1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
//! Ported from musl, which is licensed under the MIT license:
//! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//!
//! https://git.musl-libc.org/cgit/musl/tree/src/math/log2f.c
//! https://git.musl-libc.org/cgit/musl/tree/src/math/log2.c
const std = @import("std");
const builtin = @import("builtin");
const math = std.math;
const expect = std.testing.expect;
const expectEqual = std.testing.expectEqual;
const maxInt = std.math.maxInt;
const arch = builtin.cpu.arch;
const common = @import("common.zig");
pub const panic = common.panic;
comptime {
@export(&__log2h, .{ .name = "__log2h", .linkage = common.linkage, .visibility = common.visibility });
@export(&log2f, .{ .name = "log2f", .linkage = common.linkage, .visibility = common.visibility });
@export(&log2, .{ .name = "log2", .linkage = common.linkage, .visibility = common.visibility });
@export(&__log2x, .{ .name = "__log2x", .linkage = common.linkage, .visibility = common.visibility });
if (common.want_ppc_abi) {
@export(&log2q, .{ .name = "log2f128", .linkage = common.linkage, .visibility = common.visibility });
}
@export(&log2q, .{ .name = "log2q", .linkage = common.linkage, .visibility = common.visibility });
@export(&log2l, .{ .name = "log2l", .linkage = common.linkage, .visibility = common.visibility });
}
pub fn __log2h(a: f16) callconv(.c) f16 {
// TODO: more efficient implementation
return @floatCast(log2f(a));
}
pub fn log2f(x_: f32) callconv(.c) f32 {
const ivln2hi: f32 = 1.4428710938e+00;
const ivln2lo: f32 = -1.7605285393e-04;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
var x = x_;
var u: u32 = @bitCast(x);
var ix = u;
var k: i32 = 0;
// x < 2^(-126)
if (ix < 0x00800000 or ix >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (ix >> 31 != 0) {
return math.nan(f32);
}
k -= 25;
x *= 0x1.0p25;
ix = @bitCast(x);
} else if (ix >= 0x7F800000) {
return x;
} else if (ix == 0x3F800000) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
ix += 0x3F800000 - 0x3F3504F3;
k += @as(i32, @intCast(ix >> 23)) - 0x7F;
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
x = @bitCast(ix);
const f = x - 1.0;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
var hi = f - hfsq;
u = @bitCast(hi);
u &= 0xFFFFF000;
hi = @bitCast(u);
const lo = f - hi - hfsq + s * (hfsq + R);
return (lo + hi) * ivln2lo + lo * ivln2hi + hi * ivln2hi + @as(f32, @floatFromInt(k));
}
pub fn log2(x_: f64) callconv(.c) f64 {
const ivln2hi: f64 = 1.44269504072144627571e+00;
const ivln2lo: f64 = 1.67517131648865118353e-10;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var x = x_;
var ix: u64 = @bitCast(x);
var hx: u32 = @intCast(ix >> 32);
var k: i32 = 0;
if (hx < 0x00100000 or hx >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f64);
}
// log(-#) = nan
if (hx >> 31 != 0) {
return math.nan(f64);
}
// subnormal, scale x
k -= 54;
x *= 0x1.0p54;
hx = @intCast(@as(u64, @bitCast(x)) >> 32);
} else if (hx >= 0x7FF00000) {
return x;
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
hx += 0x3FF00000 - 0x3FE6A09E;
k += @as(i32, @intCast(hx >> 20)) - 0x3FF;
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
x = @bitCast(ix);
const f = x - 1.0;
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
var hi = f - hfsq;
var hii = @as(u64, @bitCast(hi));
hii &= @as(u64, maxInt(u64)) << 32;
hi = @bitCast(hii);
const lo = f - hi - hfsq + s * (hfsq + R);
var val_hi = hi * ivln2hi;
var val_lo = (lo + hi) * ivln2lo + lo * ivln2hi;
// spadd(val_hi, val_lo, y)
const y: f64 = @floatFromInt(k);
const ww = y + val_hi;
val_lo += (y - ww) + val_hi;
val_hi = ww;
return val_lo + val_hi;
}
pub fn __log2x(a: f80) callconv(.c) f80 {
// TODO: more efficient implementation
return @floatCast(log2q(a));
}
pub fn log2q(a: f128) callconv(.c) f128 {
// TODO: more correct implementation
return log2(@floatCast(a));
}
pub fn log2l(x: c_longdouble) callconv(.c) c_longdouble {
switch (@typeInfo(c_longdouble).float.bits) {
16 => return __log2h(x),
32 => return log2f(x),
64 => return log2(x),
80 => return __log2x(x),
128 => return log2q(x),
else => @compileError("unreachable"),
}
}
test "log2f() special" {
try expectEqual(log2f(0.0), -math.inf(f32));
try expectEqual(log2f(-0.0), -math.inf(f32));
try expect(math.isPositiveZero(log2f(1.0)));
try expectEqual(log2f(2.0), 1.0);
try expectEqual(log2f(math.inf(f32)), math.inf(f32));
try expect(math.isNan(log2f(-1.0)));
try expect(math.isNan(log2f(-math.inf(f32))));
try expect(math.isNan(log2f(math.nan(f32))));
try expect(math.isNan(log2f(math.snan(f32))));
}
test "log2f() sanity" {
try expect(math.isNan(log2f(-0x1.0223a0p+3)));
try expectEqual(log2f(0x1.161868p+2), 0x1.0f49acp+1);
try expect(math.isNan(log2f(-0x1.0c34b4p+3)));
try expect(math.isNan(log2f(-0x1.a206f0p+2)));
try expectEqual(log2f(0x1.288bbcp+3), 0x1.9b2676p+1);
try expectEqual(log2f(0x1.52efd0p-1), -0x1.30b494p-1); // Disagrees with GCC in last bit
try expect(math.isNan(log2f(-0x1.a05cc8p-2)));
try expectEqual(log2f(0x1.1f9efap-1), -0x1.a9f89ap-1);
try expectEqual(log2f(0x1.8c5db0p-1), -0x1.7a2c96p-2);
try expect(math.isNan(log2f(-0x1.5b86eap-1)));
}
test "log2f() boundary" {
try expectEqual(log2f(0x1.fffffep+127), 0x1p+7); // Max input value
try expectEqual(log2f(0x1p-149), -0x1.2ap+7); // Min positive input value
try expect(math.isNan(log2f(-0x1p-149))); // Min negative input value
try expectEqual(log2f(0x1.000002p+0), 0x1.715474p-23); // Last value before result reaches +0
try expectEqual(log2f(0x1.fffffep-1), -0x1.715478p-24); // Last value before result reaches -0
try expectEqual(log2f(0x1p-126), -0x1.f8p+6); // First subnormal
try expect(math.isNan(log2f(-0x1p-126))); // First negative subnormal
}
test "log2() special" {
try expectEqual(log2(0.0), -math.inf(f64));
try expectEqual(log2(-0.0), -math.inf(f64));
try expect(math.isPositiveZero(log2(1.0)));
try expectEqual(log2(2.0), 1.0);
try expectEqual(log2(math.inf(f64)), math.inf(f64));
try expect(math.isNan(log2(-1.0)));
try expect(math.isNan(log2(-math.inf(f64))));
try expect(math.isNan(log2(math.nan(f64))));
try expect(math.isNan(log2(math.snan(f64))));
}
test "log2() sanity" {
try expect(math.isNan(log2(-0x1.02239f3c6a8f1p+3)));
try expectEqual(log2(0x1.161868e18bc67p+2), 0x1.0f49ac3838580p+1);
try expect(math.isNan(log2(-0x1.0c34b3e01e6e7p+3)));
try expect(math.isNan(log2(-0x1.a206f0a19dcc4p+2)));
try expectEqual(log2(0x1.288bbb0d6a1e6p+3), 0x1.9b26760c2a57ep+1);
try expectEqual(log2(0x1.52efd0cd80497p-1), -0x1.30b490ef684c7p-1);
try expect(math.isNan(log2(-0x1.a05cc754481d1p-2)));
try expectEqual(log2(0x1.1f9ef934745cbp-1), -0x1.a9f89b5f5acb8p-1);
try expectEqual(log2(0x1.8c5db097f7442p-1), -0x1.7a2c947173f06p-2);
try expect(math.isNan(log2(-0x1.5b86ea8118a0ep-1)));
}
test "log2() boundary" {
try expectEqual(log2(0x1.fffffffffffffp+1023), 0x1p+10); // Max input value
try expectEqual(log2(0x1p-1074), -0x1.0c8p+10); // Min positive input value
try expect(math.isNan(log2(-0x1p-1074))); // Min negative input value
try expectEqual(log2(0x1.0000000000001p+0), 0x1.71547652b82fdp-52); // Last value before result reaches +0
try expectEqual(log2(0x1.fffffffffffffp-1), -0x1.71547652b82fep-53); // Last value before result reaches -0
try expectEqual(log2(0x1p-1022), -0x1.ffp+9); // First subnormal
try expect(math.isNan(log2(-0x1p-1022))); // First negative subnormal
}
|