aboutsummaryrefslogtreecommitdiff
path: root/lib/std/packed_int_array.zig
diff options
context:
space:
mode:
Diffstat (limited to 'lib/std/packed_int_array.zig')
-rw-r--r--lib/std/packed_int_array.zig646
1 files changed, 646 insertions, 0 deletions
diff --git a/lib/std/packed_int_array.zig b/lib/std/packed_int_array.zig
new file mode 100644
index 0000000000..5cbab2d33b
--- /dev/null
+++ b/lib/std/packed_int_array.zig
@@ -0,0 +1,646 @@
+const std = @import("std");
+const builtin = @import("builtin");
+const debug = std.debug;
+const testing = std.testing;
+
+pub fn PackedIntIo(comptime Int: type, comptime endian: builtin.Endian) type {
+ //The general technique employed here is to cast bytes in the array to a container
+ // integer (having bits % 8 == 0) large enough to contain the number of bits we want,
+ // then we can retrieve or store the new value with a relative minimum of masking
+ // and shifting. In this worst case, this means that we'll need an integer that's
+ // actually 1 byte larger than the minimum required to store the bits, because it
+ // is possible that the bits start at the end of the first byte, continue through
+ // zero or more, then end in the beginning of the last. But, if we try to access
+ // a value in the very last byte of memory with that integer size, that extra byte
+ // will be out of bounds. Depending on the circumstances of the memory, that might
+ // mean the OS fatally kills the program. Thus, we use a larger container (MaxIo)
+ // most of the time, but a smaller container (MinIo) when touching the last byte
+ // of the memory.
+ const int_bits = comptime std.meta.bitCount(Int);
+
+ //in the best case, this is the number of bytes we need to touch
+ // to read or write a value, as bits
+ const min_io_bits = ((int_bits + 7) / 8) * 8;
+
+ //in the worst case, this is the number of bytes we need to touch
+ // to read or write a value, as bits
+ const max_io_bits = switch (int_bits) {
+ 0 => 0,
+ 1 => 8,
+ 2...9 => 16,
+ 10...65535 => ((int_bits / 8) + 2) * 8,
+ else => unreachable,
+ };
+
+ //we bitcast the desired Int type to an unsigned version of itself
+ // to avoid issues with shifting signed ints.
+ const UnInt = @IntType(false, int_bits);
+
+ //The maximum container int type
+ const MinIo = @IntType(false, min_io_bits);
+
+ //The minimum container int type
+ const MaxIo = @IntType(false, max_io_bits);
+
+ return struct {
+ pub fn get(bytes: []const u8, index: usize, bit_offset: u7) Int {
+ if (int_bits == 0) return 0;
+
+ const bit_index = (index * int_bits) + bit_offset;
+ const max_end_byte = (bit_index + max_io_bits) / 8;
+
+ //Using the larger container size will potentially read out of bounds
+ if (max_end_byte > bytes.len) return getBits(bytes, MinIo, bit_index);
+ return getBits(bytes, MaxIo, bit_index);
+ }
+
+ fn getBits(bytes: []const u8, comptime Container: type, bit_index: usize) Int {
+ const container_bits = comptime std.meta.bitCount(Container);
+ const Shift = std.math.Log2Int(Container);
+
+ const start_byte = bit_index / 8;
+ const head_keep_bits = bit_index - (start_byte * 8);
+ const tail_keep_bits = container_bits - (int_bits + head_keep_bits);
+
+ //read bytes as container
+ const value_ptr = @ptrCast(*align(1) const Container, &bytes[start_byte]);
+ var value = value_ptr.*;
+
+ if (endian != builtin.endian) value = @byteSwap(Container, value);
+
+ switch (endian) {
+ .Big => {
+ value <<= @intCast(Shift, head_keep_bits);
+ value >>= @intCast(Shift, head_keep_bits);
+ value >>= @intCast(Shift, tail_keep_bits);
+ },
+ .Little => {
+ value <<= @intCast(Shift, tail_keep_bits);
+ value >>= @intCast(Shift, tail_keep_bits);
+ value >>= @intCast(Shift, head_keep_bits);
+ },
+ }
+
+ return @bitCast(Int, @truncate(UnInt, value));
+ }
+
+ pub fn set(bytes: []u8, index: usize, bit_offset: u3, int: Int) void {
+ if (int_bits == 0) return;
+
+ const bit_index = (index * int_bits) + bit_offset;
+ const max_end_byte = (bit_index + max_io_bits) / 8;
+
+ //Using the larger container size will potentially write out of bounds
+ if (max_end_byte > bytes.len) return setBits(bytes, MinIo, bit_index, int);
+ setBits(bytes, MaxIo, bit_index, int);
+ }
+
+ fn setBits(bytes: []u8, comptime Container: type, bit_index: usize, int: Int) void {
+ const container_bits = comptime std.meta.bitCount(Container);
+ const Shift = std.math.Log2Int(Container);
+
+ const start_byte = bit_index / 8;
+ const head_keep_bits = bit_index - (start_byte * 8);
+ const tail_keep_bits = container_bits - (int_bits + head_keep_bits);
+ const keep_shift = switch (endian) {
+ .Big => @intCast(Shift, tail_keep_bits),
+ .Little => @intCast(Shift, head_keep_bits),
+ };
+
+ //position the bits where they need to be in the container
+ const value = @intCast(Container, @bitCast(UnInt, int)) << keep_shift;
+
+ //read existing bytes
+ const target_ptr = @ptrCast(*align(1) Container, &bytes[start_byte]);
+ var target = target_ptr.*;
+
+ if (endian != builtin.endian) target = @byteSwap(Container, target);
+
+ //zero the bits we want to replace in the existing bytes
+ const inv_mask = @intCast(Container, std.math.maxInt(UnInt)) << keep_shift;
+ const mask = ~inv_mask;
+ target &= mask;
+
+ //merge the new value
+ target |= value;
+
+ if (endian != builtin.endian) target = @byteSwap(Container, target);
+
+ //save it back
+ target_ptr.* = target;
+ }
+
+ fn slice(bytes: []u8, bit_offset: u3, start: usize, end: usize) PackedIntSliceEndian(Int, endian) {
+ debug.assert(end >= start);
+
+ const length = end - start;
+ const bit_index = (start * int_bits) + bit_offset;
+ const start_byte = bit_index / 8;
+ const end_byte = (bit_index + (length * int_bits) + 7) / 8;
+ const new_bytes = bytes[start_byte..end_byte];
+
+ if (length == 0) return PackedIntSliceEndian(Int, endian).init(new_bytes[0..0], 0);
+
+ var new_slice = PackedIntSliceEndian(Int, endian).init(new_bytes, length);
+ new_slice.bit_offset = @intCast(u3, (bit_index - (start_byte * 8)));
+ return new_slice;
+ }
+
+ fn sliceCast(bytes: []u8, comptime NewInt: type, comptime new_endian: builtin.Endian, bit_offset: u3, old_len: usize) PackedIntSliceEndian(NewInt, new_endian) {
+ const new_int_bits = comptime std.meta.bitCount(NewInt);
+ const New = PackedIntSliceEndian(NewInt, new_endian);
+
+ const total_bits = (old_len * int_bits);
+ const new_int_count = total_bits / new_int_bits;
+
+ debug.assert(total_bits == new_int_count * new_int_bits);
+
+ var new = New.init(bytes, new_int_count);
+ new.bit_offset = bit_offset;
+
+ return new;
+ }
+ };
+}
+
+///Creates a bit-packed array of integers of type Int. Bits
+/// are packed using native endianess and without storing any meta
+/// data. PackedIntArray(i3, 8) will occupy exactly 3 bytes of memory.
+pub fn PackedIntArray(comptime Int: type, comptime int_count: usize) type {
+ return PackedIntArrayEndian(Int, builtin.endian, int_count);
+}
+
+///Creates a bit-packed array of integers of type Int. Bits
+/// are packed using specified endianess and without storing any meta
+/// data.
+pub fn PackedIntArrayEndian(comptime Int: type, comptime endian: builtin.Endian, comptime int_count: usize) type {
+ const int_bits = comptime std.meta.bitCount(Int);
+ const total_bits = int_bits * int_count;
+ const total_bytes = (total_bits + 7) / 8;
+
+ const Io = PackedIntIo(Int, endian);
+
+ return struct {
+ const Self = @This();
+
+ bytes: [total_bytes]u8,
+
+ ///Returns the number of elements in the packed array
+ pub fn len(self: Self) usize {
+ return int_count;
+ }
+
+ ///Initialize a packed array using an unpacked array
+ /// or, more likely, an array literal.
+ pub fn init(ints: [int_count]Int) Self {
+ var self = Self(undefined);
+ for (ints) |int, i| self.set(i, int);
+ return self;
+ }
+
+ ///Return the Int stored at index
+ pub fn get(self: Self, index: usize) Int {
+ debug.assert(index < int_count);
+ return Io.get(self.bytes, index, 0);
+ }
+
+ ///Copy int into the array at index
+ pub fn set(self: *Self, index: usize, int: Int) void {
+ debug.assert(index < int_count);
+ return Io.set(&self.bytes, index, 0, int);
+ }
+
+ ///Create a PackedIntSlice of the array from given start to given end
+ pub fn slice(self: *Self, start: usize, end: usize) PackedIntSliceEndian(Int, endian) {
+ debug.assert(start < int_count);
+ debug.assert(end <= int_count);
+ return Io.slice(&self.bytes, 0, start, end);
+ }
+
+ ///Create a PackedIntSlice of the array using NewInt as the bit width integer.
+ /// NewInt's bit width must fit evenly within the array's Int's total bits.
+ pub fn sliceCast(self: *Self, comptime NewInt: type) PackedIntSlice(NewInt) {
+ return self.sliceCastEndian(NewInt, endian);
+ }
+
+ ///Create a PackedIntSlice of the array using NewInt as the bit width integer
+ /// and new_endian as the new endianess. NewInt's bit width must fit evenly within
+ /// the array's Int's total bits.
+ pub fn sliceCastEndian(self: *Self, comptime NewInt: type, comptime new_endian: builtin.Endian) PackedIntSliceEndian(NewInt, new_endian) {
+ return Io.sliceCast(&self.bytes, NewInt, new_endian, 0, int_count);
+ }
+ };
+}
+
+///Uses a slice as a bit-packed block of int_count integers of type Int.
+/// Bits are packed using native endianess and without storing any meta
+/// data.
+pub fn PackedIntSlice(comptime Int: type) type {
+ return PackedIntSliceEndian(Int, builtin.endian);
+}
+
+///Uses a slice as a bit-packed block of int_count integers of type Int.
+/// Bits are packed using specified endianess and without storing any meta
+/// data.
+pub fn PackedIntSliceEndian(comptime Int: type, comptime endian: builtin.Endian) type {
+ const int_bits = comptime std.meta.bitCount(Int);
+ const Io = PackedIntIo(Int, endian);
+
+ return struct {
+ const Self = @This();
+
+ bytes: []u8,
+ int_count: usize,
+ bit_offset: u3,
+
+ ///Returns the number of elements in the packed slice
+ pub fn len(self: Self) usize {
+ return self.int_count;
+ }
+
+ ///Calculates the number of bytes required to store a desired count
+ /// of Ints
+ pub fn bytesRequired(int_count: usize) usize {
+ const total_bits = int_bits * int_count;
+ const total_bytes = (total_bits + 7) / 8;
+ return total_bytes;
+ }
+
+ ///Initialize a packed slice using the memory at bytes, with int_count
+ /// elements. bytes must be large enough to accomodate the requested
+ /// count.
+ pub fn init(bytes: []u8, int_count: usize) Self {
+ debug.assert(bytes.len >= bytesRequired(int_count));
+
+ return Self{
+ .bytes = bytes,
+ .int_count = int_count,
+ .bit_offset = 0,
+ };
+ }
+
+ ///Return the Int stored at index
+ pub fn get(self: Self, index: usize) Int {
+ debug.assert(index < self.int_count);
+ return Io.get(self.bytes, index, self.bit_offset);
+ }
+
+ ///Copy int into the array at index
+ pub fn set(self: *Self, index: usize, int: Int) void {
+ debug.assert(index < self.int_count);
+ return Io.set(self.bytes, index, self.bit_offset, int);
+ }
+
+ ///Create a PackedIntSlice of this slice from given start to given end
+ pub fn slice(self: Self, start: usize, end: usize) PackedIntSliceEndian(Int, endian) {
+ debug.assert(start < self.int_count);
+ debug.assert(end <= self.int_count);
+ return Io.slice(self.bytes, self.bit_offset, start, end);
+ }
+
+ ///Create a PackedIntSlice of this slice using NewInt as the bit width integer.
+ /// NewInt's bit width must fit evenly within this slice's Int's total bits.
+ pub fn sliceCast(self: Self, comptime NewInt: type) PackedIntSliceEndian(NewInt, endian) {
+ return self.sliceCastEndian(NewInt, endian);
+ }
+
+ ///Create a PackedIntSlice of this slice using NewInt as the bit width integer
+ /// and new_endian as the new endianess. NewInt's bit width must fit evenly within
+ /// this slice's Int's total bits.
+ pub fn sliceCastEndian(self: Self, comptime NewInt: type, comptime new_endian: builtin.Endian) PackedIntSliceEndian(NewInt, new_endian) {
+ return Io.sliceCast(self.bytes, NewInt, new_endian, self.bit_offset, self.int_count);
+ }
+ };
+}
+
+test "PackedIntArray" {
+ @setEvalBranchQuota(10000);
+ const max_bits = 256;
+ const int_count = 19;
+
+ comptime var bits = 0;
+ inline while (bits <= 256) : (bits += 1) {
+ //alternate unsigned and signed
+ const even = bits % 2 == 0;
+ const I = @IntType(even, bits);
+
+ const PackedArray = PackedIntArray(I, int_count);
+ const expected_bytes = ((bits * int_count) + 7) / 8;
+ testing.expect(@sizeOf(PackedArray) == expected_bytes);
+
+ var data = PackedArray(undefined);
+
+ //write values, counting up
+ var i = usize(0);
+ var count = I(0);
+ while (i < data.len()) : (i += 1) {
+ data.set(i, count);
+ if (bits > 0) count +%= 1;
+ }
+
+ //read and verify values
+ i = 0;
+ count = 0;
+ while (i < data.len()) : (i += 1) {
+ const val = data.get(i);
+ testing.expect(val == count);
+ if (bits > 0) count +%= 1;
+ }
+ }
+}
+
+test "PackedIntArray init" {
+ const PackedArray = PackedIntArray(u3, 8);
+ var packed_array = PackedArray.init([_]u3{ 0, 1, 2, 3, 4, 5, 6, 7 });
+ var i = usize(0);
+ while (i < packed_array.len()) : (i += 1) testing.expect(packed_array.get(i) == i);
+}
+
+test "PackedIntSlice" {
+ @setEvalBranchQuota(10000);
+ const max_bits = 256;
+ const int_count = 19;
+ const total_bits = max_bits * int_count;
+ const total_bytes = (total_bits + 7) / 8;
+
+ var buffer: [total_bytes]u8 = undefined;
+
+ comptime var bits = 0;
+ inline while (bits <= 256) : (bits += 1) {
+ //alternate unsigned and signed
+ const even = bits % 2 == 0;
+ const I = @IntType(even, bits);
+ const P = PackedIntSlice(I);
+
+ var data = P.init(&buffer, int_count);
+
+ //write values, counting up
+ var i = usize(0);
+ var count = I(0);
+ while (i < data.len()) : (i += 1) {
+ data.set(i, count);
+ if (bits > 0) count +%= 1;
+ }
+
+ //read and verify values
+ i = 0;
+ count = 0;
+ while (i < data.len()) : (i += 1) {
+ const val = data.get(i);
+ testing.expect(val == count);
+ if (bits > 0) count +%= 1;
+ }
+ }
+}
+
+test "PackedIntSlice of PackedInt(Array/Slice)" {
+ const max_bits = 16;
+ const int_count = 19;
+
+ comptime var bits = 0;
+ inline while (bits <= max_bits) : (bits += 1) {
+ const Int = @IntType(false, bits);
+
+ const PackedArray = PackedIntArray(Int, int_count);
+ var packed_array = PackedArray(undefined);
+
+ const limit = (1 << bits);
+
+ var i = usize(0);
+ while (i < packed_array.len()) : (i += 1) {
+ packed_array.set(i, @intCast(Int, i % limit));
+ }
+
+ //slice of array
+ var packed_slice = packed_array.slice(2, 5);
+ testing.expect(packed_slice.len() == 3);
+ const ps_bit_count = (bits * packed_slice.len()) + packed_slice.bit_offset;
+ const ps_expected_bytes = (ps_bit_count + 7) / 8;
+ testing.expect(packed_slice.bytes.len == ps_expected_bytes);
+ testing.expect(packed_slice.get(0) == 2 % limit);
+ testing.expect(packed_slice.get(1) == 3 % limit);
+ testing.expect(packed_slice.get(2) == 4 % limit);
+ packed_slice.set(1, 7 % limit);
+ testing.expect(packed_slice.get(1) == 7 % limit);
+
+ //write through slice
+ testing.expect(packed_array.get(3) == 7 % limit);
+
+ //slice of a slice
+ const packed_slice_two = packed_slice.slice(0, 3);
+ testing.expect(packed_slice_two.len() == 3);
+ const ps2_bit_count = (bits * packed_slice_two.len()) + packed_slice_two.bit_offset;
+ const ps2_expected_bytes = (ps2_bit_count + 7) / 8;
+ testing.expect(packed_slice_two.bytes.len == ps2_expected_bytes);
+ testing.expect(packed_slice_two.get(1) == 7 % limit);
+ testing.expect(packed_slice_two.get(2) == 4 % limit);
+
+ //size one case
+ const packed_slice_three = packed_slice_two.slice(1, 2);
+ testing.expect(packed_slice_three.len() == 1);
+ const ps3_bit_count = (bits * packed_slice_three.len()) + packed_slice_three.bit_offset;
+ const ps3_expected_bytes = (ps3_bit_count + 7) / 8;
+ testing.expect(packed_slice_three.bytes.len == ps3_expected_bytes);
+ testing.expect(packed_slice_three.get(0) == 7 % limit);
+
+ //empty slice case
+ const packed_slice_empty = packed_slice.slice(0, 0);
+ testing.expect(packed_slice_empty.len() == 0);
+ testing.expect(packed_slice_empty.bytes.len == 0);
+
+ //slicing at byte boundaries
+ const packed_slice_edge = packed_array.slice(8, 16);
+ testing.expect(packed_slice_edge.len() == 8);
+ const pse_bit_count = (bits * packed_slice_edge.len()) + packed_slice_edge.bit_offset;
+ const pse_expected_bytes = (pse_bit_count + 7) / 8;
+ testing.expect(packed_slice_edge.bytes.len == pse_expected_bytes);
+ testing.expect(packed_slice_edge.bit_offset == 0);
+ }
+}
+
+test "PackedIntSlice accumulating bit offsets" {
+ //bit_offset is u3, so standard debugging asserts should catch
+ // anything
+ {
+ const PackedArray = PackedIntArray(u3, 16);
+ var packed_array = PackedArray(undefined);
+
+ var packed_slice = packed_array.slice(0, packed_array.len());
+ var i = usize(0);
+ while (i < packed_array.len() - 1) : (i += 1) {
+ packed_slice = packed_slice.slice(1, packed_slice.len());
+ }
+ }
+ {
+ const PackedArray = PackedIntArray(u11, 88);
+ var packed_array = PackedArray(undefined);
+
+ var packed_slice = packed_array.slice(0, packed_array.len());
+ var i = usize(0);
+ while (i < packed_array.len() - 1) : (i += 1) {
+ packed_slice = packed_slice.slice(1, packed_slice.len());
+ }
+ }
+}
+
+//@NOTE: As I do not have a big endian system to test this on,
+// big endian values were not tested
+test "PackedInt(Array/Slice) sliceCast" {
+ const PackedArray = PackedIntArray(u1, 16);
+ var packed_array = PackedArray.init([_]u1{ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 });
+ const packed_slice_cast_2 = packed_array.sliceCast(u2);
+ const packed_slice_cast_4 = packed_slice_cast_2.sliceCast(u4);
+ var packed_slice_cast_9 = packed_array.slice(0, (packed_array.len() / 9) * 9).sliceCast(u9);
+ const packed_slice_cast_3 = packed_slice_cast_9.sliceCast(u3);
+
+ var i = usize(0);
+ while (i < packed_slice_cast_2.len()) : (i += 1) {
+ const val = switch (builtin.endian) {
+ .Big => 0b01,
+ .Little => 0b10,
+ };
+ testing.expect(packed_slice_cast_2.get(i) == val);
+ }
+ i = 0;
+ while (i < packed_slice_cast_4.len()) : (i += 1) {
+ const val = switch (builtin.endian) {
+ .Big => 0b0101,
+ .Little => 0b1010,
+ };
+ testing.expect(packed_slice_cast_4.get(i) == val);
+ }
+ i = 0;
+ while (i < packed_slice_cast_9.len()) : (i += 1) {
+ const val = 0b010101010;
+ testing.expect(packed_slice_cast_9.get(i) == val);
+ packed_slice_cast_9.set(i, 0b111000111);
+ }
+ i = 0;
+ while (i < packed_slice_cast_3.len()) : (i += 1) {
+ const val = switch (builtin.endian) {
+ .Big => if (i % 2 == 0) u3(0b111) else u3(0b000),
+ .Little => if (i % 2 == 0) u3(0b111) else u3(0b000),
+ };
+ testing.expect(packed_slice_cast_3.get(i) == val);
+ }
+}
+
+test "PackedInt(Array/Slice)Endian" {
+ {
+ const PackedArrayBe = PackedIntArrayEndian(u4, .Big, 8);
+ var packed_array_be = PackedArrayBe.init([_]u4{
+ 0,
+ 1,
+ 2,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ });
+ testing.expect(packed_array_be.bytes[0] == 0b00000001);
+ testing.expect(packed_array_be.bytes[1] == 0b00100011);
+
+ var i = usize(0);
+ while (i < packed_array_be.len()) : (i += 1) {
+ testing.expect(packed_array_be.get(i) == i);
+ }
+
+ var packed_slice_le = packed_array_be.sliceCastEndian(u4, .Little);
+ i = 0;
+ while (i < packed_slice_le.len()) : (i += 1) {
+ const val = if (i % 2 == 0) i + 1 else i - 1;
+ testing.expect(packed_slice_le.get(i) == val);
+ }
+
+ var packed_slice_le_shift = packed_array_be.slice(1, 5).sliceCastEndian(u4, .Little);
+ i = 0;
+ while (i < packed_slice_le_shift.len()) : (i += 1) {
+ const val = if (i % 2 == 0) i else i + 2;
+ testing.expect(packed_slice_le_shift.get(i) == val);
+ }
+ }
+
+ {
+ const PackedArrayBe = PackedIntArrayEndian(u11, .Big, 8);
+ var packed_array_be = PackedArrayBe.init([_]u11{
+ 0,
+ 1,
+ 2,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ });
+ testing.expect(packed_array_be.bytes[0] == 0b00000000);
+ testing.expect(packed_array_be.bytes[1] == 0b00000000);
+ testing.expect(packed_array_be.bytes[2] == 0b00000100);
+ testing.expect(packed_array_be.bytes[3] == 0b00000001);
+ testing.expect(packed_array_be.bytes[4] == 0b00000000);
+
+ var i = usize(0);
+ while (i < packed_array_be.len()) : (i += 1) {
+ testing.expect(packed_array_be.get(i) == i);
+ }
+
+ var packed_slice_le = packed_array_be.sliceCastEndian(u11, .Little);
+ testing.expect(packed_slice_le.get(0) == 0b00000000000);
+ testing.expect(packed_slice_le.get(1) == 0b00010000000);
+ testing.expect(packed_slice_le.get(2) == 0b00000000100);
+ testing.expect(packed_slice_le.get(3) == 0b00000000000);
+ testing.expect(packed_slice_le.get(4) == 0b00010000011);
+ testing.expect(packed_slice_le.get(5) == 0b00000000010);
+ testing.expect(packed_slice_le.get(6) == 0b10000010000);
+ testing.expect(packed_slice_le.get(7) == 0b00000111001);
+
+ var packed_slice_le_shift = packed_array_be.slice(1, 5).sliceCastEndian(u11, .Little);
+ testing.expect(packed_slice_le_shift.get(0) == 0b00010000000);
+ testing.expect(packed_slice_le_shift.get(1) == 0b00000000100);
+ testing.expect(packed_slice_le_shift.get(2) == 0b00000000000);
+ testing.expect(packed_slice_le_shift.get(3) == 0b00010000011);
+ }
+}
+
+//@NOTE: Need to manually update this list as more posix os's get
+// added to DirectAllocator.
+
+//These tests prove we aren't accidentally accessing memory past
+// the end of the array/slice by placing it at the end of a page
+// and reading the last element. The assumption is that the page
+// after this one is not mapped and will cause a segfault if we
+// don't account for the bounds.
+test "PackedIntArray at end of available memory" {
+ switch (builtin.os) {
+ .linux, .macosx, .ios, .freebsd, .netbsd, .windows => {},
+ else => return,
+ }
+ const PackedArray = PackedIntArray(u3, 8);
+
+ const Padded = struct {
+ _: [std.mem.page_size - @sizeOf(PackedArray)]u8,
+ p: PackedArray,
+ };
+
+ const allocator = std.heap.direct_allocator;
+
+ var pad = try allocator.create(Padded);
+ defer allocator.destroy(pad);
+ pad.p.set(7, std.math.maxInt(u3));
+}
+
+test "PackedIntSlice at end of available memory" {
+ switch (builtin.os) {
+ .linux, .macosx, .ios, .freebsd, .netbsd, .windows => {},
+ else => return,
+ }
+ const PackedSlice = PackedIntSlice(u11);
+
+ const allocator = std.heap.direct_allocator;
+
+ var page = try allocator.alloc(u8, std.mem.page_size);
+ defer allocator.free(page);
+
+ var p = PackedSlice.init(page[std.mem.page_size - 2 ..], 1);
+ p.set(0, std.math.maxInt(u11));
+}