aboutsummaryrefslogtreecommitdiff
path: root/lib/std/Thread/Condition.zig
blob: 7a479e5540b5a05caf44edabbc454244bcbe6760 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
//! A condition provides a way for a kernel thread to block until it is signaled
//! to wake up. Spurious wakeups are possible.
//! This API supports static initialization and does not require deinitialization.

impl: Impl = .{},

const std = @import("../std.zig");
const builtin = @import("builtin");
const Condition = @This();
const windows = std.os.windows;
const linux = std.os.linux;
const Mutex = std.Thread.Mutex;
const assert = std.debug.assert;
const testing = std.testing;

pub fn wait(cond: *Condition, mutex: *Mutex) void {
    cond.impl.wait(mutex);
}

pub fn signal(cond: *Condition) void {
    cond.impl.signal();
}

pub fn broadcast(cond: *Condition) void {
    cond.impl.broadcast();
}

const Impl = if (builtin.single_threaded)
    SingleThreadedCondition
else if (builtin.os.tag == .windows)
    WindowsCondition
else if (std.Thread.use_pthreads)
    PthreadCondition
else
    AtomicCondition;

pub const SingleThreadedCondition = struct {
    pub fn wait(cond: *SingleThreadedCondition, mutex: *Mutex) void {
        _ = cond;
        _ = mutex;
        unreachable; // deadlock detected
    }

    pub fn signal(cond: *SingleThreadedCondition) void {
        _ = cond;
    }

    pub fn broadcast(cond: *SingleThreadedCondition) void {
        _ = cond;
    }
};

pub const WindowsCondition = struct {
    cond: windows.CONDITION_VARIABLE = windows.CONDITION_VARIABLE_INIT,

    pub fn wait(cond: *WindowsCondition, mutex: *Mutex) void {
        const rc = windows.kernel32.SleepConditionVariableSRW(
            &cond.cond,
            &mutex.impl.srwlock,
            windows.INFINITE,
            @as(windows.ULONG, 0),
        );
        assert(rc != windows.FALSE);
    }

    pub fn signal(cond: *WindowsCondition) void {
        windows.kernel32.WakeConditionVariable(&cond.cond);
    }

    pub fn broadcast(cond: *WindowsCondition) void {
        windows.kernel32.WakeAllConditionVariable(&cond.cond);
    }
};

pub const PthreadCondition = struct {
    cond: std.c.pthread_cond_t = .{},

    pub fn wait(cond: *PthreadCondition, mutex: *Mutex) void {
        const rc = std.c.pthread_cond_wait(&cond.cond, &mutex.impl.pthread_mutex);
        assert(rc == .SUCCESS);
    }

    pub fn signal(cond: *PthreadCondition) void {
        const rc = std.c.pthread_cond_signal(&cond.cond);
        assert(rc == .SUCCESS);
    }

    pub fn broadcast(cond: *PthreadCondition) void {
        const rc = std.c.pthread_cond_broadcast(&cond.cond);
        assert(rc == .SUCCESS);
    }
};

pub const AtomicCondition = struct {
    pending: bool = false,
    queue_mutex: Mutex = .{},
    queue_list: QueueList = .{},

    pub const QueueList = std.SinglyLinkedList(QueueItem);

    pub const QueueItem = struct {
        futex: i32 = 0,

        fn wait(cond: *@This()) void {
            while (@atomicLoad(i32, &cond.futex, .Acquire) == 0) {
                switch (builtin.os.tag) {
                    .linux => {
                        switch (linux.getErrno(linux.futex_wait(
                            &cond.futex,
                            linux.FUTEX.PRIVATE_FLAG | linux.FUTEX.WAIT,
                            0,
                            null,
                        ))) {
                            .SUCCESS => {},
                            .INTR => {},
                            .AGAIN => {},
                            else => unreachable,
                        }
                    },
                    else => std.atomic.spinLoopHint(),
                }
            }
        }

        fn notify(cond: *@This()) void {
            @atomicStore(i32, &cond.futex, 1, .Release);

            switch (builtin.os.tag) {
                .linux => {
                    switch (linux.getErrno(linux.futex_wake(
                        &cond.futex,
                        linux.FUTEX.PRIVATE_FLAG | linux.FUTEX.WAKE,
                        1,
                    ))) {
                        .SUCCESS => {},
                        .FAULT => {},
                        else => unreachable,
                    }
                },
                else => {},
            }
        }
    };

    pub fn wait(cond: *AtomicCondition, mutex: *Mutex) void {
        var waiter = QueueList.Node{ .data = .{} };

        {
            cond.queue_mutex.lock();
            defer cond.queue_mutex.unlock();

            cond.queue_list.prepend(&waiter);
            @atomicStore(bool, &cond.pending, true, .SeqCst);
        }

        mutex.unlock();
        waiter.data.wait();
        mutex.lock();
    }

    pub fn signal(cond: *AtomicCondition) void {
        if (@atomicLoad(bool, &cond.pending, .SeqCst) == false)
            return;

        const maybe_waiter = blk: {
            cond.queue_mutex.lock();
            defer cond.queue_mutex.unlock();

            const maybe_waiter = cond.queue_list.popFirst();
            @atomicStore(bool, &cond.pending, cond.queue_list.first != null, .SeqCst);
            break :blk maybe_waiter;
        };

        if (maybe_waiter) |waiter|
            waiter.data.notify();
    }

    pub fn broadcast(cond: *AtomicCondition) void {
        if (@atomicLoad(bool, &cond.pending, .SeqCst) == false)
            return;

        @atomicStore(bool, &cond.pending, false, .SeqCst);

        var waiters = blk: {
            cond.queue_mutex.lock();
            defer cond.queue_mutex.unlock();

            const waiters = cond.queue_list;
            cond.queue_list = .{};
            break :blk waiters;
        };

        while (waiters.popFirst()) |waiter|
            waiter.data.notify();
    }
};

test "Thread.Condition" {
    if (builtin.single_threaded) {
        return error.SkipZigTest;
    }

    const TestContext = struct {
        cond: *Condition,
        cond_main: *Condition,
        mutex: *Mutex,
        n: *i32,
        fn worker(ctx: *@This()) void {
            ctx.mutex.lock();
            ctx.n.* += 1;
            ctx.cond_main.signal();
            ctx.cond.wait(ctx.mutex);
            ctx.n.* -= 1;
            ctx.cond_main.signal();
            ctx.mutex.unlock();
        }
    };
    const num_threads = 3;
    var threads: [num_threads]std.Thread = undefined;
    var cond = Condition{};
    var cond_main = Condition{};
    var mut = Mutex{};
    var n: i32 = 0;
    var ctx = TestContext{ .cond = &cond, .cond_main = &cond_main, .mutex = &mut, .n = &n };

    mut.lock();
    for (threads) |*t| t.* = try std.Thread.spawn(.{}, TestContext.worker, .{&ctx});
    cond_main.wait(&mut);
    while (n < num_threads) cond_main.wait(&mut);

    cond.signal();
    cond_main.wait(&mut);
    try testing.expect(n == (num_threads - 1));

    cond.broadcast();
    while (n > 0) cond_main.wait(&mut);
    try testing.expect(n == 0);

    for (threads) |t| t.join();
}