1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
/* $NetBSD: lock.h,v 1.29 2022/02/12 17:17:54 riastradh Exp $ */
/*-
* Copyright (c) 2000, 2006 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe and Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Machine-dependent spin lock operations.
*/
#ifndef _X86_LOCK_H_
#define _X86_LOCK_H_
#include <sys/param.h>
static __inline int
__SIMPLELOCK_LOCKED_P(const __cpu_simple_lock_t *__ptr)
{
return *__ptr == __SIMPLELOCK_LOCKED;
}
static __inline int
__SIMPLELOCK_UNLOCKED_P(const __cpu_simple_lock_t *__ptr)
{
return *__ptr == __SIMPLELOCK_UNLOCKED;
}
static __inline void
__cpu_simple_lock_set(__cpu_simple_lock_t *__ptr)
{
*__ptr = __SIMPLELOCK_LOCKED;
}
static __inline void
__cpu_simple_lock_clear(__cpu_simple_lock_t *__ptr)
{
*__ptr = __SIMPLELOCK_UNLOCKED;
}
#ifdef _HARDKERNEL
# include <machine/cpufunc.h>
# define SPINLOCK_SPIN_HOOK /* nothing */
# ifdef SPINLOCK_BACKOFF_HOOK
# undef SPINLOCK_BACKOFF_HOOK
# endif
# define SPINLOCK_BACKOFF_HOOK x86_pause()
# define SPINLOCK_INLINE
#else /* !_HARDKERNEL */
# define SPINLOCK_BODY
# define SPINLOCK_INLINE static __inline __unused
#endif /* _HARDKERNEL */
SPINLOCK_INLINE void __cpu_simple_lock_init(__cpu_simple_lock_t *);
SPINLOCK_INLINE void __cpu_simple_lock(__cpu_simple_lock_t *);
SPINLOCK_INLINE int __cpu_simple_lock_try(__cpu_simple_lock_t *);
SPINLOCK_INLINE void __cpu_simple_unlock(__cpu_simple_lock_t *);
#ifdef SPINLOCK_BODY
SPINLOCK_INLINE void
__cpu_simple_lock_init(__cpu_simple_lock_t *lockp)
{
*lockp = __SIMPLELOCK_UNLOCKED;
}
SPINLOCK_INLINE int
__cpu_simple_lock_try(__cpu_simple_lock_t *lockp)
{
uint8_t val;
val = __SIMPLELOCK_LOCKED;
__asm volatile ("xchgb %0,(%2)" :
"=qQ" (val)
:"0" (val), "r" (lockp));
__insn_barrier();
return val == __SIMPLELOCK_UNLOCKED;
}
SPINLOCK_INLINE void
__cpu_simple_lock(__cpu_simple_lock_t *lockp)
{
while (!__cpu_simple_lock_try(lockp))
/* nothing */;
__insn_barrier();
}
/*
* Note on x86 memory ordering
*
* When releasing a lock we must ensure that no stores or loads from within
* the critical section are re-ordered by the CPU to occur outside of it:
* they must have completed and be visible to other processors once the lock
* has been released.
*
* NetBSD usually runs with the kernel mapped (via MTRR) in a WB (write
* back) memory region. In that case, memory ordering on x86 platforms
* looks like this:
*
* i386 All loads/stores occur in instruction sequence.
*
* i486 All loads/stores occur in instruction sequence. In
* Pentium exceptional circumstances, loads can be re-ordered around
* stores, but for the purposes of releasing a lock it does
* not matter. Stores may not be immediately visible to other
* processors as they can be buffered. However, since the
* stores are buffered in order the lock release will always be
* the last operation in the critical section that becomes
* visible to other CPUs.
*
* Pentium Pro The "Intel 64 and IA-32 Architectures Software Developer's
* onwards Manual" volume 3A (order number 248966) says that (1) "Reads
* can be carried out speculatively and in any order" and (2)
* "Reads can pass buffered stores, but the processor is
* self-consistent.". This would be a problem for the below,
* and would mandate a locked instruction cycle or load fence
* before releasing the simple lock.
*
* The "Intel Pentium 4 Processor Optimization" guide (order
* number 253668-022US) says: "Loads can be moved before stores
* that occurred earlier in the program if they are not
* predicted to load from the same linear address.". This is
* not a problem since the only loads that can be re-ordered
* take place once the lock has been released via a store.
*
* The above two documents seem to contradict each other,
* however with the exception of early steppings of the Pentium
* Pro, the second document is closer to the truth: a store
* will always act as a load fence for all loads that precede
* the store in instruction order.
*
* Again, note that stores can be buffered and will not always
* become immediately visible to other CPUs: they are however
* buffered in order.
*
* AMD64 Stores occur in order and are buffered. Loads can be
* reordered, however stores act as load fences, meaning that
* loads can not be reordered around stores.
*/
SPINLOCK_INLINE void
__cpu_simple_unlock(__cpu_simple_lock_t *lockp)
{
__insn_barrier();
*lockp = __SIMPLELOCK_UNLOCKED;
}
#endif /* SPINLOCK_BODY */
#endif /* _X86_LOCK_H_ */
|