|
Today I found out that posix_spawn is trash. It's actually implemented
on top of fork/exec inside of libc (or libSystem in the case of macOS).
So, anything posix_spawn can do, we can do better. In particular, what
we can do better is handle spawning of child processes that are
potentially foreign binaries. If you try to spawn a wasm binary, for
example, posix spawn does the following:
* Goes ahead and creates a child process.
* The child process writes "foo.wasm: foo.wasm: cannot execute binary file"
to stderr (yes, it prints the filename twice).
* The child process then exits with code 126.
This behavior is indistinguishable from the binary being successfully
spawned, and then printing to stderr, and exiting with a failure -
something that is an extremely common occurrence.
Meanwhile, using the lower level fork/exec will simply return ENOEXEC
code from the execve syscall (which is mapped to zig error.InvalidExe).
The posix_spawn behavior means the zig build runner can't tell the
difference between a failure to run a foreign binary, and a binary that
did run, but failed in some other fashion. This is unacceptable, because
attempting to excecve is the proper way to support things like Rosetta.
|
|
Currently, the new API will only be available on macOS with
the intention of adding more POSIX systems to it incrementally
(such as Linux, etc.).
Changes:
* add `posix_spawn` wrappers in a separate container in
`os/posix_spawn.zig`
* rewrite `ChildProcess.spawnPosix` using `posix_spawn` targeting macOS
as `ChildProcess.spawnMacos`
* introduce a `posix_spawn` specific `std.c.waitpid` wrapper which
does return an error in case the child process failed to exec - this
is required for any process that was spawned using `posix_spawn`
mechanism as, by definition, the errors returned by `posix_spawn`
routine cover only the `fork`-equivalent; `pre-exec()` and `exec()`
steps are covered by a catch-all error `ECHILD` returned by `waitpid`
on unsuccessful execution, e.g., no such file error, etc.
|