAcquire) |lock| {
//! defer lock.release();
//! // ... critical section
//! } else {
//! // ... lock not acquired
//! }
impl: Impl = .{},
const Mutex = @This();
const std = @import("../std.zig");
const builtin = std.builtin;
const os = std.os;
const assert = std.debug.assert;
const windows = os.windows;
const linux = os.linux;
const testing = std.testing;
const StaticResetEvent = std.thread.StaticResetEvent;
/// Try to acquire the mutex without blocking. Returns `null` if the mutex is
/// unavailable. Otherwise returns `Held`. Call `release` on `Held`.
pub fn tryAcquire(m: *Mutex) ?Impl.Held {
return m.impl.tryAcquire();
}
/// Acquire the mutex. Deadlocks if the mutex is already
/// held by the calling thread.
pub fn acquire(m: *Mutex) Impl.Held {
return m.impl.acquire();
}
const Impl = if (builtin.single_threaded)
Dummy
else if (builtin.os.tag == .windows)
WindowsMutex
else if (std.Thread.use_pthreads)
PthreadMutex
else
AtomicMutex;
pub const AtomicMutex = struct {
state: State = .unlocked,
const State = enum(i32) {
unlocked,
locked,
waiting,
};
pub const Held = struct {
mutex: *AtomicMutex,
pub fn release(held: Held) void {
switch (@atomicRmw(State, &held.mutex.state, .Xchg, .unlocked, .Release)) {
.unlocked => unreachable,
.locked => {},
.waiting => held.mutex.unlockSlow(),
}
}
};
pub fn tryAcquire(m: *AtomicMutex) ?Held {
if (@cmpxchgStrong(
State,
&m.state,
.unlocked,
.locked,
.Acquire,
.Monotonic,
) == null) {
return Held{ .mutex = m };
} else {
return null;
}
}
pub fn acquire(m: *AtomicMutex) Held {
switch (@atomicRmw(State, &m.state, .Xchg, .locked, .Acquire)) {
.unlocked => {},
else => |s| m.lockSlow(s),
}
return Held{ .mutex = m };
}
fn lockSlow(m: *AtomicMutex, current_state: State) void {
@setCold(true);
var new_state = current_state;
var spin: u8 = 0;
while (spin < 100) : (spin += 1) {
const state = @cmpxchgWeak(
State,
&m.state,
.unlocked,
new_state,
.Acquire,
.Monotonic,
) orelse return;
switch (state) {
.unlocked => {},
.locked => {},
.waiting => break,
}
var iter = std.math.min(32, spin + 1);
while (iter > 0) : (iter -= 1)
std.atomic.spinLoopHint();
}
new_state = .waiting;
while (true) {
switch (@atomicRmw(State, &m.state, .Xchg, new_state, .Acquire)) {
.unlocked => return,
else => {},
}
switch (std.Target.current.os.tag) {
.linux => {
switch (linux.getErrno(linux.futex_wait(
@ptrCast(*const i32, &m.state),
linux.FUTEX_PRIVATE_FLAG | linux.FUTEX_WAIT,
@enumToInt(new_state),
null,
))) {
.SUCCESS => {},
.INTR => {},
.AGAIN => {},
else => unreachable,
}
},
else => std.atomic.spinLoopHint(),
}
}
}
fn unlockSlow(m: *AtomicMutex) void {
@setCold(true);
switch (std.Target.current.os.tag) {
.linux => {
switch (linux.getErrno(linux.futex_wake(
@ptrCast(*const i32, &m.state),
linux.FUTEX_PRIVATE_FLAG | linux.FUTEX_WAKE,
1,
))) {
.SUCCESS => {},
.FAULT => unreachable, // invalid pointer passed to futex_wake
else => unreachable,
}
},
else => {},
}
}
};
pub const PthreadMutex = struct {
pthread_mutex: std.c.pthread_mutex_t = .{},
pub const Held = struct {
mutex: *PthreadMutex,
pub fn release(held: Held) void {
switch (std.c.pthread_mutex_unlock(&held.mutex.pthread_mutex)) {
.SUCCESS => return,
.INVAL => unreachable,
.AGAIN => unreachable,
.PERM => unreachable,
else => unreachable,
}
}
};
/// Try to acquire the mutex without blocking. Returns null if
/// the mutex is unavailable. Otherwise returns Held. Call
/// release on Held.
pub fn tryAcquire(m: *PthreadMutex) ?Held {
if (std.c.pthread_mutex_trylock(&m.pthread_mutex) == .SUCCESS) {
return Held{ .mutex = m };
} else {
return null;
}
}
/// Acquire the mutex. Will deadlock if the mutex is already
/// held by the calling thread.
pub fn acquire(m: *PthreadMutex) Held {
switch (std.c.pthread_mutex_lock(&m.pthread_mutex)) {
.SUCCESS => return Held{ .mutex = m },
.INVAL => unreachable,
.BUSY => unreachable,
.AGAIN => unreachable,
.DEADLK => unreachable,
.PERM => unreachable,
else => unreachable,
}
}
};
/// This has the sematics as `Mutex`, however it does not actually do any
/// synchronization. Operations are safety-checked no-ops.
pub const Dummy = struct {
lock: @TypeOf(lock_init) = lock_init,
const lock_init = if (std.debug.runtime_safety) false else {};
pub const Held = struct {
mutex: *Dummy,
pub fn release(held: Held) void {
if (std.debug.runtime_safety) {
held.mutex.lock = false;
}
}
};
/// Try to acquire the mutex without blocking. Returns null if
/// the mutex is unavailable. Otherwise returns Held. Call
/// release on Held.
pub fn tryAcquire(m: *Dummy) ?Held {
if (std.debug.runtime_safety) {
if (m.lock) return null;
m.lock = true;
}
return Held{ .mutex = m };
}
/// Acquire the mutex. Will deadlock if the mutex is already
/// held by the calling thread.
pub fn acquire(m: *Dummy) Held {
return m.tryAcquire() orelse @panic("deadlock detected");
}
};
const WindowsMutex = struct {
srwlock: windows.SRWLOCK = windows.SRWLOCK_INIT,
pub const Held = struct {
mutex: *WindowsMutex,
pub fn release(held: Held) void {
windows.kernel32.ReleaseSRWLockExclusive(&held.mutex.srwlock);
}
};
pub fn tryAcquire(m: *WindowsMutex) ?Held {
if (windows.kernel32.TryAcquireSRWLockExclusive(&m.srwlock) != windows.FALSE) {
return Held{ .mutex = m };
} else {
return null;
}
}
pub fn acquire(m: *WindowsMutex) Held {
windows.kernel32.AcquireSRWLockExclusive(&m.srwlock);
return Held{ .mutex = m };
}
};
const TestContext = struct {
mutex: *Mutex,
data: i128,
const incr_count = 10000;
};
test "basic usage" {
var mutex = Mutex{};
var context = TestContext{
.mutex = &mutex,
.data = 0,
};
if (builtin.single_threaded) {
worker(&context);
try testing.expect(context.data == TestContext.incr_count);
} else {
const thread_count = 10;
var threads: [thread_count]std.Thread = undefined;
for (threads) |*t| {
t.* = try std.Thread.spawn(.{}, worker, .{&context});
}
for (threads) |t|
t.join();
try testing.expect(context.data == thread_count * TestContext.incr_count);
}
}
fn worker(ctx: *TestContext) void {
var i: usize = 0;
while (i != TestContext.incr_count) : (i += 1) {
const held = ctx.mutex.acquire();
defer held.release();
ctx.data += 1;
}
}
|