1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
const std = @import("std");
const builtin = @import("builtin");
pub const linkage: std.builtin.GlobalLinkage = if (builtin.is_test) .Internal else .Weak;
pub const want_aeabi = switch (builtin.abi) {
.eabi,
.eabihf,
.musleabi,
.musleabihf,
.gnueabi,
.gnueabihf,
=> switch (builtin.cpu.arch) {
.arm, .armeb, .thumb, .thumbeb => true,
else => false,
},
else => false,
};
pub const want_ppc_abi = builtin.cpu.arch.isPPC() or builtin.cpu.arch.isPPC64();
// Libcalls that involve u128 on Windows x86-64 are expected by LLVM to use the
// calling convention of @Vector(2, u64), rather than what's standard.
pub const want_windows_v2u64_abi = builtin.os.tag == .windows and builtin.cpu.arch == .x86_64;
/// This governs whether to use these symbol names for f16/f32 conversions
/// rather than the standard names:
/// * __gnu_f2h_ieee
/// * __gnu_h2f_ieee
/// Known correct configurations:
/// x86_64-freestanding-none => true
/// x86_64-linux-none => true
/// x86_64-linux-gnu => true
/// x86_64-linux-musl => true
/// x86_64-linux-eabi => true
/// arm-linux-musleabihf => true
/// arm-linux-gnueabihf => true
/// arm-linux-eabihf => false
/// wasm32-wasi-musl => false
/// wasm32-freestanding-none => false
/// x86_64-windows-gnu => true
/// x86_64-windows-msvc => true
/// any-macos-any => false
pub const gnu_f16_abi = switch (builtin.cpu.arch) {
.wasm32,
.wasm64,
.riscv64,
.riscv32,
.i386,
.x86_64,
=> false,
.arm, .armeb, .thumb, .thumbeb => switch (builtin.abi) {
.eabi, .eabihf => false,
else => true,
},
else => !builtin.os.tag.isDarwin(),
};
pub const want_sparc_abi = builtin.cpu.arch.isSPARC();
// Avoid dragging in the runtime safety mechanisms into this .o file,
// unless we're trying to test compiler-rt.
pub fn panic(msg: []const u8, error_return_trace: ?*std.builtin.StackTrace) noreturn {
_ = error_return_trace;
if (builtin.is_test) {
@setCold(true);
std.debug.panic("{s}", .{msg});
} else {
unreachable;
}
}
/// AArch64 is the only ABI (at the moment) to support f16 arguments without the
/// need for extending them to wider fp types.
/// TODO remove this; do this type selection in the language rather than
/// here in compiler-rt.
pub const F16T = switch (builtin.cpu.arch) {
.aarch64, .aarch64_be, .aarch64_32 => f16,
.riscv64 => if (builtin.zig_backend == .stage1) u16 else f16,
.i386, .x86_64 => f16,
else => u16,
};
pub fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void {
switch (Z) {
u16 => {
// 16x16 --> 32 bit multiply
const product = @as(u32, a) * @as(u32, b);
hi.* = @intCast(u16, product >> 16);
lo.* = @truncate(u16, product);
},
u32 => {
// 32x32 --> 64 bit multiply
const product = @as(u64, a) * @as(u64, b);
hi.* = @truncate(u32, product >> 32);
lo.* = @truncate(u32, product);
},
u64 => {
const S = struct {
fn loWord(x: u64) u64 {
return @truncate(u32, x);
}
fn hiWord(x: u64) u64 {
return @truncate(u32, x >> 32);
}
};
// 64x64 -> 128 wide multiply for platforms that don't have such an operation;
// many 64-bit platforms have this operation, but they tend to have hardware
// floating-point, so we don't bother with a special case for them here.
// Each of the component 32x32 -> 64 products
const plolo: u64 = S.loWord(a) * S.loWord(b);
const plohi: u64 = S.loWord(a) * S.hiWord(b);
const philo: u64 = S.hiWord(a) * S.loWord(b);
const phihi: u64 = S.hiWord(a) * S.hiWord(b);
// Sum terms that contribute to lo in a way that allows us to get the carry
const r0: u64 = S.loWord(plolo);
const r1: u64 = S.hiWord(plolo) +% S.loWord(plohi) +% S.loWord(philo);
lo.* = r0 +% (r1 << 32);
// Sum terms contributing to hi with the carry from lo
hi.* = S.hiWord(plohi) +% S.hiWord(philo) +% S.hiWord(r1) +% phihi;
},
u128 => {
const Word_LoMask = @as(u64, 0x00000000ffffffff);
const Word_HiMask = @as(u64, 0xffffffff00000000);
const Word_FullMask = @as(u64, 0xffffffffffffffff);
const S = struct {
fn Word_1(x: u128) u64 {
return @truncate(u32, x >> 96);
}
fn Word_2(x: u128) u64 {
return @truncate(u32, x >> 64);
}
fn Word_3(x: u128) u64 {
return @truncate(u32, x >> 32);
}
fn Word_4(x: u128) u64 {
return @truncate(u32, x);
}
};
// 128x128 -> 256 wide multiply for platforms that don't have such an operation;
// many 64-bit platforms have this operation, but they tend to have hardware
// floating-point, so we don't bother with a special case for them here.
const product11: u64 = S.Word_1(a) * S.Word_1(b);
const product12: u64 = S.Word_1(a) * S.Word_2(b);
const product13: u64 = S.Word_1(a) * S.Word_3(b);
const product14: u64 = S.Word_1(a) * S.Word_4(b);
const product21: u64 = S.Word_2(a) * S.Word_1(b);
const product22: u64 = S.Word_2(a) * S.Word_2(b);
const product23: u64 = S.Word_2(a) * S.Word_3(b);
const product24: u64 = S.Word_2(a) * S.Word_4(b);
const product31: u64 = S.Word_3(a) * S.Word_1(b);
const product32: u64 = S.Word_3(a) * S.Word_2(b);
const product33: u64 = S.Word_3(a) * S.Word_3(b);
const product34: u64 = S.Word_3(a) * S.Word_4(b);
const product41: u64 = S.Word_4(a) * S.Word_1(b);
const product42: u64 = S.Word_4(a) * S.Word_2(b);
const product43: u64 = S.Word_4(a) * S.Word_3(b);
const product44: u64 = S.Word_4(a) * S.Word_4(b);
const sum0: u128 = @as(u128, product44);
const sum1: u128 = @as(u128, product34) +%
@as(u128, product43);
const sum2: u128 = @as(u128, product24) +%
@as(u128, product33) +%
@as(u128, product42);
const sum3: u128 = @as(u128, product14) +%
@as(u128, product23) +%
@as(u128, product32) +%
@as(u128, product41);
const sum4: u128 = @as(u128, product13) +%
@as(u128, product22) +%
@as(u128, product31);
const sum5: u128 = @as(u128, product12) +%
@as(u128, product21);
const sum6: u128 = @as(u128, product11);
const r0: u128 = (sum0 & Word_FullMask) +%
((sum1 & Word_LoMask) << 32);
const r1: u128 = (sum0 >> 64) +%
((sum1 >> 32) & Word_FullMask) +%
(sum2 & Word_FullMask) +%
((sum3 << 32) & Word_HiMask);
lo.* = r0 +% (r1 << 64);
hi.* = (r1 >> 64) +%
(sum1 >> 96) +%
(sum2 >> 64) +%
(sum3 >> 32) +%
sum4 +%
(sum5 << 32) +%
(sum6 << 64);
},
else => @compileError("unsupported"),
}
}
pub fn normalize(comptime T: type, significand: *std.meta.Int(.unsigned, @typeInfo(T).Float.bits)) i32 {
const Z = std.meta.Int(.unsigned, @typeInfo(T).Float.bits);
const integerBit = @as(Z, 1) << std.math.floatFractionalBits(T);
const shift = @clz(significand.*) - @clz(integerBit);
significand.* <<= @intCast(std.math.Log2Int(Z), shift);
return @as(i32, 1) - shift;
}
pub inline fn fneg(a: anytype) @TypeOf(a) {
const F = @TypeOf(a);
const bits = @typeInfo(F).Float.bits;
const U = @Type(.{ .Int = .{
.signedness = .unsigned,
.bits = bits,
} });
const sign_bit_mask = @as(U, 1) << (bits - 1);
const negated = @bitCast(U, a) ^ sign_bit_mask;
return @bitCast(F, negated);
}
|