diff options
Diffstat (limited to 'src/codegen')
| -rw-r--r-- | src/codegen/x86_64.zig | 497 |
1 files changed, 497 insertions, 0 deletions
diff --git a/src/codegen/x86_64.zig b/src/codegen/x86_64.zig index dea39f82cd..5a09f48e17 100644 --- a/src/codegen/x86_64.zig +++ b/src/codegen/x86_64.zig @@ -1,4 +1,9 @@ const std = @import("std"); +const testing = std.testing; +const mem = std.mem; +const assert = std.debug.assert; +const ArrayList = std.ArrayList; +const Allocator = std.mem.Allocator; const Type = @import("../Type.zig"); const DW = std.dwarf; @@ -68,6 +73,11 @@ pub const Register = enum(u8) { return @truncate(u4, @enumToInt(self)); } + /// Like id, but only returns the lower 3 bits. + pub fn low_id(self: Register) u3 { + return @truncate(u3, @enumToInt(self)); + } + /// Returns the index into `callee_preserved_regs`. pub fn allocIndex(self: Register) ?u4 { return switch (self) { @@ -136,6 +146,493 @@ pub const callee_preserved_regs = [_]Register{ .rax, .rcx, .rdx, .rsi, .rdi, .r8 pub const c_abi_int_param_regs = [_]Register{ .rdi, .rsi, .rdx, .rcx, .r8, .r9 }; pub const c_abi_int_return_regs = [_]Register{ .rax, .rdx }; +/// Encoding helper functions for x86_64 instructions +/// +/// Many of these helpers do very little, but they can help make things +/// slightly more readable with more descriptive field names / function names. +/// +/// Some of them also have asserts to ensure that we aren't doing dumb things. +/// For example, trying to use register 4 (esp) in an indirect modr/m byte is illegal, +/// you need to encode it with an SIB byte. +/// +/// Note that ALL of these helper functions will assume capacity, +/// so ensure that the `code` has sufficient capacity before using them. +/// The `init` method is the recommended way to ensure capacity. +pub const Encoder = struct { + /// Non-owning reference to the code array + code: *ArrayList(u8), + + const Self = @This(); + + /// Wrap `code` in Encoder to make it easier to call these helper functions + /// + /// maximum_inst_size should contain the maximum number of bytes + /// that the encoded instruction will take. + /// This is because the helper functions will assume capacity + /// in order to avoid bounds checking. + pub fn init(code: *ArrayList(u8), maximum_inst_size: u8) !Self { + try code.ensureCapacity(code.items.len + maximum_inst_size); + return Self{ .code = code }; + } + + /// Directly write a number to the code array with big endianness + pub fn writeIntBig(self: Self, comptime T: type, value: T) void { + mem.writeIntBig( + T, + self.code.addManyAsArrayAssumeCapacity(@divExact(@typeInfo(T).Int.bits, 8)), + value, + ); + } + + /// Directly write a number to the code array with little endianness + pub fn writeIntLittle(self: Self, comptime T: type, value: T) void { + mem.writeIntLittle( + T, + self.code.addManyAsArrayAssumeCapacity(@divExact(@typeInfo(T).Int.bits, 8)), + value, + ); + } + + // -------- + // Prefixes + // -------- + + pub const LegacyPrefixes = packed struct { + /// LOCK + prefix_f0: bool = false, + /// REPNZ, REPNE, REP, Scalar Double-precision + prefix_f2: bool = false, + /// REPZ, REPE, REP, Scalar Single-precision + prefix_f3: bool = false, + + /// CS segment override or Branch not taken + prefix_2e: bool = false, + /// DS segment override + prefix_36: bool = false, + /// ES segment override + prefix_26: bool = false, + /// FS segment override + prefix_64: bool = false, + /// GS segment override + prefix_65: bool = false, + + /// Branch taken + prefix_3e: bool = false, + + /// Operand size override (enables 16 bit operation) + prefix_66: bool = false, + + /// Address size override (enables 16 bit address size) + prefix_67: bool = false, + + padding: u5 = 0, + }; + + /// Encodes legacy prefixes + pub fn legacyPrefixes(self: Self, prefixes: LegacyPrefixes) void { + if (@bitCast(u16, prefixes) != 0) { + // Hopefully this path isn't taken very often, so we'll do it the slow way for now + + // LOCK + if (prefixes.prefix_f0) self.code.appendAssumeCapacity(0xf0); + // REPNZ, REPNE, REP, Scalar Double-precision + if (prefixes.prefix_f2) self.code.appendAssumeCapacity(0xf2); + // REPZ, REPE, REP, Scalar Single-precision + if (prefixes.prefix_f3) self.code.appendAssumeCapacity(0xf3); + + // CS segment override or Branch not taken + if (prefixes.prefix_2e) self.code.appendAssumeCapacity(0x2e); + // DS segment override + if (prefixes.prefix_36) self.code.appendAssumeCapacity(0x36); + // ES segment override + if (prefixes.prefix_26) self.code.appendAssumeCapacity(0x26); + // FS segment override + if (prefixes.prefix_64) self.code.appendAssumeCapacity(0x64); + // GS segment override + if (prefixes.prefix_65) self.code.appendAssumeCapacity(0x65); + + // Branch taken + if (prefixes.prefix_3e) self.code.appendAssumeCapacity(0x3e); + + // Operand size override + if (prefixes.prefix_66) self.code.appendAssumeCapacity(0x66); + + // Address size override + if (prefixes.prefix_67) self.code.appendAssumeCapacity(0x67); + } + } + + /// Use 16 bit operand size + /// + /// Note that this flag is overridden by REX.W, if both are present. + pub fn prefix16BitMode(self: Self) void { + self.code.appendAssumeCapacity(0x66); + } + + /// From section 2.2.1.2 of the manual, REX is encoded as b0100WRXB + pub const Rex = struct { + /// Wide, enables 64-bit operation + w: bool = false, + /// Extends the reg field in the ModR/M byte + r: bool = false, + /// Extends the index field in the SIB byte + x: bool = false, + /// Extends the r/m field in the ModR/M byte, + /// or the base field in the SIB byte, + /// or the reg field in the Opcode byte + b: bool = false, + }; + + /// Encodes a REX prefix byte given all the fields + /// + /// Use this byte whenever you need 64 bit operation, + /// or one of reg, index, r/m, base, or opcode-reg might be extended. + /// + /// See struct `Rex` for a description of each field. + /// + /// Does not add a prefix byte if none of the fields are set! + pub fn rex(self: Self, byte: Rex) void { + var value: u8 = 0b0100_0000; + + if (byte.w) value |= 0b1000; + if (byte.r) value |= 0b0100; + if (byte.x) value |= 0b0010; + if (byte.b) value |= 0b0001; + + if (value != 0b0100_0000) { + self.code.appendAssumeCapacity(value); + } + } + + // ------ + // Opcode + // ------ + + /// Encodes a 1 byte opcode + pub fn opcode_1byte(self: Self, opcode: u8) void { + self.code.appendAssumeCapacity(opcode); + } + + /// Encodes a 2 byte opcode + /// + /// e.g. IMUL has the opcode 0x0f 0xaf, so you use + /// + /// encoder.opcode_2byte(0x0f, 0xaf); + pub fn opcode_2byte(self: Self, prefix: u8, opcode: u8) void { + self.code.appendAssumeCapacity(prefix); + self.code.appendAssumeCapacity(opcode); + } + + /// Encodes a 1 byte opcode with a reg field + /// + /// Remember to add a REX prefix byte if reg is extended! + pub fn opcode_withReg(self: Self, opcode: u8, reg: u3) void { + assert(opcode & 0b111 == 0); + self.code.appendAssumeCapacity(opcode | reg); + } + + // ------ + // ModR/M + // ------ + + /// Construct a ModR/M byte given all the fields + /// + /// Remember to add a REX prefix byte if reg or rm are extended! + pub fn modRm(self: Self, mod: u2, reg_or_opx: u3, rm: u3) void { + self.code.appendAssumeCapacity( + @as(u8, mod) << 6 | @as(u8, reg_or_opx) << 3 | rm, + ); + } + + /// Construct a ModR/M byte using direct r/m addressing + /// r/m effective address: r/m + /// + /// Note reg's effective address is always just reg for the ModR/M byte. + /// Remember to add a REX prefix byte if reg or rm are extended! + pub fn modRm_direct(self: Self, reg_or_opx: u3, rm: u3) void { + self.modRm(0b11, reg_or_opx, rm); + } + + /// Construct a ModR/M byte using indirect r/m addressing + /// r/m effective address: [r/m] + /// + /// Note reg's effective address is always just reg for the ModR/M byte. + /// Remember to add a REX prefix byte if reg or rm are extended! + pub fn modRm_indirectDisp0(self: Self, reg_or_opx: u3, rm: u3) void { + assert(rm != 4 and rm != 5); + self.modRm(0b00, reg_or_opx, rm); + } + + /// Construct a ModR/M byte using indirect SIB addressing + /// r/m effective address: [SIB] + /// + /// Note reg's effective address is always just reg for the ModR/M byte. + /// Remember to add a REX prefix byte if reg or rm are extended! + pub fn modRm_SIBDisp0(self: Self, reg_or_opx: u3) void { + self.modRm(0b00, reg_or_opx, 0b100); + } + + /// Construct a ModR/M byte using RIP-relative addressing + /// r/m effective address: [RIP + disp32] + /// + /// Note reg's effective address is always just reg for the ModR/M byte. + /// Remember to add a REX prefix byte if reg or rm are extended! + pub fn modRm_RIPDisp32(self: Self, reg_or_opx: u3) void { + self.modRm(0b00, reg_or_opx, 0b101); + } + + /// Construct a ModR/M byte using indirect r/m with a 8bit displacement + /// r/m effective address: [r/m + disp8] + /// + /// Note reg's effective address is always just reg for the ModR/M byte. + /// Remember to add a REX prefix byte if reg or rm are extended! + pub fn modRm_indirectDisp8(self: Self, reg_or_opx: u3, rm: u3) void { + assert(rm != 4); + self.modRm(0b01, reg_or_opx, rm); + } + + /// Construct a ModR/M byte using indirect SIB with a 8bit displacement + /// r/m effective address: [SIB + disp8] + /// + /// Note reg's effective address is always just reg for the ModR/M byte. + /// Remember to add a REX prefix byte if reg or rm are extended! + pub fn modRm_SIBDisp8(self: Self, reg_or_opx: u3) void { + self.modRm(0b01, reg_or_opx, 0b100); + } + + /// Construct a ModR/M byte using indirect r/m with a 32bit displacement + /// r/m effective address: [r/m + disp32] + /// + /// Note reg's effective address is always just reg for the ModR/M byte. + /// Remember to add a REX prefix byte if reg or rm are extended! + pub fn modRm_indirectDisp32(self: Self, reg_or_opx: u3, rm: u3) void { + assert(rm != 4); + self.modRm(0b10, reg_or_opx, rm); + } + + /// Construct a ModR/M byte using indirect SIB with a 32bit displacement + /// r/m effective address: [SIB + disp32] + /// + /// Note reg's effective address is always just reg for the ModR/M byte. + /// Remember to add a REX prefix byte if reg or rm are extended! + pub fn modRm_SIBDisp32(self: Self, reg_or_opx: u3) void { + self.modRm(0b10, reg_or_opx, 0b100); + } + + // --- + // SIB + // --- + + /// Construct a SIB byte given all the fields + /// + /// Remember to add a REX prefix byte if index or base are extended! + pub fn sib(self: Self, scale: u2, index: u3, base: u3) void { + self.code.appendAssumeCapacity( + @as(u8, scale) << 6 | @as(u8, index) << 3 | base, + ); + } + + /// Construct a SIB byte with scale * index + base, no frills. + /// r/m effective address: [base + scale * index] + /// + /// Remember to add a REX prefix byte if index or base are extended! + pub fn sib_scaleIndexBase(self: Self, scale: u2, index: u3, base: u3) void { + assert(base != 5); + + self.sib(scale, index, base); + } + + /// Construct a SIB byte with scale * index + disp32 + /// r/m effective address: [scale * index + disp32] + /// + /// Remember to add a REX prefix byte if index or base are extended! + pub fn sib_scaleIndexDisp32(self: Self, scale: u2, index: u3) void { + assert(index != 4); + + // scale is actually ignored + // index = 4 means no index + // base = 5 means no base, if mod == 0. + self.sib(scale, index, 5); + } + + /// Construct a SIB byte with just base + /// r/m effective address: [base] + /// + /// Remember to add a REX prefix byte if index or base are extended! + pub fn sib_base(self: Self, base: u3) void { + assert(base != 5); + + // scale is actually ignored + // index = 4 means no index + self.sib(0, 4, base); + } + + /// Construct a SIB byte with just disp32 + /// r/m effective address: [disp32] + /// + /// Remember to add a REX prefix byte if index or base are extended! + pub fn sib_disp32(self: Self) void { + // scale is actually ignored + // index = 4 means no index + // base = 5 means no base, if mod == 0. + self.sib(0, 4, 5); + } + + /// Construct a SIB byte with scale * index + base + disp8 + /// r/m effective address: [base + scale * index + disp8] + /// + /// Remember to add a REX prefix byte if index or base are extended! + pub fn sib_scaleIndexBaseDisp8(self: Self, scale: u2, index: u3, base: u3) void { + self.sib(scale, index, base); + } + + /// Construct a SIB byte with base + disp8, no index + /// r/m effective address: [base + disp8] + /// + /// Remember to add a REX prefix byte if index or base are extended! + pub fn sib_baseDisp8(self: Self, base: u3) void { + // scale is ignored + // index = 4 means no index + self.sib(0, 4, base); + } + + /// Construct a SIB byte with scale * index + base + disp32 + /// r/m effective address: [base + scale * index + disp32] + /// + /// Remember to add a REX prefix byte if index or base are extended! + pub fn sib_scaleIndexBaseDisp32(self: Self, scale: u2, index: u3, base: u3) void { + self.sib(scale, index, base); + } + + /// Construct a SIB byte with base + disp32, no index + /// r/m effective address: [base + disp32] + /// + /// Remember to add a REX prefix byte if index or base are extended! + pub fn sib_baseDisp32(self: Self, base: u3) void { + // scale is ignored + // index = 4 means no index + self.sib(0, 4, base); + } + + // ------------------------- + // Trivial (no bit fiddling) + // ------------------------- + + /// Encode an 8 bit immediate + /// + /// It is sign-extended to 64 bits by the cpu. + pub fn imm8(self: Self, imm: i8) void { + self.code.appendAssumeCapacity(@bitCast(u8, imm)); + } + + /// Encode an 8 bit displacement + /// + /// It is sign-extended to 64 bits by the cpu. + pub fn disp8(self: Self, disp: i8) void { + self.code.appendAssumeCapacity(@bitCast(u8, disp)); + } + + /// Encode an 16 bit immediate + /// + /// It is sign-extended to 64 bits by the cpu. + pub fn imm16(self: Self, imm: i16) void { + self.writeIntLittle(i16, imm); + } + + /// Encode an 32 bit immediate + /// + /// It is sign-extended to 64 bits by the cpu. + pub fn imm32(self: Self, imm: i32) void { + self.writeIntLittle(i32, imm); + } + + /// Encode an 32 bit displacement + /// + /// It is sign-extended to 64 bits by the cpu. + pub fn disp32(self: Self, disp: i32) void { + self.writeIntLittle(i32, disp); + } + + /// Encode an 64 bit immediate + /// + /// It is sign-extended to 64 bits by the cpu. + pub fn imm64(self: Self, imm: u64) void { + self.writeIntLittle(u64, imm); + } +}; + +test "x86_64 Encoder helpers" { + var code = ArrayList(u8).init(testing.allocator); + defer code.deinit(); + + // simple integer multiplication + + // imul eax,edi + // 0faf c7 + { + try code.resize(0); + const encoder = try Encoder.init(&code, 4); + encoder.rex(.{ + .r = Register.eax.isExtended(), + .b = Register.edi.isExtended(), + }); + encoder.opcode_2byte(0x0f, 0xaf); + encoder.modRm_direct( + Register.eax.low_id(), + Register.edi.low_id(), + ); + + try testing.expectEqualSlices(u8, &[_]u8{ 0x0f, 0xaf, 0xc7 }, code.items); + } + + // simple mov + + // mov eax,edi + // 89 f8 + { + try code.resize(0); + const encoder = try Encoder.init(&code, 3); + encoder.rex(.{ + .r = Register.edi.isExtended(), + .b = Register.eax.isExtended(), + }); + encoder.opcode_1byte(0x89); + encoder.modRm_direct( + Register.edi.low_id(), + Register.eax.low_id(), + ); + + try testing.expectEqualSlices(u8, &[_]u8{ 0x89, 0xf8 }, code.items); + } + + // signed integer addition of 32-bit sign extended immediate to 64 bit register + + // add rcx, 2147483647 + // + // Using the following opcode: REX.W + 81 /0 id, we expect the following encoding + // + // 48 : REX.W set for 64 bit operand (*r*cx) + // 81 : opcode for "<arithmetic> with immediate" + // c1 : id = rcx, + // : c1 = 11 <-- mod = 11 indicates r/m is register (rcx) + // : 000 <-- opcode_extension = 0 because opcode extension is /0. /0 specifies ADD + // : 001 <-- 001 is rcx + // ffffff7f : 2147483647 + { + try code.resize(0); + const encoder = try Encoder.init(&code, 7); + encoder.rex(.{ .w = true }); // use 64 bit operation + encoder.opcode_1byte(0x81); + encoder.modRm_direct( + 0, + Register.rcx.low_id(), + ); + encoder.imm32(2147483647); + + try testing.expectEqualSlices(u8, &[_]u8{ 0x48, 0x81, 0xc1, 0xff, 0xff, 0xff, 0x7f }, code.items); + } +} + // TODO add these registers to the enum and populate dwarfLocOp // // Return Address register. This is stored in `0(%rsp, "")` and is not a physical register. // RA = (16, "RA"), |
