1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
|
const std = @import("../std.zig");
const Build = std.Build;
const Cache = Build.Cache;
const Step = std.Build.Step;
const assert = std.debug.assert;
const fatal = std.process.fatal;
const Allocator = std.mem.Allocator;
const log = std.log;
const Coverage = std.debug.Coverage;
const abi = Build.abi.fuzz;
const Fuzz = @This();
const build_runner = @import("root");
ws: *Build.WebServer,
/// Allocated into `ws.gpa`.
run_steps: []const *Step.Run,
wait_group: std.Thread.WaitGroup,
prog_node: std.Progress.Node,
/// Protects `coverage_files`.
coverage_mutex: std.Thread.Mutex,
coverage_files: std.AutoArrayHashMapUnmanaged(u64, CoverageMap),
queue_mutex: std.Thread.Mutex,
queue_cond: std.Thread.Condition,
msg_queue: std.ArrayListUnmanaged(Msg),
const Msg = union(enum) {
coverage: struct {
id: u64,
run: *Step.Run,
},
entry_point: struct {
coverage_id: u64,
addr: u64,
},
};
const CoverageMap = struct {
mapped_memory: []align(std.heap.page_size_min) const u8,
coverage: Coverage,
source_locations: []Coverage.SourceLocation,
/// Elements are indexes into `source_locations` pointing to the unit tests that are being fuzz tested.
entry_points: std.ArrayListUnmanaged(u32),
start_timestamp: i64,
fn deinit(cm: *CoverageMap, gpa: Allocator) void {
std.posix.munmap(cm.mapped_memory);
cm.coverage.deinit(gpa);
cm.* = undefined;
}
};
pub fn init(ws: *Build.WebServer) Allocator.Error!Fuzz {
const gpa = ws.gpa;
const run_steps: []const *Step.Run = steps: {
var steps: std.ArrayListUnmanaged(*Step.Run) = .empty;
defer steps.deinit(gpa);
const rebuild_node = ws.root_prog_node.start("Rebuilding Unit Tests", 0);
defer rebuild_node.end();
var rebuild_wg: std.Thread.WaitGroup = .{};
defer rebuild_wg.wait();
for (ws.all_steps) |step| {
const run = step.cast(Step.Run) orelse continue;
if (run.producer == null) continue;
if (run.fuzz_tests.items.len == 0) continue;
try steps.append(gpa, run);
ws.thread_pool.spawnWg(&rebuild_wg, rebuildTestsWorkerRun, .{ run, gpa, ws.ttyconf, rebuild_node });
}
if (steps.items.len == 0) fatal("no fuzz tests found", .{});
rebuild_node.setEstimatedTotalItems(steps.items.len);
break :steps try gpa.dupe(*Step.Run, steps.items);
};
errdefer gpa.free(run_steps);
for (run_steps) |run| {
assert(run.fuzz_tests.items.len > 0);
if (run.rebuilt_executable == null)
fatal("one or more unit tests failed to be rebuilt in fuzz mode", .{});
}
return .{
.ws = ws,
.run_steps = run_steps,
.wait_group = .{},
.prog_node = .none,
.coverage_files = .empty,
.coverage_mutex = .{},
.queue_mutex = .{},
.queue_cond = .{},
.msg_queue = .empty,
};
}
pub fn start(fuzz: *Fuzz) void {
const ws = fuzz.ws;
fuzz.prog_node = ws.root_prog_node.start("Fuzzing", fuzz.run_steps.len);
// For polling messages and sending updates to subscribers.
fuzz.wait_group.start();
_ = std.Thread.spawn(.{}, coverageRun, .{fuzz}) catch |err| {
fuzz.wait_group.finish();
fatal("unable to spawn coverage thread: {s}", .{@errorName(err)});
};
for (fuzz.run_steps) |run| {
for (run.fuzz_tests.items) |unit_test_index| {
assert(run.rebuilt_executable != null);
ws.thread_pool.spawnWg(&fuzz.wait_group, fuzzWorkerRun, .{
fuzz, run, unit_test_index,
});
}
}
}
pub fn deinit(fuzz: *Fuzz) void {
if (true) @panic("TODO: terminate the fuzzer processes");
fuzz.wait_group.wait();
fuzz.prog_node.end();
const gpa = fuzz.ws.gpa;
gpa.free(fuzz.run_steps);
}
fn rebuildTestsWorkerRun(run: *Step.Run, gpa: Allocator, ttyconf: std.Io.tty.Config, parent_prog_node: std.Progress.Node) void {
rebuildTestsWorkerRunFallible(run, gpa, ttyconf, parent_prog_node) catch |err| {
const compile = run.producer.?;
log.err("step '{s}': failed to rebuild in fuzz mode: {s}", .{
compile.step.name, @errorName(err),
});
};
}
fn rebuildTestsWorkerRunFallible(run: *Step.Run, gpa: Allocator, ttyconf: std.Io.tty.Config, parent_prog_node: std.Progress.Node) !void {
const compile = run.producer.?;
const prog_node = parent_prog_node.start(compile.step.name, 0);
defer prog_node.end();
const result = compile.rebuildInFuzzMode(gpa, prog_node);
const show_compile_errors = compile.step.result_error_bundle.errorMessageCount() > 0;
const show_error_msgs = compile.step.result_error_msgs.items.len > 0;
const show_stderr = compile.step.result_stderr.len > 0;
if (show_error_msgs or show_compile_errors or show_stderr) {
var buf: [256]u8 = undefined;
const w = std.debug.lockStderrWriter(&buf);
defer std.debug.unlockStderrWriter();
build_runner.printErrorMessages(gpa, &compile.step, .{ .ttyconf = ttyconf }, w, false) catch {};
}
const rebuilt_bin_path = result catch |err| switch (err) {
error.MakeFailed => return,
else => |other| return other,
};
run.rebuilt_executable = try rebuilt_bin_path.join(gpa, compile.out_filename);
}
fn fuzzWorkerRun(
fuzz: *Fuzz,
run: *Step.Run,
unit_test_index: u32,
) void {
const gpa = run.step.owner.allocator;
const test_name = run.cached_test_metadata.?.testName(unit_test_index);
const prog_node = fuzz.prog_node.start(test_name, 0);
defer prog_node.end();
run.rerunInFuzzMode(fuzz, unit_test_index, prog_node) catch |err| switch (err) {
error.MakeFailed => {
var buf: [256]u8 = undefined;
const w = std.debug.lockStderrWriter(&buf);
defer std.debug.unlockStderrWriter();
build_runner.printErrorMessages(gpa, &run.step, .{ .ttyconf = fuzz.ws.ttyconf }, w, false) catch {};
return;
},
else => {
log.err("step '{s}': failed to rerun '{s}' in fuzz mode: {s}", .{
run.step.name, test_name, @errorName(err),
});
return;
},
};
}
pub fn serveSourcesTar(fuzz: *Fuzz, req: *std.http.Server.Request) !void {
const gpa = fuzz.ws.gpa;
var arena_state: std.heap.ArenaAllocator = .init(gpa);
defer arena_state.deinit();
const arena = arena_state.allocator();
const DedupTable = std.ArrayHashMapUnmanaged(Build.Cache.Path, void, Build.Cache.Path.TableAdapter, false);
var dedup_table: DedupTable = .empty;
defer dedup_table.deinit(gpa);
for (fuzz.run_steps) |run_step| {
const compile_inputs = run_step.producer.?.step.inputs.table;
for (compile_inputs.keys(), compile_inputs.values()) |dir_path, *file_list| {
try dedup_table.ensureUnusedCapacity(gpa, file_list.items.len);
for (file_list.items) |sub_path| {
if (!std.mem.endsWith(u8, sub_path, ".zig")) continue;
const joined_path = try dir_path.join(arena, sub_path);
dedup_table.putAssumeCapacity(joined_path, {});
}
}
}
const deduped_paths = dedup_table.keys();
const SortContext = struct {
pub fn lessThan(this: @This(), lhs: Build.Cache.Path, rhs: Build.Cache.Path) bool {
_ = this;
return switch (std.mem.order(u8, lhs.root_dir.path orelse ".", rhs.root_dir.path orelse ".")) {
.lt => true,
.gt => false,
.eq => std.mem.lessThan(u8, lhs.sub_path, rhs.sub_path),
};
}
};
std.mem.sortUnstable(Build.Cache.Path, deduped_paths, SortContext{}, SortContext.lessThan);
return fuzz.ws.serveTarFile(req, deduped_paths);
}
pub const Previous = struct {
unique_runs: usize,
entry_points: usize,
pub const init: Previous = .{ .unique_runs = 0, .entry_points = 0 };
};
pub fn sendUpdate(
fuzz: *Fuzz,
socket: *std.http.Server.WebSocket,
prev: *Previous,
) !void {
fuzz.coverage_mutex.lock();
defer fuzz.coverage_mutex.unlock();
const coverage_maps = fuzz.coverage_files.values();
if (coverage_maps.len == 0) return;
// TODO: handle multiple fuzz steps in the WebSocket packets
const coverage_map = &coverage_maps[0];
const cov_header: *const abi.SeenPcsHeader = @ptrCast(coverage_map.mapped_memory[0..@sizeOf(abi.SeenPcsHeader)]);
// TODO: this isn't sound! We need to do volatile reads of these bits rather than handing the
// buffer off to the kernel, because we might race with the fuzzer process[es]. This brings the
// whole mmap strategy into question. Incidentally, I wonder if post-writergate we could pass
// this data straight to the socket with sendfile...
const seen_pcs = cov_header.seenBits();
const n_runs = @atomicLoad(usize, &cov_header.n_runs, .monotonic);
const unique_runs = @atomicLoad(usize, &cov_header.unique_runs, .monotonic);
if (prev.unique_runs != unique_runs) {
// There has been an update.
if (prev.unique_runs == 0) {
// We need to send initial context.
const header: abi.SourceIndexHeader = .{
.directories_len = @intCast(coverage_map.coverage.directories.entries.len),
.files_len = @intCast(coverage_map.coverage.files.entries.len),
.source_locations_len = @intCast(coverage_map.source_locations.len),
.string_bytes_len = @intCast(coverage_map.coverage.string_bytes.items.len),
.start_timestamp = coverage_map.start_timestamp,
};
var iovecs: [5][]const u8 = .{
@ptrCast(&header),
@ptrCast(coverage_map.coverage.directories.keys()),
@ptrCast(coverage_map.coverage.files.keys()),
@ptrCast(coverage_map.source_locations),
coverage_map.coverage.string_bytes.items,
};
try socket.writeMessageVec(&iovecs, .binary);
}
const header: abi.CoverageUpdateHeader = .{
.n_runs = n_runs,
.unique_runs = unique_runs,
};
var iovecs: [2][]const u8 = .{
@ptrCast(&header),
@ptrCast(seen_pcs),
};
try socket.writeMessageVec(&iovecs, .binary);
prev.unique_runs = unique_runs;
}
if (prev.entry_points != coverage_map.entry_points.items.len) {
const header: abi.EntryPointHeader = .init(@intCast(coverage_map.entry_points.items.len));
var iovecs: [2][]const u8 = .{
@ptrCast(&header),
@ptrCast(coverage_map.entry_points.items),
};
try socket.writeMessageVec(&iovecs, .binary);
prev.entry_points = coverage_map.entry_points.items.len;
}
}
fn coverageRun(fuzz: *Fuzz) void {
defer fuzz.wait_group.finish();
fuzz.queue_mutex.lock();
defer fuzz.queue_mutex.unlock();
while (true) {
fuzz.queue_cond.wait(&fuzz.queue_mutex);
for (fuzz.msg_queue.items) |msg| switch (msg) {
.coverage => |coverage| prepareTables(fuzz, coverage.run, coverage.id) catch |err| switch (err) {
error.AlreadyReported => continue,
else => |e| log.err("failed to prepare code coverage tables: {s}", .{@errorName(e)}),
},
.entry_point => |entry_point| addEntryPoint(fuzz, entry_point.coverage_id, entry_point.addr) catch |err| switch (err) {
error.AlreadyReported => continue,
else => |e| log.err("failed to prepare code coverage tables: {s}", .{@errorName(e)}),
},
};
fuzz.msg_queue.clearRetainingCapacity();
}
}
fn prepareTables(fuzz: *Fuzz, run_step: *Step.Run, coverage_id: u64) error{ OutOfMemory, AlreadyReported }!void {
const ws = fuzz.ws;
const gpa = ws.gpa;
fuzz.coverage_mutex.lock();
defer fuzz.coverage_mutex.unlock();
const gop = try fuzz.coverage_files.getOrPut(gpa, coverage_id);
if (gop.found_existing) {
// We are fuzzing the same executable with multiple threads.
// Perhaps the same unit test; perhaps a different one. In any
// case, since the coverage file is the same, we only have to
// notice changes to that one file in order to learn coverage for
// this particular executable.
return;
}
errdefer _ = fuzz.coverage_files.pop();
gop.value_ptr.* = .{
.coverage = std.debug.Coverage.init,
.mapped_memory = undefined, // populated below
.source_locations = undefined, // populated below
.entry_points = .{},
.start_timestamp = ws.now(),
};
errdefer gop.value_ptr.coverage.deinit(gpa);
const rebuilt_exe_path = run_step.rebuilt_executable.?;
var debug_info = std.debug.Info.load(gpa, rebuilt_exe_path, &gop.value_ptr.coverage) catch |err| {
log.err("step '{s}': failed to load debug information for '{f}': {s}", .{
run_step.step.name, rebuilt_exe_path, @errorName(err),
});
return error.AlreadyReported;
};
defer debug_info.deinit(gpa);
const coverage_file_path: Build.Cache.Path = .{
.root_dir = run_step.step.owner.cache_root,
.sub_path = "v/" ++ std.fmt.hex(coverage_id),
};
var coverage_file = coverage_file_path.root_dir.handle.openFile(coverage_file_path.sub_path, .{}) catch |err| {
log.err("step '{s}': failed to load coverage file '{f}': {s}", .{
run_step.step.name, coverage_file_path, @errorName(err),
});
return error.AlreadyReported;
};
defer coverage_file.close();
const file_size = coverage_file.getEndPos() catch |err| {
log.err("unable to check len of coverage file '{f}': {s}", .{ coverage_file_path, @errorName(err) });
return error.AlreadyReported;
};
const mapped_memory = std.posix.mmap(
null,
file_size,
std.posix.PROT.READ,
.{ .TYPE = .SHARED },
coverage_file.handle,
0,
) catch |err| {
log.err("failed to map coverage file '{f}': {s}", .{ coverage_file_path, @errorName(err) });
return error.AlreadyReported;
};
gop.value_ptr.mapped_memory = mapped_memory;
const header: *const abi.SeenPcsHeader = @ptrCast(mapped_memory[0..@sizeOf(abi.SeenPcsHeader)]);
const pcs = header.pcAddrs();
const source_locations = try gpa.alloc(Coverage.SourceLocation, pcs.len);
errdefer gpa.free(source_locations);
// Unfortunately the PCs array that LLVM gives us from the 8-bit PC
// counters feature is not sorted.
var sorted_pcs: std.MultiArrayList(struct { pc: u64, index: u32, sl: Coverage.SourceLocation }) = .{};
defer sorted_pcs.deinit(gpa);
try sorted_pcs.resize(gpa, pcs.len);
@memcpy(sorted_pcs.items(.pc), pcs);
for (sorted_pcs.items(.index), 0..) |*v, i| v.* = @intCast(i);
sorted_pcs.sortUnstable(struct {
addrs: []const u64,
pub fn lessThan(ctx: @This(), a_index: usize, b_index: usize) bool {
return ctx.addrs[a_index] < ctx.addrs[b_index];
}
}{ .addrs = sorted_pcs.items(.pc) });
debug_info.resolveAddresses(gpa, sorted_pcs.items(.pc), sorted_pcs.items(.sl)) catch |err| {
log.err("failed to resolve addresses to source locations: {s}", .{@errorName(err)});
return error.AlreadyReported;
};
for (sorted_pcs.items(.index), sorted_pcs.items(.sl)) |i, sl| source_locations[i] = sl;
gop.value_ptr.source_locations = source_locations;
ws.notifyUpdate();
}
fn addEntryPoint(fuzz: *Fuzz, coverage_id: u64, addr: u64) error{ AlreadyReported, OutOfMemory }!void {
fuzz.coverage_mutex.lock();
defer fuzz.coverage_mutex.unlock();
const coverage_map = fuzz.coverage_files.getPtr(coverage_id).?;
const header: *const abi.SeenPcsHeader = @ptrCast(coverage_map.mapped_memory[0..@sizeOf(abi.SeenPcsHeader)]);
const pcs = header.pcAddrs();
// Since this pcs list is unsorted, we must linear scan for the best index.
const index = i: {
var best: usize = 0;
for (pcs[1..], 1..) |elem_addr, i| {
if (elem_addr == addr) break :i i;
if (elem_addr > addr) continue;
if (elem_addr > pcs[best]) best = i;
}
break :i best;
};
if (index >= pcs.len) {
log.err("unable to find unit test entry address 0x{x} in source locations (range: 0x{x} to 0x{x})", .{
addr, pcs[0], pcs[pcs.len - 1],
});
return error.AlreadyReported;
}
if (false) {
const sl = coverage_map.source_locations[index];
const file_name = coverage_map.coverage.stringAt(coverage_map.coverage.fileAt(sl.file).basename);
log.debug("server found entry point for 0x{x} at {s}:{d}:{d} - index {d} between {x} and {x}", .{
addr, file_name, sl.line, sl.column, index, pcs[index - 1], pcs[index + 1],
});
}
try coverage_map.entry_points.append(fuzz.ws.gpa, @intCast(index));
}
|