| Age | Commit message (Collapse) | Author |
|
|
|
* libc_installation.cpp is deleted.
src-self-hosted/libc_installation.zig is now used for both stage1 and
stage2 compilers.
* (breaking) move `std.fs.File.access` to `std.fs.Dir.access`. The API
now encourages use with an open directory handle.
* Add `std.os.faccessat` and related functions.
* Deprecate the "C" suffix naming convention for null-terminated
parameters. "C" should be used when it is related to libc. However
null-terminated parameters often have to do with the native system
ABI rather than libc. "Z" suffix is the new convention. For example,
`std.os.openC` is deprecated in favor of `std.os.openZ`.
* Add `std.mem.dupeZ` for using an allocator to copy memory and add a
null terminator.
* Remove dead struct field `std.ChildProcess.llnode`.
* Introduce `std.event.Batch`. This API allows expressing concurrency
without forcing code to be async. It requires no Allocator and does
not introduce any failure conditions. However it is not thread-safe.
* There is now an ongoing experiment to transition away from
`std.event.Group` in favor of `std.event.Batch`.
* `std.os.execvpeC` calls `getenvZ` rather than `getenv`. This is
slightly more efficient on most systems, and works around a
limitation of `getenv` lack of integration with libc.
* (breaking) `std.os.AccessError` gains `FileBusy`, `SymLinkLoop`, and
`ReadOnlyFileSystem`. Previously these error codes were all reported
as `PermissionDenied`.
* Add `std.Target.isDragonFlyBSD`.
* stage2: access to the windows_sdk functions is done with a manually
maintained .zig binding file instead of `@cImport`.
* Update src-self-hosted/libc_installation.zig with all the
improvements that stage1 has seen to src/libc_installation.cpp until
now. In addition, it now takes advantage of Batch so that evented I/O
mode takes advantage of concurrency, but it still works in blocking
I/O mode, which is how it is used in stage1.
|
|
- return a better error when no diagnostics are available
|
|
Previously it was a tagged union which was one of:
* baseline
* a specific CPU
* a set of features
Now, it's possible to have a CPU but also modify the CPU's feature set
on top of that. This is closer to what LLVM does.
This is more correct because Zig's notion of CPUs (and LLVM's) is not
exact CPU models. For example "skylake" is not one very specific model;
there are several different pieces of hardware that match "skylake" that
have different feature sets enabled.
|
|
|
|
|
|
|
|
|
|
|
|
see BRANCH_TODO file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* All the data types from `@import("builtin")` are moved to
`@import("std").builtin`. The target-related types are moved
to `std.Target`. This allows the data types to have methods, such as
`std.Target.current.isDarwin()`.
* `std.os.windows.subsystem` is moved to
`std.Target.current.subsystem`.
* Remove the concept of the panic package from the compiler
implementation. Instead, `std.builtin.panic` is always the panic
function. It checks for `@hasDecl(@import("root"), "panic")`,
or else provides a default implementation.
This is an important step for multibuilds (#3028). Without this change,
the types inside the builtin namespace look like different types, when
trying to merge builds with different target settings. With this change,
Zig can figure out that, e.g., `std.builtin.Os` (the enum type) from one
compilation and `std.builtin.Os` from another compilation are the same
type, even if the target OS value differs.
|
|
|
|
* use erase rest of line escape code.
* use `stderr.supportsAnsiEscapeCodes` rather than `isTty`.
* respect `--color off`
* avoid unnecessary recursion
* add `Progress.log`
* disable the progress std lib test since it's noisy and uses
`time.sleep()`.
* enable/integrate progress printing with the default test runner
|
|
|
|
closes #3067
|
|
|
|
|
|
- use std.heap.c_allocator
- use @panic instead of unreachable
- use extern enum for tokenizer result type
|
|
- wip for #2046
- clang .d output must be created with `clang -MV` switch
- implemented in Zig
- hybridized for zig stage0 and stage1
- zig test src-self-hosted/dep_tokenizer.zig
|
|
to be installed when linking libc.
When zig links against libc, it requires a dynamic linker path.
Usually this can be determined based on the architecture and operating
system components of the target. However on some systems this is not
correct; because of this zig checks its own dynamic linker.
When zig is statically linked, this information is not available, and so
it resorts to using cc -print-filename=foo to find the dynamic linker
path.
Before this commit, Zig incorrectly exited with an error if there was
no c compiler installed. Now, Zig falls back to the dynamic linker
determined based on the arch and os when no C compiler can be found.
|
|
Previously, `zig fmt` on the stage1 compiler (which is what we currently
ship) would perform what equates to `zig run std/special/fmt_runner.zig`
Now, `zig fmt` is implemented with the hybrid zig/C++ strategy outlined
by #1964.
This means Zig no longer has to ship some of the stage2 .zig files, and
there is no longer a delay when running `zig fmt` for the first time.
|
|
See #1964
|
|
|
|
|
|
This modifies the build process of Zig to put all of the source files
into libcompiler.a, except main.cpp and userland.cpp.
Next, the build process links main.cpp, userland.cpp, and libcompiler.a
into zig1. userland.cpp is a shim for functions that will later be
replaced with self-hosted implementations.
Next, the build process uses zig1 to build src-self-hosted/stage1.zig
into libuserland.a, which does not depend on any of the things that
are shimmed in userland.cpp, such as translate-c.
Finally, the build process re-links main.cpp and libcompiler.a, except
with libuserland.a instead of userland.cpp. Now the shims are replaced
with .zig code. This provides all of the Zig standard library to the
stage1 C++ compiler, and enables us to move certain things to userland,
such as translate-c.
As a proof of concept I have made the `zig zen` command use text defined
in userland. I added `zig translate-c-2` which is a work-in-progress
reimplementation of translate-c in userland, which currently calls
`std.debug.panic("unimplemented")` and you can see the stack trace makes
it all the way back into the C++ main() function (Thanks LemonBoy for
improving that!).
This could potentially let us move other things into userland, such as
hashing algorithms, the entire cache system, .d file parsing, pretty
much anything that libuserland.a itself doesn't need to depend on.
This can also let us have `zig fmt` in stage1 without the overhead
of child process execution, and without the initial compilation delay
before it gets cached.
See #1964
|