diff options
Diffstat (limited to 'lib/std/special/compiler_rt/mulXf3.zig')
| -rw-r--r-- | lib/std/special/compiler_rt/mulXf3.zig | 289 |
1 files changed, 289 insertions, 0 deletions
diff --git a/lib/std/special/compiler_rt/mulXf3.zig b/lib/std/special/compiler_rt/mulXf3.zig new file mode 100644 index 0000000000..51d40ad26f --- /dev/null +++ b/lib/std/special/compiler_rt/mulXf3.zig @@ -0,0 +1,289 @@ +// Ported from: +// +// https://github.com/llvm/llvm-project/blob/2ffb1b0413efa9a24eb3c49e710e36f92e2cb50b/compiler-rt/lib/builtins/fp_mul_impl.inc + +const std = @import("std"); +const builtin = @import("builtin"); +const compiler_rt = @import("../compiler_rt.zig"); + +pub extern fn __multf3(a: f128, b: f128) f128 { + return mulXf3(f128, a, b); +} +pub extern fn __muldf3(a: f64, b: f64) f64 { + return mulXf3(f64, a, b); +} +pub extern fn __mulsf3(a: f32, b: f32) f32 { + return mulXf3(f32, a, b); +} + +fn mulXf3(comptime T: type, a: T, b: T) T { + @setRuntimeSafety(builtin.is_test); + const Z = @IntType(false, T.bit_count); + + const typeWidth = T.bit_count; + const significandBits = std.math.floatMantissaBits(T); + const exponentBits = std.math.floatExponentBits(T); + + const signBit = (Z(1) << (significandBits + exponentBits)); + const maxExponent = ((1 << exponentBits) - 1); + const exponentBias = (maxExponent >> 1); + + const implicitBit = (Z(1) << significandBits); + const quietBit = implicitBit >> 1; + const significandMask = implicitBit - 1; + + const absMask = signBit - 1; + const exponentMask = absMask ^ significandMask; + const qnanRep = exponentMask | quietBit; + const infRep = @bitCast(Z, std.math.inf(T)); + + const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent); + const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent); + const productSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit; + + var aSignificand: Z = @bitCast(Z, a) & significandMask; + var bSignificand: Z = @bitCast(Z, b) & significandMask; + var scale: i32 = 0; + + // Detect if a or b is zero, denormal, infinity, or NaN. + if (aExponent -% 1 >= maxExponent -% 1 or bExponent -% 1 >= maxExponent -% 1) { + const aAbs: Z = @bitCast(Z, a) & absMask; + const bAbs: Z = @bitCast(Z, b) & absMask; + + // NaN * anything = qNaN + if (aAbs > infRep) return @bitCast(T, @bitCast(Z, a) | quietBit); + // anything * NaN = qNaN + if (bAbs > infRep) return @bitCast(T, @bitCast(Z, b) | quietBit); + + if (aAbs == infRep) { + // infinity * non-zero = +/- infinity + if (bAbs != 0) { + return @bitCast(T, aAbs | productSign); + } else { + // infinity * zero = NaN + return @bitCast(T, qnanRep); + } + } + + if (bAbs == infRep) { + //? non-zero * infinity = +/- infinity + if (aAbs != 0) { + return @bitCast(T, bAbs | productSign); + } else { + // zero * infinity = NaN + return @bitCast(T, qnanRep); + } + } + + // zero * anything = +/- zero + if (aAbs == 0) return @bitCast(T, productSign); + // anything * zero = +/- zero + if (bAbs == 0) return @bitCast(T, productSign); + + // one or both of a or b is denormal, the other (if applicable) is a + // normal number. Renormalize one or both of a and b, and set scale to + // include the necessary exponent adjustment. + if (aAbs < implicitBit) scale +%= normalize(T, &aSignificand); + if (bAbs < implicitBit) scale +%= normalize(T, &bSignificand); + } + + // Or in the implicit significand bit. (If we fell through from the + // denormal path it was already set by normalize( ), but setting it twice + // won't hurt anything.) + aSignificand |= implicitBit; + bSignificand |= implicitBit; + + // Get the significand of a*b. Before multiplying the significands, shift + // one of them left to left-align it in the field. Thus, the product will + // have (exponentBits + 2) integral digits, all but two of which must be + // zero. Normalizing this result is just a conditional left-shift by one + // and bumping the exponent accordingly. + var productHi: Z = undefined; + var productLo: Z = undefined; + wideMultiply(Z, aSignificand, bSignificand << exponentBits, &productHi, &productLo); + + var productExponent: i32 = @bitCast(i32, aExponent +% bExponent) -% exponentBias +% scale; + + // Normalize the significand, adjust exponent if needed. + if ((productHi & implicitBit) != 0) { + productExponent +%= 1; + } else { + productHi = (productHi << 1) | (productLo >> (typeWidth - 1)); + productLo = productLo << 1; + } + + // If we have overflowed the type, return +/- infinity. + if (productExponent >= maxExponent) return @bitCast(T, infRep | productSign); + + if (productExponent <= 0) { + // Result is denormal before rounding + // + // If the result is so small that it just underflows to zero, return + // a zero of the appropriate sign. Mathematically there is no need to + // handle this case separately, but we make it a special case to + // simplify the shift logic. + const shift: u32 = @truncate(u32, Z(1) -% @bitCast(u32, productExponent)); + if (shift >= typeWidth) return @bitCast(T, productSign); + + // Otherwise, shift the significand of the result so that the round + // bit is the high bit of productLo. + wideRightShiftWithSticky(Z, &productHi, &productLo, shift); + } else { + // Result is normal before rounding; insert the exponent. + productHi &= significandMask; + productHi |= Z(@bitCast(u32, productExponent)) << significandBits; + } + + // Insert the sign of the result: + productHi |= productSign; + + // Final rounding. The final result may overflow to infinity, or underflow + // to zero, but those are the correct results in those cases. We use the + // default IEEE-754 round-to-nearest, ties-to-even rounding mode. + if (productLo > signBit) productHi +%= 1; + if (productLo == signBit) productHi +%= productHi & 1; + return @bitCast(T, productHi); +} + +fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void { + @setRuntimeSafety(builtin.is_test); + switch (Z) { + u32 => { + // 32x32 --> 64 bit multiply + const product = u64(a) * u64(b); + hi.* = @truncate(u32, product >> 32); + lo.* = @truncate(u32, product); + }, + u64 => { + const S = struct { + fn loWord(x: u64) u64 { + return @truncate(u32, x); + } + fn hiWord(x: u64) u64 { + return @truncate(u32, x >> 32); + } + }; + // 64x64 -> 128 wide multiply for platforms that don't have such an operation; + // many 64-bit platforms have this operation, but they tend to have hardware + // floating-point, so we don't bother with a special case for them here. + // Each of the component 32x32 -> 64 products + const plolo: u64 = S.loWord(a) * S.loWord(b); + const plohi: u64 = S.loWord(a) * S.hiWord(b); + const philo: u64 = S.hiWord(a) * S.loWord(b); + const phihi: u64 = S.hiWord(a) * S.hiWord(b); + // Sum terms that contribute to lo in a way that allows us to get the carry + const r0: u64 = S.loWord(plolo); + const r1: u64 = S.hiWord(plolo) +% S.loWord(plohi) +% S.loWord(philo); + lo.* = r0 +% (r1 << 32); + // Sum terms contributing to hi with the carry from lo + hi.* = S.hiWord(plohi) +% S.hiWord(philo) +% S.hiWord(r1) +% phihi; + }, + u128 => { + const Word_LoMask = u64(0x00000000ffffffff); + const Word_HiMask = u64(0xffffffff00000000); + const Word_FullMask = u64(0xffffffffffffffff); + const S = struct { + fn Word_1(x: u128) u64 { + return @truncate(u32, x >> 96); + } + fn Word_2(x: u128) u64 { + return @truncate(u32, x >> 64); + } + fn Word_3(x: u128) u64 { + return @truncate(u32, x >> 32); + } + fn Word_4(x: u128) u64 { + return @truncate(u32, x); + } + }; + // 128x128 -> 256 wide multiply for platforms that don't have such an operation; + // many 64-bit platforms have this operation, but they tend to have hardware + // floating-point, so we don't bother with a special case for them here. + + const product11: u64 = S.Word_1(a) * S.Word_1(b); + const product12: u64 = S.Word_1(a) * S.Word_2(b); + const product13: u64 = S.Word_1(a) * S.Word_3(b); + const product14: u64 = S.Word_1(a) * S.Word_4(b); + const product21: u64 = S.Word_2(a) * S.Word_1(b); + const product22: u64 = S.Word_2(a) * S.Word_2(b); + const product23: u64 = S.Word_2(a) * S.Word_3(b); + const product24: u64 = S.Word_2(a) * S.Word_4(b); + const product31: u64 = S.Word_3(a) * S.Word_1(b); + const product32: u64 = S.Word_3(a) * S.Word_2(b); + const product33: u64 = S.Word_3(a) * S.Word_3(b); + const product34: u64 = S.Word_3(a) * S.Word_4(b); + const product41: u64 = S.Word_4(a) * S.Word_1(b); + const product42: u64 = S.Word_4(a) * S.Word_2(b); + const product43: u64 = S.Word_4(a) * S.Word_3(b); + const product44: u64 = S.Word_4(a) * S.Word_4(b); + + const sum0: u128 = u128(product44); + const sum1: u128 = u128(product34) +% + u128(product43); + const sum2: u128 = u128(product24) +% + u128(product33) +% + u128(product42); + const sum3: u128 = u128(product14) +% + u128(product23) +% + u128(product32) +% + u128(product41); + const sum4: u128 = u128(product13) +% + u128(product22) +% + u128(product31); + const sum5: u128 = u128(product12) +% + u128(product21); + const sum6: u128 = u128(product11); + + const r0: u128 = (sum0 & Word_FullMask) +% + ((sum1 & Word_LoMask) << 32); + const r1: u128 = (sum0 >> 64) +% + ((sum1 >> 32) & Word_FullMask) +% + (sum2 & Word_FullMask) +% + ((sum3 << 32) & Word_HiMask); + + lo.* = r0 +% (r1 << 64); + hi.* = (r1 >> 64) +% + (sum1 >> 96) +% + (sum2 >> 64) +% + (sum3 >> 32) +% + sum4 +% + (sum5 << 32) +% + (sum6 << 64); + }, + else => @compileError("unsupported"), + } +} + +fn normalize(comptime T: type, significand: *@IntType(false, T.bit_count)) i32 { + @setRuntimeSafety(builtin.is_test); + const Z = @IntType(false, T.bit_count); + const significandBits = std.math.floatMantissaBits(T); + const implicitBit = Z(1) << significandBits; + + const shift = @clz(Z, significand.*) - @clz(Z, implicitBit); + significand.* <<= @intCast(std.math.Log2Int(Z), shift); + return 1 - shift; +} + +fn wideRightShiftWithSticky(comptime Z: type, hi: *Z, lo: *Z, count: u32) void { + @setRuntimeSafety(builtin.is_test); + const typeWidth = Z.bit_count; + const S = std.math.Log2Int(Z); + if (count < typeWidth) { + const sticky = @truncate(u8, lo.* << @intCast(S, typeWidth -% count)); + lo.* = (hi.* << @intCast(S, typeWidth -% count)) | (lo.* >> @intCast(S, count)) | sticky; + hi.* = hi.* >> @intCast(S, count); + } else if (count < 2 * typeWidth) { + const sticky = @truncate(u8, hi.* << @intCast(S, 2 * typeWidth -% count) | lo.*); + lo.* = hi.* >> @intCast(S, count -% typeWidth) | sticky; + hi.* = 0; + } else { + const sticky = @truncate(u8, hi.* | lo.*); + lo.* = sticky; + hi.* = 0; + } +} + +test "import mulXf3" { + _ = @import("mulXf3_test.zig"); +} |
