aboutsummaryrefslogtreecommitdiff
path: root/lib/std/DoublyLinkedList.zig
blob: dcc656bf43751c3d9dcff68dc1a7175425a5b855 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
//! A doubly-linked list has a pair of pointers to both the head and
//! tail of the list. List elements have pointers to both the previous
//! and next elements in the sequence. The list can be traversed both
//! forward and backward. Some operations that take linear O(n) time
//! with a singly-linked list can be done without traversal in constant
//! O(1) time with a doubly-linked list:
//!
//! * Removing an element.
//! * Inserting a new element before an existing element.
//! * Pushing or popping an element from the end of the list.

const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const DoublyLinkedList = @This();

first: ?*Node = null,
last: ?*Node = null,

/// This struct contains only the prev and next pointers and not any data
/// payload. The intended usage is to embed it intrusively into another data
/// structure and access the data with `@fieldParentPtr`.
pub const Node = struct {
    prev: ?*Node = null,
    next: ?*Node = null,
};

pub fn insertAfter(list: *DoublyLinkedList, existing_node: *Node, new_node: *Node) void {
    new_node.prev = existing_node;
    if (existing_node.next) |next_node| {
        // Intermediate node.
        new_node.next = next_node;
        next_node.prev = new_node;
    } else {
        // Last element of the list.
        new_node.next = null;
        list.last = new_node;
    }
    existing_node.next = new_node;
}

pub fn insertBefore(list: *DoublyLinkedList, existing_node: *Node, new_node: *Node) void {
    new_node.next = existing_node;
    if (existing_node.prev) |prev_node| {
        // Intermediate node.
        new_node.prev = prev_node;
        prev_node.next = new_node;
    } else {
        // First element of the list.
        new_node.prev = null;
        list.first = new_node;
    }
    existing_node.prev = new_node;
}

/// Concatenate list2 onto the end of list1, removing all entries from the former.
///
/// Arguments:
///     list1: the list to concatenate onto
///     list2: the list to be concatenated
pub fn concatByMoving(list1: *DoublyLinkedList, list2: *DoublyLinkedList) void {
    const l2_first = list2.first orelse return;
    if (list1.last) |l1_last| {
        l1_last.next = list2.first;
        l2_first.prev = list1.last;
    } else {
        // list1 was empty
        list1.first = list2.first;
    }
    list1.last = list2.last;
    list2.first = null;
    list2.last = null;
}

/// Insert a new node at the end of the list.
///
/// Arguments:
///     new_node: Pointer to the new node to insert.
pub fn append(list: *DoublyLinkedList, new_node: *Node) void {
    if (list.last) |last| {
        // Insert after last.
        list.insertAfter(last, new_node);
    } else {
        // Empty list.
        list.prepend(new_node);
    }
}

/// Insert a new node at the beginning of the list.
///
/// Arguments:
///     new_node: Pointer to the new node to insert.
pub fn prepend(list: *DoublyLinkedList, new_node: *Node) void {
    if (list.first) |first| {
        // Insert before first.
        list.insertBefore(first, new_node);
    } else {
        // Empty list.
        list.first = new_node;
        list.last = new_node;
        new_node.prev = null;
        new_node.next = null;
    }
}

/// Remove a node from the list.
///
/// Arguments:
///     node: Pointer to the node to be removed.
pub fn remove(list: *DoublyLinkedList, node: *Node) void {
    if (node.prev) |prev_node| {
        // Intermediate node.
        prev_node.next = node.next;
    } else {
        // First element of the list.
        list.first = node.next;
    }

    if (node.next) |next_node| {
        // Intermediate node.
        next_node.prev = node.prev;
    } else {
        // Last element of the list.
        list.last = node.prev;
    }
}

/// Remove and return the last node in the list.
///
/// Returns:
///     A pointer to the last node in the list.
pub fn pop(list: *DoublyLinkedList) ?*Node {
    const last = list.last orelse return null;
    list.remove(last);
    return last;
}

/// Remove and return the first node in the list.
///
/// Returns:
///     A pointer to the first node in the list.
pub fn popFirst(list: *DoublyLinkedList) ?*Node {
    const first = list.first orelse return null;
    list.remove(first);
    return first;
}

/// Iterate over all nodes, returning the count.
///
/// This operation is O(N). Consider tracking the length separately rather than
/// computing it.
pub fn len(list: DoublyLinkedList) usize {
    var count: usize = 0;
    var it: ?*const Node = list.first;
    while (it) |n| : (it = n.next) count += 1;
    return count;
}

test "basics" {
    const L = struct {
        data: u32,
        node: DoublyLinkedList.Node = .{},
    };
    var list: DoublyLinkedList = .{};

    var one: L = .{ .data = 1 };
    var two: L = .{ .data = 2 };
    var three: L = .{ .data = 3 };
    var four: L = .{ .data = 4 };
    var five: L = .{ .data = 5 };

    list.append(&two.node); // {2}
    list.append(&five.node); // {2, 5}
    list.prepend(&one.node); // {1, 2, 5}
    list.insertBefore(&five.node, &four.node); // {1, 2, 4, 5}
    list.insertAfter(&two.node, &three.node); // {1, 2, 3, 4, 5}

    // Traverse forwards.
    {
        var it = list.first;
        var index: u32 = 1;
        while (it) |node| : (it = node.next) {
            const l: *L = @fieldParentPtr("node", node);
            try testing.expect(l.data == index);
            index += 1;
        }
    }

    // Traverse backwards.
    {
        var it = list.last;
        var index: u32 = 1;
        while (it) |node| : (it = node.prev) {
            const l: *L = @fieldParentPtr("node", node);
            try testing.expect(l.data == (6 - index));
            index += 1;
        }
    }

    _ = list.popFirst(); // {2, 3, 4, 5}
    _ = list.pop(); // {2, 3, 4}
    list.remove(&three.node); // {2, 4}

    try testing.expect(@as(*L, @fieldParentPtr("node", list.first.?)).data == 2);
    try testing.expect(@as(*L, @fieldParentPtr("node", list.last.?)).data == 4);
    try testing.expect(list.len() == 2);
}

test "concatenation" {
    const L = struct {
        data: u32,
        node: DoublyLinkedList.Node = .{},
    };
    var list1: DoublyLinkedList = .{};
    var list2: DoublyLinkedList = .{};

    var one: L = .{ .data = 1 };
    var two: L = .{ .data = 2 };
    var three: L = .{ .data = 3 };
    var four: L = .{ .data = 4 };
    var five: L = .{ .data = 5 };

    list1.append(&one.node);
    list1.append(&two.node);
    list2.append(&three.node);
    list2.append(&four.node);
    list2.append(&five.node);

    list1.concatByMoving(&list2);

    try testing.expect(list1.last == &five.node);
    try testing.expect(list1.len() == 5);
    try testing.expect(list2.first == null);
    try testing.expect(list2.last == null);
    try testing.expect(list2.len() == 0);

    // Traverse forwards.
    {
        var it = list1.first;
        var index: u32 = 1;
        while (it) |node| : (it = node.next) {
            const l: *L = @fieldParentPtr("node", node);
            try testing.expect(l.data == index);
            index += 1;
        }
    }

    // Traverse backwards.
    {
        var it = list1.last;
        var index: u32 = 1;
        while (it) |node| : (it = node.prev) {
            const l: *L = @fieldParentPtr("node", node);
            try testing.expect(l.data == (6 - index));
            index += 1;
        }
    }

    // Swap them back, this verifies that concatenating to an empty list works.
    list2.concatByMoving(&list1);

    // Traverse forwards.
    {
        var it = list2.first;
        var index: u32 = 1;
        while (it) |node| : (it = node.next) {
            const l: *L = @fieldParentPtr("node", node);
            try testing.expect(l.data == index);
            index += 1;
        }
    }

    // Traverse backwards.
    {
        var it = list2.last;
        var index: u32 = 1;
        while (it) |node| : (it = node.prev) {
            const l: *L = @fieldParentPtr("node", node);
            try testing.expect(l.data == (6 - index));
            index += 1;
        }
    }
}