| Age | Commit message (Collapse) | Author |
|
|
|
Follow-up to 35d6ee08c468642969b594b711dd6448bbaefa89
|
|
In stage1, this behavior was allowed (by accident?) and also
accidentally exercised by the behavior test changed in this commit. In
discussion on Discord, Andrew decided this should not be allowed in
stage2 since there is currently on real world reason to allow this
strange edge case.
I've added the compiler test to solidify that this behavior should NOT
occur and updated the behavior test to the new valid semantics.
|
|
|
|
This previously caused a test case to crash due to lingering llvm state.
|
|
|
|
|
|
|
|
The big change in this commit is making `semaDecl` resolve the fields if
the Decl ends up being a struct or union. It needs to do this while
the `Sema` is still in scope, because it will have the resolved AIR
instructions that the field type expressions possibly reference. We do
this after the decl is populated and set to `complete` so that a `Decl`
may reference itself.
Everything else is fixes and improvements to make the test suite pass
again after making this change.
* New AIR instruction: `ptr_elem_ptr`
- Implemented for LLVM backend
* New Type tag: `type_info` which represents `std.builtin.TypeInfo`. It
is used by AstGen for the operand type of `@Type`.
* ZIR instruction `set_float_mode` uses `coerced_ty` to avoid
superfluous `as` instruction on operand.
* ZIR instruction `Type` uses `coerced_ty` to properly handle result
location type of operand.
* Fix two instances of `enum_nonexhaustive` Value Tag not handled
properly - it should generally be handled the same as `enum_full`.
* Fix struct and union field resolution not copying Type and Value
objects into its Decl arena.
* Fix enum tag value resolution discarding the ZIR=>AIR instruction map
for the child Sema, when they still needed to be accessed.
* Fix `zirResolveInferredAlloc` use-after-free in the AIR instructions
data array.
* Fix `elemPtrArray` not respecting const/mutable attribute of pointer
in the result type.
* Fix LLVM backend crashing when `updateDeclExports` is called before
`updateDecl`/`updateFunc` (which is, according to the API, perfectly
legal for the frontend to do).
* Fix LLVM backend handling element pointer of pointer-to-array. It
needed another index in the GEP otherwise LLVM saw the wrong type.
* Fix LLVM test cases not returning 0 from main, causing test failures.
Fixes a regression introduced in
6a5094872f10acc629543cc7f10533b438d0283a.
* Implement comptime shift-right.
* Implement `@Type` for integers and `@TypeInfo` for integers.
* Implement union initialization syntax.
* Implement `zirFieldType` for unions.
* Implement `elemPtrArray` for a runtime-known operand.
* Make `zirLog2IntType` support RHS of shift being `comptime_int`. In
this case it returns `comptime_int`.
The motivating test case for this commit was originally:
```zig
test "example" {
var l: List(10) = undefined;
l.array[1] = 1;
}
fn List(comptime L: usize) type {
var T = u8;
return struct {
array: [L]T,
};
}
```
However I changed it to:
```zig
test "example" {
var l: List = undefined;
l.array[1] = 1;
}
const List = blk: {
const T = [10]u8;
break :blk struct {
array: T,
};
};
```
Which ended up being a similar, smaller problem. The former test case
will require a similar solution in the implementation of comptime
function calls - checking if the result of the function call is a struct
or union, and using the child `Sema` before it is destroyed to resolve
the fields.
|
|
This is implemented in the llvm and cbe backends.
x86_64 will take a bit more time.
|
|
This implements it in the llvm and c backends.
x86_64 will have to be a little more work.
|
|
This way the start code respects them.
|
|
* Now it supports being an lvalue (see additional lines in the test
case).
* Properly handles a pointer result location (see additional lines in
the test case that assign the result of the orelse to a variable
rather than a const).
* Properly sets the result location type when possible, so that type
inference of an `orelse` operand expression knows its result type.
|
|
|
|
We can now codegen optionals! This includes the following instructions:
- is_null
- is_null_ptr
- is_non_null
- is_non_null_ptr
- optional_payload
- optional_payload_ptr
- br_void
Also includes a test for optionals.
|
|
The following AST avoids unnecessary derefs now:
* error set decl
* field access
* array access
* for loops: replace ensure_indexable and deref on the len_ptr with a
special purpose ZIR instruction called indexable_ptr_len.
Added an error note when for loop operand is the wrong type.
I also accidentally implemented `@field`.
|
|
A simple `while(true) {}` loop generates the following LLVMIR:
```
define i32 @main() {
Entry:
br label %Loop
Loop: ; preds = %Loop, %Entry
br label %Loop
}
```
Also implement TZIR printing for loops and add a corresponding test.
|
|
The following TZIR instrutions have been implemented in the backend:
- all cmp operators (lt, lte, gt, gte, eq, neq)
- block
- br
- condbr
The following LLVMIR is generated for a simple assert function:
```
define void @assert(i1 %0) {
Entry:
%1 = alloca i1, align 1
store i1 %0, i1* %1, align 1
%2 = load i1, i1* %1, align 1
%3 = xor i1 %2, true
br i1 %3, label %Then, label %Else
Then: ; preds = %Entry
call void @llvm.debugtrap()
unreachable
Else: ; preds = %Entry
br label %Block
Block: ; preds = %Else
ret void
}
```
See tests for more examples.
|
|
|