1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
//! A singly-linked list is headed by a single forward pointer. The elements
//! are singly-linked for minimum space and pointer manipulation overhead at
//! the expense of O(n) removal for arbitrary elements. New elements can be
//! added to the list after an existing element or at the head of the list.
//!
//! A singly-linked list may only be traversed in the forward direction.
//!
//! Singly-linked lists are useful under these conditions:
//! * Ability to preallocate elements / requirement of infallibility for
//! insertion.
//! * Ability to allocate elements intrusively along with other data.
//! * Homogenous elements.
const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const SinglyLinkedList = @This();
first: ?*Node = null,
/// This struct contains only a next pointer and not any data payload. The
/// intended usage is to embed it intrusively into another data structure and
/// access the data with `@fieldParentPtr`.
pub const Node = struct {
next: ?*Node = null,
pub fn insertAfter(node: *Node, new_node: *Node) void {
new_node.next = node.next;
node.next = new_node;
}
/// Remove the node after the one provided, returning it.
pub fn removeNext(node: *Node) ?*Node {
const next_node = node.next orelse return null;
node.next = next_node.next;
return next_node;
}
/// Iterate over the singly-linked list from this node, until the final
/// node is found.
///
/// This operation is O(N). Instead of calling this function, consider
/// using a different data structure.
pub fn findLast(node: *Node) *Node {
var it = node;
while (true) {
it = it.next orelse return it;
}
}
/// Iterate over each next node, returning the count of all nodes except
/// the starting one.
///
/// This operation is O(N). Instead of calling this function, consider
/// using a different data structure.
pub fn countChildren(node: *const Node) usize {
var count: usize = 0;
var it: ?*const Node = node.next;
while (it) |n| : (it = n.next) {
count += 1;
}
return count;
}
/// Reverse the list starting from this node in-place.
///
/// This operation is O(N). Instead of calling this function, consider
/// using a different data structure.
pub fn reverse(indirect: *?*Node) void {
if (indirect.* == null) {
return;
}
var current: *Node = indirect.*.?;
while (current.next) |next| {
current.next = next.next;
next.next = indirect.*;
indirect.* = next;
}
}
};
pub fn prepend(list: *SinglyLinkedList, new_node: *Node) void {
new_node.next = list.first;
list.first = new_node;
}
pub fn remove(list: *SinglyLinkedList, node: *Node) void {
if (list.first == node) {
list.first = node.next;
} else {
var current_elm = list.first.?;
while (current_elm.next != node) {
current_elm = current_elm.next.?;
}
current_elm.next = node.next;
}
}
/// Remove and return the first node in the list.
pub fn popFirst(list: *SinglyLinkedList) ?*Node {
const first = list.first orelse return null;
list.first = first.next;
return first;
}
/// Iterate over all nodes, returning the count.
///
/// This operation is O(N). Consider tracking the length separately rather than
/// computing it.
pub fn len(list: SinglyLinkedList) usize {
if (list.first) |n| {
return 1 + n.countChildren();
} else {
return 0;
}
}
test "basics" {
const L = struct {
data: u32,
node: SinglyLinkedList.Node = .{},
};
var list: SinglyLinkedList = .{};
try testing.expect(list.len() == 0);
var one: L = .{ .data = 1 };
var two: L = .{ .data = 2 };
var three: L = .{ .data = 3 };
var four: L = .{ .data = 4 };
var five: L = .{ .data = 5 };
list.prepend(&two.node); // {2}
two.node.insertAfter(&five.node); // {2, 5}
list.prepend(&one.node); // {1, 2, 5}
two.node.insertAfter(&three.node); // {1, 2, 3, 5}
three.node.insertAfter(&four.node); // {1, 2, 3, 4, 5}
try testing.expect(list.len() == 5);
// Traverse forwards.
{
var it = list.first;
var index: u32 = 1;
while (it) |node| : (it = node.next) {
const l: *L = @fieldParentPtr("node", node);
try testing.expect(l.data == index);
index += 1;
}
}
_ = list.popFirst(); // {2, 3, 4, 5}
_ = list.remove(&five.node); // {2, 3, 4}
_ = two.node.removeNext(); // {2, 4}
try testing.expect(@as(*L, @fieldParentPtr("node", list.first.?)).data == 2);
try testing.expect(@as(*L, @fieldParentPtr("node", list.first.?.next.?)).data == 4);
try testing.expect(list.first.?.next.?.next == null);
SinglyLinkedList.Node.reverse(&list.first);
try testing.expect(@as(*L, @fieldParentPtr("node", list.first.?)).data == 4);
try testing.expect(@as(*L, @fieldParentPtr("node", list.first.?.next.?)).data == 2);
try testing.expect(list.first.?.next.?.next == null);
}
|