aboutsummaryrefslogtreecommitdiff
path: root/lib/std/Thread.zig
blob: 4644d5d83172d27ee9ae283d1566cb84f5dbad6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2021 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.

//! This struct represents a kernel thread, and acts as a namespace for concurrency
//! primitives that operate on kernel threads. For concurrency primitives that support
//! both evented I/O and async I/O, see the respective names in the top level std namespace.

const std = @import("std.zig");
const os = std.os;
const assert = std.debug.assert;
const target = std.Target.current;
const Atomic = std.atomic.Atomic;

pub const AutoResetEvent = @import("Thread/AutoResetEvent.zig");
pub const Futex = @import("Thread/Futex.zig");
pub const ResetEvent = @import("Thread/ResetEvent.zig");
pub const StaticResetEvent = @import("Thread/StaticResetEvent.zig");
pub const Mutex = @import("Thread/Mutex.zig");
pub const Semaphore = @import("Thread/Semaphore.zig");
pub const Condition = @import("Thread/Condition.zig");

pub const spinLoopHint = @compileError("deprecated: use std.atomic.spinLoopHint");

test "std.Thread" {
    // Doesn't use testing.refAllDecls() since that would pull in the compileError spinLoopHint.
    _ = AutoResetEvent;
    _ = Futex;
    _ = ResetEvent;
    _ = StaticResetEvent;
    _ = Mutex;
    _ = Semaphore;
    _ = Condition;
}

pub const use_pthreads = target.os.tag != .windows and std.builtin.link_libc;

const Thread = @This();
const Impl = if (target.os.tag == .windows)
    WindowsThreadImpl
else if (use_pthreads)
    PosixThreadImpl
else if (target.os.tag == .linux)
    LinuxThreadImpl
else
    @compileLog("Unsupported operating system", target.os.tag);

impl: Impl,

/// Represents a unique ID per thread.
/// May be an integer or pointer depending on the platform.
pub const Id = u64;

/// Returns the platform ID of the callers thread.
/// Attempts to use thread locals and avoid syscalls when possible.
pub fn getCurrentId() Id {
    return Impl.getCurrentId();
}

pub const CpuCountError = error{
    PermissionDenied,
    SystemResources,
    Unexpected,
};

/// Returns the platforms view on the number of logical CPU cores available.
pub fn getCpuCount() CpuCountError!usize {
    return Impl.getCpuCount();
}

/// Configuration options for hints on how to spawn threads.
pub const SpawnConfig = struct {
    // TODO compile-time call graph analysis to determine stack upper bound
    // https://github.com/ziglang/zig/issues/157

    /// Size in bytes of the Thread's stack
    stack_size: usize = 16 * 1024 * 1024,
};

pub const SpawnError = error {
    /// A system-imposed limit on the number of threads was encountered.
    /// There are a number of limits that may trigger this error:
    /// *  the  RLIMIT_NPROC soft resource limit (set via setrlimit(2)),
    ///    which limits the number of processes and threads for  a  real
    ///    user ID, was reached;
    /// *  the kernel's system-wide limit on the number of processes and
    ///    threads,  /proc/sys/kernel/threads-max,  was   reached   (see
    ///    proc(5));
    /// *  the  maximum  number  of  PIDs, /proc/sys/kernel/pid_max, was
    ///    reached (see proc(5)); or
    /// *  the PID limit (pids.max) imposed by the cgroup "process  num‐
    ///    ber" (PIDs) controller was reached.
    ThreadQuotaExceeded,

    /// The kernel cannot allocate sufficient memory to allocate a task structure
    /// for the child, or to copy those parts of the caller's context that need to
    /// be copied.
    SystemResources,

    /// Not enough userland memory to spawn the thread.
    OutOfMemory,

    /// `mlockall` is enabled, and the memory needed to spawn the thread
    /// would exceed the limit.
    LockedMemoryLimitExceeded,

    Unexpected,
};

/// Spawns a new thread which executes `function` using `args` and returns a handle the spawned thread.
/// `config` can be used as hints to the platform for now to spawn and execute the `function`.
/// The caller must eventually either call `join()` to wait for the thread to finish and free its resources
/// or call `detach()` to excuse the caller from calling `join()` and have the thread clean up its resources on completion`.
pub fn spawn(config: SpawnConfig, comptime function: anytype, args: anytype) SpawnError!Thread {
    if (std.builtin.single_threaded) {
        @compileError("cannot spawn thread when building in single-threaded mode");
    }

    const impl = try Impl.spawn(config, function, args);
    return Thread{ .impl = impl };
}

/// Represents a kernel thread handle.
/// May be an integer or a pointer depending on the platform.
pub const Handle = Impl.ThreadHandle;

/// Retrns the handle of this thread
pub fn getHandle(self: Thread) Handle {
    return self.impl.getHandle();
}

/// Release the obligation of the caller to call `join()` and have the thread clean up its own resources on completion.
pub fn detach(self: Thread) void {
    return self.impl.detach();
}

/// Waits for the thread to complete, then deallocates any resources created on `spawn()`.
pub fn join(self: Thread) void {
    return self.impl.join();
}

/// State to synchronize detachment of spawner thread to spawned thread
const Completion = Atomic(enum(u8) {
    running,
    detached,
    completed,
});

/// Used by the Thread implementations to call the spawned function with the arguments.
fn callFn(comptime f: anytype, args: anytype) switch (Impl) {
    WindowsThreadImpl => windows.DWORD,
    LinuxThreadImpl => u8,
    PosixThreadImpl => ?*c_void,
    else => unreachable,
} {
    const default_value = if (Impl == PosixThreadImpl) null else 0;
    const bad_fn_ret = "expected return type of startFn to be 'u8', 'noreturn', 'void', or '!void'";

    switch (@typeInfo(@typeInfo(@TypeOf(f)).Fn.return_type.?)) {
        .NoReturn => {
            @call(.{}, f, args);
        },
        .Void => {
            @call(.{}, f, args);
            return default_value;
        },
        .Int => |info| {
            if (info.bits != 8) {
                @compileError(bad_fn_ret);
            }

            const status = @call(.{}, f, args);
            if (Impl != PosixThreadImpl) {
                return status;
            }

            // pthreads don't support exit status, ignore value
            _ = status;
            return default_value;
        },
        .ErrorUnion => |info| {
            if (info.payload != void) {
                @compileError(bad_fn_ret);
            }

            @call(.{}, f, args) catch |err| {
                std.debug.warn("error: {s}\n", .{@errorName(err)});
                if (@errorReturnTrace()) |trace| {
                    std.debug.dumpStackTrace(trace.*);
                }
            };

            return default_value;
        },
        else => {
            @compileError(bad_fn_ret);
        },
    }
}

const WindowsThreadImpl = struct {
    const windows = os.windows;

    pub const ThreadHandle = windows.HANDLE;

    fn getCurrentId() u64 {
        return windows.kernel32.GetCurrentThreadId();
    }

    fn getCpuCount() !usize {
        return windows.peb().NumberOfProcessors;
    }

    thread: *ThreadCompletion,

    const ThreadCompletion = struct {
        completion: Completion,
        heap_ptr: windows.PVOID,
        heap_handle: windows.HANDLE,
        thread_handle: windows.HANDLE = undefined,

        fn free(self: ThreadCompletion) void {
            const status = windows.kernel32.HeapFree(self.heap_handle, 0, self.heap_ptr);
            assert(status == 0);
        }
    };

    fn spawn(config: SpawnConfig, comptime f: anytype, args: anytype) !Impl {
        const Args = @TypeOf(args);
        const Instance = struct {
            fn_args: Args,
            thread: ThreadCompletion,

            fn entryFn(raw_ptr: *windows.PVOID) callconv(.C) windows.DWORD {
                const self = @ptrCast(*@This(), @alignCast(@alignOf(@This()), raw_ptr));
                defer switch (self.thread.completion.swap(.completed, .Acquire)) {
                    .running => {},
                    .completed => unreachable,
                    .detached => self.thread.free(),
                };
                return callFn(f, self.fn_args);
            }
        };

        const heap_handle = windows.kernel32.GetProcessHeap() orelse return error.OutOfMemory;
        const alloc_bytes = @alignOf(Instance) + @sizeOf(Instance);
        const alloc_ptr = windows.kernel32.HeapAlloc(heap_handle, 0, alloc_bytes) orelse return error.OutOfMemory;
        errdefer assert(windows.kernel32.HeapFree(heap_handle, 0, alloc_ptr) != 0);

        const instance_bytes = @ptrCast([*]u8, alloc_ptr)[0..alloc_bytes];
        const instance = std.heap.FixedBufferAllocator.init(instance_bytes).allocator.create(Instance) catch unreachable;
        instance.* = .{
            .fn_args = args,
            .thread = .{
                .completion = Completion.init(.running),
                .heap_ptr = alloc_ptr,
                .heap_handle = heap_handle,
            },
        };

        // Windows appears to only support SYSTEM_INFO.dwAllocationGranularity minimum stack size.
        // Going lower makes it default to that specified in the executable (~1mb).
        // Its also fine if the limit here is incorrect as stack size is only a hint.
        var stack_size = std.math.cast(u32, config.stack_size) catch std.math.maxInt(u32);
        stack_size = std.math.max(64 * 1024, stack_size);
        
        instance.thread.thread_handle = windows.kernel32.CreateThread(
            null, 
            stack_size, 
            Instance.entry, 
            @ptrCast(*c_void, instance), 
            0, 
            null,
        ) orelse {
            return windows.unexpectedError(windows.kernel32.GetLastError());
        };

        return .{ .thread = &instance.thread };
    }

    fn getHandle(self: Impl) ThreadHandle {
        return self.thread.thread_handle;
    }

    fn detach(self: Impl) void {
        windows.CloseHandle(self.thread.thread_handle);
        switch (self.thread.completion.swap(.detached, .AcqRel)) {
            .running => {},
            .completed => self.thread.free(),
            .detached => unreachable,
        }
    }

    fn join(self: Impl) void {
        windows.WaitForSingleObjectEx(self.thread.thread_handle, windows.INFINITE, false) catch unreachable;
        windows.CloseHandle(self.thread.thread_handle);
        self.thread.free();
    }  
};

const PosixThreadImpl = struct {
    const c = std.c;

    pub const ThreadHandle = c.pthread_t;

    fn getCurrentId() Id {
        switch (target.os.tag) {
            .linux => {
                return LinuxThreadImpl.getCurrentId();
            },
            .macos, .ios, .watchos, .tvos => {
                var thread_id: u64 = undefined;
                // Pass thread=null to get the current thread ID.
                assert(c.pthread_threadid_np(null, &thread_id) == 0);
                return thread_id;
            },
            .dragonfly => {
                return @bitCast(u32, c.lwp_gettid());
            },
            .netbsd => {
                return @bitCast(u32, c._lwp_self());
            },
            .freebsd => {
                return @bitCast(u32, c.pthread_getthreadid_np());
            },
            .openbsd => {
                return @bitCast(u32, c.getthrid());
            },
            .haiku => {
                return @bitCast(u32, c.find_thread(null));
            },
            else => {
                return @ptrToInt(c.pthread_self());
            },
        }
    }

    fn getCpuCount() !usize {
        switch (target.os.tag) {
            .linux => return LinuxThreadImpl.getCpuCount(),
            .openbsd => {
                var count: c_int = undefined;
                var count_size: usize = @sizeOf(c_int);
                const mib = [_]c_int{ os.CTL_HW, os.HW_NCPUONLINE };
                os.sysctl(&mib, &count, &count_size, null, 0) catch |err| switch (err) {
                    error.NameTooLong, error.UnknownName => unreachable,
                    else => |e| return e,
                };
                return @intCast(usize, count);
            },
            .haiku => {
                var count: u32 = undefined;
                var system_info: os.system_info = undefined;
                _ = os.system.get_system_info(&system_info); // always returns B_OK
                count = system_info.cpu_count;
                return @intCast(usize, count);
            },
            else => {
                var count: c_int = undefined;
                var count_len: usize = @sizeOf(c_int);
                const name = if (comptime target.isDarwin()) "hw.logicalcpu" else "hw.ncpu";
                os.sysctlbynameZ(name, &count, &count_len, null, 0) catch |err| switch (err) {
                    error.NameTooLong, error.UnknownName => unreachable,
                    else => |e| return e,
                };
                return @intCast(usize, count);
            },
        }
    }

    handle: ThreadHandle,

    fn spawn(config: SpawnConfig, comptime f: anytype, args: anytype) !Impl {
        const Args = @TypeOf(args);
        const allocator = std.heap.c_allocator;
        const Instance = struct {
            fn entryFn(raw_arg: ?*c_void) callconv(.C) ?*c_void {
               const args_ptr = @ptrCast(*Args, @alignCast(@alignOf(Args), raw_arg orelse unreachable));
               defer allocator.destroy(args_ptr);
               return callFn(f, args_ptr.*);
            }
        };

        const args_ptr = try allocator.create(Args);
        errdefer allocator.destroy(args_ptr);

        var attr: c.pthread_attr_t = undefined;
        if (c.pthread_attr_init(&attr) != 0) return error.SystemResources;
        defer assert(c.pthread_attr_destroy(&attr) == 0);

        // Use the same set of parameters used by the libc-less impl.
        const stack_size = std.math.max(config.stack_size, 16 * 1024);
        assert(c.pthread_attr_setstacksize(&attr, stack_size) == 0);
        assert(c.pthread_attr_setguardsize(&attr, std.mem.page_size) == 0);

        var handle: c.pthread_t = undefined;
        return switch (c.pthread_create(
            &handle,
            &attr,
            Instance.entryFn,
            @ptrCast(*c_void, args_ptr),
        )) {
            0 => .{ .handle = handle },
            os.EAGAIN => error.SystemResources,
            os.EPERM => unreachable,
            os.EINVAL => unreachable,
            else => |err| os.unexpectedErrno(err),
        };
    }

    fn getHandle(self: Impl) ThreadHandle {
        return self.handle;
    }

    fn detach(self: Impl) void {
        switch (c.pthread_detach(self.handle)) {
            os.EINVAL => unreachable,
            os.ESRCH => unreachable,
            else => unreachable,
        }
    }

    fn join(self: Impl) void {
        switch (c.pthread_join(self.handle, null)) {
            0 => {},
            os.EINVAL => unreachable,
            os.ESRCH => unreachable,
            os.EDEADLK => unreachable,
            else => unreachable,
        }
    }
};

const LinuxThreadImpl = struct {
    const linux = os.linux;
    
    pub const ThreadHandle = i32;

    threadlocal var tls_thread_id: ?Id = null;

    fn getCurrentId() Id {
        return tls_thread_id orelse {
            const tid = @bitCast(u32, linux.gettid());
            tls_thread_id = tid;
            return tid;
        };
    }

    fn getCpuCount() !usize {
        const cpu_set = try os.sched_getaffinity(0);
        return @as(usize, os.CPU_COUNT(cpu_set)); // TODO should not need this usize cast
    }

    thread: *ThreadCompletion,

    const ThreadCompletion = struct {
        completion: Completion = Completion.init(.running),
        child_tid: Atomic(i32) = Atomic(i32).init(0),
        parent_tid: i32 = undefined,
        mapped: []align(std.mem.page_size) u8,
    };

    fn spawn(config: SpawnConfig, comptime f: anytype, args: anytype) !Impl {
        const Args = @TypeOf(args);
        const Instance = struct {
            fn_args: Args,
            thread: ThreadCompletion,

            fn entryFn(raw_arg: usize) callconv(.C) u8 {
                const self = @intToPtr(*@This(), raw_arg);
                defer switch (self.thread.completion.swap(.completed, .Acquire)) {
                    .running => {},
                    .completed => unreachable,
                    .detached => {
                        const memory = self.thread.mapped;
                        __unmap_and_exit(@ptrToInt(memory.ptr), memory.len);
                    },
                };
                return callFn(f, self.fn_args);
            }
        };

        var guard_offset: usize = undefined;
        var stack_offset: usize = undefined;
        var tls_offset: usize = undefined;
        var instance_offset: usize = undefined;

        const map_bytes = blk: {
            var bytes: usize = std.mem.page_size;
            guard_offset = bytes;

            bytes += std.math.max(std.mem.page_size, config.stack_size);
            bytes = std.mem.alignForward(bytes, std.mem.page_size);
            stack_offset = bytes;

            bytes = std.mem.alignForward(bytes, linux.tls.tls_image.alloc_align);
            tls_offset = bytes;
            bytes += linux.tls.tls_image.alloc_size;

            bytes = std.mem.alignForward(bytes, @alignOf(Instance));
            instance_offset = bytes;
            bytes += @sizeOf(Instance);

            bytes = std.mem.alignForward(bytes, std.mem.page_size);
            break :blk bytes;
        };
        
        // map all memory needed without read/write permissions
        // to avoid committing the whole region right away
        const mapped = os.mmap(
            null,
            map_bytes,
            os.PROT_NONE,
            os.MAP_PRIVATE | os.MAP_ANONYMOUS,
            -1,
            0,
        ) catch |err| switch (err) {
            error.MemoryMappingNotSupported => unreachable,
            error.AccessDenied => unreachable,
            error.PermissionDenied => unreachable,
            else => |e| return e,
        };
        errdefer os.munmap(mapped);

        // map everything but the guard page as read/write
        os.mprotect(
            mapped[guard_offset..],
            os.PROT_READ | os.PROT_WRITE,
        ) catch |err| switch (err) {
            error.AccessDenied => unreachable,
            else => |e| return e,
        };

        // Prepare the TLS segment and prepare a user_desc struct when needed on i386
        var tls_ptr = os.linux.tls.prepareTLS(mapped[tls_offset..]);
        var user_desc: if (target.cpu.arch == .i386) os.linux.user_desc else void = undefined;
        if (target.cpu.arch == .i386) {
            defer tls_ptr = @ptrToInt(&user_desc);
            user_desc = .{
                .entry_number = os.linux.tls.tls_image.gdt_entry_number,
                .base_addr = tks_ptr,
                .limit = 0xfffff,
                .seg_32bit = 1,
                .contents = 0, // Data
                .read_exec_only = 0,
                .limit_in_pages = 1,
                .seg_not_present = 0,
                .useable = 1,
            };
        }

        const instance = @ptrCast(*Instance, @alignCast(@alignOf(Instance), &mapped[instance_offset]));
        instance.* = .{
            .fn_args = args,
            .thread = .{ .mapped = mapped },
        };

        const flags: u32 = os.CLONE_VM | os.CLONE_FS | os.CLONE_FILES |
            os.CLONE_SIGHAND | os.CLONE_THREAD | os.CLONE_SYSVSEM |
            os.CLONE_PARENT_SETTID | os.CLONE_CHILD_CLEARTID |
            os.CLONE_DETACHED | os.CLONE_SETTLS;

        return switch (linux.getErrno(linux.clone(
            Instance.entryFn,
            @ptrToInt(&mapped[stack_offset]),
            flags,
            @ptrToInt(instance),
            &instance.thread.parent_tid,
            tls_ptr,
            &instance.thread.child_tid.value,
        ))) {
            0 => .{ .thread = &instance.thread },
            os.EAGAIN => error.ThreadQuotaExceeded,
            os.EINVAL => unreachable,
            os.ENOMEM => error.SystemResources,
            os.ENOSPC => unreachable,
            os.EPERM => unreachable,
            os.EUSERS => unreachable,
            else => |err| os.unexpectedErrno(err),
        };
    }

    fn getHandle(self: Impl) ThreadHandle {
        return self.thread.parent_tid;
    }

    fn detach(self: Impl) void {
        switch (self.thread.completion.swap(.detached, .AcqRel)) {
            .running => {},
            .completed => self.join(),
            .detached => unreachable,
        }
    }

    fn join(self: Impl) void {
        defer os.munmap(self.thread.mapped);

        var spin: u8 = 10;
        while (true) {
            const tid = self.thread.child_tid.load(.Acquire);
            if (tid == 0) {
                break;
            }

            if (spin > 0) {
                spin -= 1;
                std.atomic.spinLoopHint();
                continue;
            }

            switch (linux.getErrno(linux.futex_wait(
                &self.thread.child_tid.value,
                linux.FUTEX_WAIT, 
                tid,
                null,
            ))) {
                0 => continue,
                os.EINTR => continue,
                os.EAGAIN => continue,
                else => unreachable,
            }
        }
    }

    // Calls `munmap(ptr, len)` then `exit(1)` without touching the stack (which lives in `ptr`).
    // Ported over from musl libc's pthread detached implementation.
    extern fn __unmap_and_exit(ptr: usize, len: usize) callconv(.C) noreturn;
    comptime {
        asm(switch (target.cpu.arch) {
            .i386 => (
                \\.text
                \\.global __unmap_and_exit
                \\.type __unmap_and_exit, @function
                \\__unmap_and_exit:
                \\  movl $91, %eax
                \\  movl 4(%esp), %ebx
                \\  movl 8(%esp), %ecx
                \\  int $128
                \\  xorl %ebx, %ebx
                \\  movl $1, %eax
                \\  int $128
            ),
            .x86_64 => (
                \\.text
                \\.global __unmap_and_exit
                \\.type __unmap_and_exit, @function
                \\__unmap_and_exit:
                \\  movl $11, %eax
                \\  syscall
                \\  xor %rdi, %rdi
                \\  movl $60, %eax
                \\  syscall
            ),
            .arm, .armeb, .aarch64, .aarch64_be, .aarch64_32 => (
                \\.text
                \\.global __unmap_and_exit
                \\.type __unmap_and_exit, @function
                \\__unmap_and_exit:
                \\  mov r7, #91
                \\  svc 0
                \\  mov r7, #1
                \\  svc 0
            ),
            .mips, .mipsel, .mips64, .mips64el => (
                \\.set noreorder
                \\.global __unmap_and_exit
                \\.type __unmap_and_exit, @function
                \\__unmap_and_exit:
                \\  li $2, 4091
                \\  syscall
                \\  li $4, 0
                \\  li $2, 4001
                \\  syscall
            ),
            .powerpc, .powerpc64, .powerpc64le => (
                \\.text
                \\.global __unmap_and_exit
                \\.type __unmap_and_exit, @function
                \\__unmap_and_exit:
                \\  li 0, 91
                \\  sc
                \\  li 0, 1
                \\  sc
                \\  blr
            ),
            else => @compileError("Platform not supported"),
        });
    }
};