aboutsummaryrefslogtreecommitdiff
path: root/lib/compiler_rt/divdf3.zig
blob: 0340404a6946e328520d792a902056475f87acb2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
//! Ported from:
//!
//! https://github.com/llvm/llvm-project/commit/d674d96bc56c0f377879d01c9d8dfdaaa7859cdb/compiler-rt/lib/builtins/divdf3.c

const std = @import("std");
const builtin = @import("builtin");
const arch = builtin.cpu.arch;
const is_test = builtin.is_test;
const common = @import("common.zig");

const normalize = common.normalize;
const wideMultiply = common.wideMultiply;

pub const panic = common.panic;

comptime {
    if (common.want_aeabi) {
        @export(&__aeabi_ddiv, .{ .name = "__aeabi_ddiv", .linkage = common.linkage, .visibility = common.visibility });
    } else {
        @export(&__divdf3, .{ .name = "__divdf3", .linkage = common.linkage, .visibility = common.visibility });
    }
}

pub fn __divdf3(a: f64, b: f64) callconv(.c) f64 {
    return div(a, b);
}

fn __aeabi_ddiv(a: f64, b: f64) callconv(.{ .arm_aapcs = .{} }) f64 {
    return div(a, b);
}

inline fn div(a: f64, b: f64) f64 {
    const Z = std.meta.Int(.unsigned, 64);
    const SignedZ = std.meta.Int(.signed, 64);

    const significandBits = std.math.floatMantissaBits(f64);
    const exponentBits = std.math.floatExponentBits(f64);

    const signBit = (@as(Z, 1) << (significandBits + exponentBits));
    const maxExponent = ((1 << exponentBits) - 1);
    const exponentBias = (maxExponent >> 1);

    const implicitBit = (@as(Z, 1) << significandBits);
    const quietBit = implicitBit >> 1;
    const significandMask = implicitBit - 1;

    const absMask = signBit - 1;
    const exponentMask = absMask ^ significandMask;
    const qnanRep = exponentMask | quietBit;
    const infRep = @as(Z, @bitCast(std.math.inf(f64)));

    const aExponent: u32 = @truncate((@as(Z, @bitCast(a)) >> significandBits) & maxExponent);
    const bExponent: u32 = @truncate((@as(Z, @bitCast(b)) >> significandBits) & maxExponent);
    const quotientSign: Z = (@as(Z, @bitCast(a)) ^ @as(Z, @bitCast(b))) & signBit;

    var aSignificand: Z = @as(Z, @bitCast(a)) & significandMask;
    var bSignificand: Z = @as(Z, @bitCast(b)) & significandMask;
    var scale: i32 = 0;

    // Detect if a or b is zero, denormal, infinity, or NaN.
    if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) {
        const aAbs: Z = @as(Z, @bitCast(a)) & absMask;
        const bAbs: Z = @as(Z, @bitCast(b)) & absMask;

        // NaN / anything = qNaN
        if (aAbs > infRep) return @bitCast(@as(Z, @bitCast(a)) | quietBit);
        // anything / NaN = qNaN
        if (bAbs > infRep) return @bitCast(@as(Z, @bitCast(b)) | quietBit);

        if (aAbs == infRep) {
            // infinity / infinity = NaN
            if (bAbs == infRep) {
                return @bitCast(qnanRep);
            }
            // infinity / anything else = +/- infinity
            else {
                return @bitCast(aAbs | quotientSign);
            }
        }

        // anything else / infinity = +/- 0
        if (bAbs == infRep) return @bitCast(quotientSign);

        if (aAbs == 0) {
            // zero / zero = NaN
            if (bAbs == 0) {
                return @bitCast(qnanRep);
            }
            // zero / anything else = +/- zero
            else {
                return @bitCast(quotientSign);
            }
        }
        // anything else / zero = +/- infinity
        if (bAbs == 0) return @bitCast(infRep | quotientSign);

        // one or both of a or b is denormal, the other (if applicable) is a
        // normal number.  Renormalize one or both of a and b, and set scale to
        // include the necessary exponent adjustment.
        if (aAbs < implicitBit) scale +%= normalize(f64, &aSignificand);
        if (bAbs < implicitBit) scale -%= normalize(f64, &bSignificand);
    }

    // Or in the implicit significand bit.  (If we fell through from the
    // denormal path it was already set by normalize( ), but setting it twice
    // won't hurt anything.)
    aSignificand |= implicitBit;
    bSignificand |= implicitBit;
    var quotientExponent: i32 = @as(i32, @bitCast(aExponent -% bExponent)) +% scale;

    // Align the significand of b as a Q31 fixed-point number in the range
    // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
    // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
    // is accurate to about 3.5 binary digits.
    const q31b: u32 = @truncate(bSignificand >> 21);
    var recip32 = @as(u32, 0x7504f333) -% q31b;

    // Now refine the reciprocal estimate using a Newton-Raphson iteration:
    //
    //     x1 = x0 * (2 - x0 * b)
    //
    // This doubles the number of correct binary digits in the approximation
    // with each iteration, so after three iterations, we have about 28 binary
    // digits of accuracy.
    var correction32: u32 = undefined;
    correction32 = @truncate(~(@as(u64, recip32) *% q31b >> 32) +% 1);
    recip32 = @truncate(@as(u64, recip32) *% correction32 >> 31);
    correction32 = @truncate(~(@as(u64, recip32) *% q31b >> 32) +% 1);
    recip32 = @truncate(@as(u64, recip32) *% correction32 >> 31);
    correction32 = @truncate(~(@as(u64, recip32) *% q31b >> 32) +% 1);
    recip32 = @truncate(@as(u64, recip32) *% correction32 >> 31);

    // recip32 might have overflowed to exactly zero in the preceding
    // computation if the high word of b is exactly 1.0.  This would sabotage
    // the full-width final stage of the computation that follows, so we adjust
    // recip32 downward by one bit.
    recip32 -%= 1;

    // We need to perform one more iteration to get us to 56 binary digits;
    // The last iteration needs to happen with extra precision.
    const q63blo: u32 = @truncate(bSignificand << 11);
    var correction: u64 = undefined;
    var reciprocal: u64 = undefined;
    correction = ~(@as(u64, recip32) *% q31b +% (@as(u64, recip32) *% q63blo >> 32)) +% 1;
    const cHi: u32 = @truncate(correction >> 32);
    const cLo: u32 = @truncate(correction);
    reciprocal = @as(u64, recip32) *% cHi +% (@as(u64, recip32) *% cLo >> 32);

    // We already adjusted the 32-bit estimate, now we need to adjust the final
    // 64-bit reciprocal estimate downward to ensure that it is strictly smaller
    // than the infinitely precise exact reciprocal.  Because the computation
    // of the Newton-Raphson step is truncating at every step, this adjustment
    // is small; most of the work is already done.
    reciprocal -%= 2;

    // The numerical reciprocal is accurate to within 2^-56, lies in the
    // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
    // of b.  Multiplying a by this reciprocal thus gives a numerical q = a/b
    // in Q53 with the following properties:
    //
    //    1. q < a/b
    //    2. q is in the interval [0.5, 2.0)
    //    3. the error in q is bounded away from 2^-53 (actually, we have a
    //       couple of bits to spare, but this is all we need).

    // We need a 64 x 64 multiply high to compute q, which isn't a basic
    // operation in C, so we need to be a little bit fussy.
    var quotient: Z = undefined;
    var quotientLo: Z = undefined;
    wideMultiply(Z, aSignificand << 2, reciprocal, &quotient, &quotientLo);

    // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
    // In either case, we are going to compute a residual of the form
    //
    //     r = a - q*b
    //
    // We know from the construction of q that r satisfies:
    //
    //     0 <= r < ulp(q)*b
    //
    // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
    // already have the correct result.  The exact halfway case cannot occur.
    // We also take this time to right shift quotient if it falls in the [1,2)
    // range and adjust the exponent accordingly.
    var residual: Z = undefined;
    if (quotient < (implicitBit << 1)) {
        residual = (aSignificand << 53) -% quotient *% bSignificand;
        quotientExponent -%= 1;
    } else {
        quotient >>= 1;
        residual = (aSignificand << 52) -% quotient *% bSignificand;
    }

    const writtenExponent = quotientExponent +% exponentBias;

    if (writtenExponent >= maxExponent) {
        // If we have overflowed the exponent, return infinity.
        return @bitCast(infRep | quotientSign);
    } else if (writtenExponent < 1) {
        if (writtenExponent == 0) {
            // Check whether the rounded result is normal.
            const round = @intFromBool((residual << 1) > bSignificand);
            // Clear the implicit bit.
            var absResult = quotient & significandMask;
            // Round.
            absResult += round;
            if ((absResult & ~significandMask) != 0) {
                // The rounded result is normal; return it.
                return @bitCast(absResult | quotientSign);
            }
        }
        // Flush denormals to zero.  In the future, it would be nice to add
        // code to round them correctly.
        return @bitCast(quotientSign);
    } else {
        const round = @intFromBool((residual << 1) > bSignificand);
        // Clear the implicit bit
        var absResult = quotient & significandMask;
        // Insert the exponent
        absResult |= @as(Z, @bitCast(@as(SignedZ, writtenExponent))) << significandBits;
        // Round
        absResult +%= round;
        // Insert the sign and return
        return @bitCast(absResult | quotientSign);
    }
}

test {
    _ = @import("divdf3_test.zig");
}