| Age | Commit message (Collapse) | Author |
|
|
|
|
|
|
|
Like ELF, we now have `std.debug.MachOFile` for the host-independent
parts, and `std.debug.SelfInfo.MachO` for logic requiring the file to
correspond to the running program.
|
|
This path being relative is unconventional and causes issues for us
if the output artifact is ever used from a different cwd than the one it
was built from. The behavior implemented by this commit of always
emitting these paths as absolute was actually the behavior in 0.14.x,
but it regressed in 0.15.1 due to internal reworks to path handling
which led to relative paths being more common in the compiler internals.
Resolves: #25433
|
|
|
|
|
|
std.fmt.Formatter -> std.fmt.Alt
std.fmt.format -> std.Io.Writer.print
|
|
and delete deprecated alias std.io
|
|
|
|
|
|
|
|
|
|
|
|
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
|
|
This can also be extended to ELF later as it means roughly the same thing there.
This addresses the main issue in #21721 but as I don't have a macOS machine to
do further testing on, I can't confirm whether zig cc is able to pass the entire
cgo test suite after this commit. It can, however, cross-compile a basic program
that uses cgo to x86_64-macos-none which previously failed due to lack of -x
support. Unlike previously, the resulting symbol table does not contain local
symbols (such as C static functions).
I believe this satisfies the related donor bounty: https://ziglang.org/news/second-donor-bounty
|
|
Makes linker functions have small error sets, required to report
diagnostics properly rather than having a massive error set that has a
lot of codes.
Other linker implementations are not ported yet.
Also the branch is not passing semantic analysis yet.
|
|
Currently we don't report any errors to the user due to a bug in
self-hosted x86_64-macos backend.
|
|
|
|
|
|
Some compilers such as Go reference the end of a section (addr + size)
which cannot be contained in any non-zero atom (since then this atom
would exceed section boundaries). In order to facilitate this behaviour,
we create a dummy zero-sized atom at section end (addr + size).
|
|
Embrace the Path abstraction, doing more operations based on directory
handles rather than absolute file paths. Most of the diff noise here
comes from this one.
Fix sorting of crtbegin/crtend atoms. Previously it would look at all
path components for those strings.
Make the C runtime path detection partially a pure function, and move
some logic to glibc.zig where it belongs.
|
|
|
|
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* test non-ObjC literal deduping logic
|
|
|
|
|
|
|
|
|
|
In `ld -r` mode, the linker will emit `N_GSYM` for any defined
external symbols as well as private externals. In the former case,
the thing is easy since `N_EXT` bit will be set in the nlist's type.
In the latter however we will encounter a local symbol with `N_PEXT`
bit set (non-extern, but was private external) which we also need
to include when resolving symbol stabs.
The major change in the logic for parsing symbol stabs per input
object file is that we no longer try to force-resolve a `N_GSYM`
as a global symbol. This was a mistake since every symbol stab
always describes a symbol defined within the parsed input object file.
We then work out if we should forward `N_GSYM` in the output symtab
after we have resolved all symbols, but never before - intel we lack
when initially parsing symbol stabs. Therefore, we simply record
which symbol has a debug symbol stab, and work out its precise type
when emitting output symtab after symbol resolution has been done.
|
|
|