diff options
Diffstat (limited to 'lib/std/mem.zig')
| -rw-r--r-- | lib/std/mem.zig | 1537 |
1 files changed, 1537 insertions, 0 deletions
diff --git a/lib/std/mem.zig b/lib/std/mem.zig new file mode 100644 index 0000000000..2091eb4804 --- /dev/null +++ b/lib/std/mem.zig @@ -0,0 +1,1537 @@ +const std = @import("std.zig"); +const debug = std.debug; +const assert = debug.assert; +const math = std.math; +const builtin = @import("builtin"); +const mem = @This(); +const meta = std.meta; +const trait = meta.trait; +const testing = std.testing; + +pub const page_size = switch (builtin.arch) { + .wasm32, .wasm64 => 64 * 1024, + else => 4 * 1024, +}; + +pub const Allocator = struct { + pub const Error = error{OutOfMemory}; + + /// Realloc is used to modify the size or alignment of an existing allocation, + /// as well as to provide the allocator with an opportunity to move an allocation + /// to a better location. + /// When the size/alignment is greater than the previous allocation, this function + /// returns `error.OutOfMemory` when the requested new allocation could not be granted. + /// When the size/alignment is less than or equal to the previous allocation, + /// this function returns `error.OutOfMemory` when the allocator decides the client + /// would be better off keeping the extra alignment/size. Clients will call + /// `shrinkFn` when they require the allocator to track a new alignment/size, + /// and so this function should only return success when the allocator considers + /// the reallocation desirable from the allocator's perspective. + /// As an example, `std.ArrayList` tracks a "capacity", and therefore can handle + /// reallocation failure, even when `new_n` <= `old_mem.len`. A `FixedBufferAllocator` + /// would always return `error.OutOfMemory` for `reallocFn` when the size/alignment + /// is less than or equal to the old allocation, because it cannot reclaim the memory, + /// and thus the `std.ArrayList` would be better off retaining its capacity. + /// When `reallocFn` returns, + /// `return_value[0..min(old_mem.len, new_byte_count)]` must be the same + /// as `old_mem` was when `reallocFn` is called. The bytes of + /// `return_value[old_mem.len..]` have undefined values. + /// The returned slice must have its pointer aligned at least to `new_alignment` bytes. + reallocFn: fn ( + self: *Allocator, + /// Guaranteed to be the same as what was returned from most recent call to + /// `reallocFn` or `shrinkFn`. + /// If `old_mem.len == 0` then this is a new allocation and `new_byte_count` + /// is guaranteed to be >= 1. + old_mem: []u8, + /// If `old_mem.len == 0` then this is `undefined`, otherwise: + /// Guaranteed to be the same as what was returned from most recent call to + /// `reallocFn` or `shrinkFn`. + /// Guaranteed to be >= 1. + /// Guaranteed to be a power of 2. + old_alignment: u29, + /// If `new_byte_count` is 0 then this is a free and it is guaranteed that + /// `old_mem.len != 0`. + new_byte_count: usize, + /// Guaranteed to be >= 1. + /// Guaranteed to be a power of 2. + /// Returned slice's pointer must have this alignment. + new_alignment: u29, + ) Error![]u8, + + /// This function deallocates memory. It must succeed. + shrinkFn: fn ( + self: *Allocator, + /// Guaranteed to be the same as what was returned from most recent call to + /// `reallocFn` or `shrinkFn`. + old_mem: []u8, + /// Guaranteed to be the same as what was returned from most recent call to + /// `reallocFn` or `shrinkFn`. + old_alignment: u29, + /// Guaranteed to be less than or equal to `old_mem.len`. + new_byte_count: usize, + /// If `new_byte_count == 0` then this is `undefined`, otherwise: + /// Guaranteed to be less than or equal to `old_alignment`. + new_alignment: u29, + ) []u8, + + /// Returns a pointer to undefined memory. + /// Call `destroy` with the result to free the memory. + pub fn create(self: *Allocator, comptime T: type) Error!*T { + if (@sizeOf(T) == 0) return &(T{}); + const slice = try self.alloc(T, 1); + return &slice[0]; + } + + /// `ptr` should be the return value of `create`, or otherwise + /// have the same address and alignment property. + pub fn destroy(self: *Allocator, ptr: var) void { + const T = @typeOf(ptr).Child; + if (@sizeOf(T) == 0) return; + const non_const_ptr = @intToPtr([*]u8, @ptrToInt(ptr)); + const shrink_result = self.shrinkFn(self, non_const_ptr[0..@sizeOf(T)], @alignOf(T), 0, 1); + assert(shrink_result.len == 0); + } + + pub fn alloc(self: *Allocator, comptime T: type, n: usize) Error![]T { + return self.alignedAlloc(T, null, n); + } + + pub fn alignedAlloc( + self: *Allocator, + comptime T: type, + /// null means naturally aligned + comptime alignment: ?u29, + n: usize, + ) Error![]align(alignment orelse @alignOf(T)) T { + const a = if (alignment) |a| blk: { + if (a == @alignOf(T)) return alignedAlloc(self, T, null, n); + break :blk a; + } else @alignOf(T); + + if (n == 0) { + return ([*]align(a) T)(undefined)[0..0]; + } + + const byte_count = math.mul(usize, @sizeOf(T), n) catch return Error.OutOfMemory; + const byte_slice = try self.reallocFn(self, ([*]u8)(undefined)[0..0], undefined, byte_count, a); + assert(byte_slice.len == byte_count); + @memset(byte_slice.ptr, undefined, byte_slice.len); + if (alignment == null) { + // TODO This is a workaround for zig not being able to successfully do + // @bytesToSlice(T, @alignCast(a, byte_slice)) without resolving alignment of T, + // which causes a circular dependency in async functions which try to heap-allocate + // their own frame with @Frame(func). + return @intToPtr([*]T, @ptrToInt(byte_slice.ptr))[0..n]; + } else { + return @bytesToSlice(T, @alignCast(a, byte_slice)); + } + } + + /// This function requests a new byte size for an existing allocation, + /// which can be larger, smaller, or the same size as the old memory + /// allocation. + /// This function is preferred over `shrink`, because it can fail, even + /// when shrinking. This gives the allocator a chance to perform a + /// cheap shrink operation if possible, or otherwise return OutOfMemory, + /// indicating that the caller should keep their capacity, for example + /// in `std.ArrayList.shrink`. + /// If you need guaranteed success, call `shrink`. + /// If `new_n` is 0, this is the same as `free` and it always succeeds. + pub fn realloc(self: *Allocator, old_mem: var, new_n: usize) t: { + const Slice = @typeInfo(@typeOf(old_mem)).Pointer; + break :t Error![]align(Slice.alignment) Slice.child; + } { + const old_alignment = @typeInfo(@typeOf(old_mem)).Pointer.alignment; + return self.alignedRealloc(old_mem, old_alignment, new_n); + } + + /// This is the same as `realloc`, except caller may additionally request + /// a new alignment, which can be larger, smaller, or the same as the old + /// allocation. + pub fn alignedRealloc( + self: *Allocator, + old_mem: var, + comptime new_alignment: u29, + new_n: usize, + ) Error![]align(new_alignment) @typeInfo(@typeOf(old_mem)).Pointer.child { + const Slice = @typeInfo(@typeOf(old_mem)).Pointer; + const T = Slice.child; + if (old_mem.len == 0) { + return self.alignedAlloc(T, new_alignment, new_n); + } + if (new_n == 0) { + self.free(old_mem); + return ([*]align(new_alignment) T)(undefined)[0..0]; + } + + const old_byte_slice = @sliceToBytes(old_mem); + const byte_count = math.mul(usize, @sizeOf(T), new_n) catch return Error.OutOfMemory; + const byte_slice = try self.reallocFn(self, old_byte_slice, Slice.alignment, byte_count, new_alignment); + assert(byte_slice.len == byte_count); + if (new_n > old_mem.len) { + @memset(byte_slice.ptr + old_byte_slice.len, undefined, byte_slice.len - old_byte_slice.len); + } + return @bytesToSlice(T, @alignCast(new_alignment, byte_slice)); + } + + /// Prefer calling realloc to shrink if you can tolerate failure, such as + /// in an ArrayList data structure with a storage capacity. + /// Shrink always succeeds, and `new_n` must be <= `old_mem.len`. + /// Returned slice has same alignment as old_mem. + /// Shrinking to 0 is the same as calling `free`. + pub fn shrink(self: *Allocator, old_mem: var, new_n: usize) t: { + const Slice = @typeInfo(@typeOf(old_mem)).Pointer; + break :t []align(Slice.alignment) Slice.child; + } { + const old_alignment = @typeInfo(@typeOf(old_mem)).Pointer.alignment; + return self.alignedShrink(old_mem, old_alignment, new_n); + } + + /// This is the same as `shrink`, except caller may additionally request + /// a new alignment, which must be smaller or the same as the old + /// allocation. + pub fn alignedShrink( + self: *Allocator, + old_mem: var, + comptime new_alignment: u29, + new_n: usize, + ) []align(new_alignment) @typeInfo(@typeOf(old_mem)).Pointer.child { + const Slice = @typeInfo(@typeOf(old_mem)).Pointer; + const T = Slice.child; + + if (new_n == 0) { + self.free(old_mem); + return old_mem[0..0]; + } + + assert(new_n <= old_mem.len); + assert(new_alignment <= Slice.alignment); + + // Here we skip the overflow checking on the multiplication because + // new_n <= old_mem.len and the multiplication didn't overflow for that operation. + const byte_count = @sizeOf(T) * new_n; + + const old_byte_slice = @sliceToBytes(old_mem); + const byte_slice = self.shrinkFn(self, old_byte_slice, Slice.alignment, byte_count, new_alignment); + assert(byte_slice.len == byte_count); + return @bytesToSlice(T, @alignCast(new_alignment, byte_slice)); + } + + pub fn free(self: *Allocator, memory: var) void { + const Slice = @typeInfo(@typeOf(memory)).Pointer; + const bytes = @sliceToBytes(memory); + if (bytes.len == 0) return; + const non_const_ptr = @intToPtr([*]u8, @ptrToInt(bytes.ptr)); + const shrink_result = self.shrinkFn(self, non_const_ptr[0..bytes.len], Slice.alignment, 0, 1); + assert(shrink_result.len == 0); + } +}; + +pub const Compare = enum { + LessThan, + Equal, + GreaterThan, +}; + +/// Copy all of source into dest at position 0. +/// dest.len must be >= source.len. +/// dest.ptr must be <= src.ptr. +pub fn copy(comptime T: type, dest: []T, source: []const T) void { + // TODO instead of manually doing this check for the whole array + // and turning off runtime safety, the compiler should detect loops like + // this and automatically omit safety checks for loops + @setRuntimeSafety(false); + assert(dest.len >= source.len); + for (source) |s, i| + dest[i] = s; +} + +/// Copy all of source into dest at position 0. +/// dest.len must be >= source.len. +/// dest.ptr must be >= src.ptr. +pub fn copyBackwards(comptime T: type, dest: []T, source: []const T) void { + // TODO instead of manually doing this check for the whole array + // and turning off runtime safety, the compiler should detect loops like + // this and automatically omit safety checks for loops + @setRuntimeSafety(false); + assert(dest.len >= source.len); + var i = source.len; + while (i > 0) { + i -= 1; + dest[i] = source[i]; + } +} + +pub fn set(comptime T: type, dest: []T, value: T) void { + for (dest) |*d| + d.* = value; +} + +pub fn secureZero(comptime T: type, s: []T) void { + // NOTE: We do not use a volatile slice cast here since LLVM cannot + // see that it can be replaced by a memset. + const ptr = @ptrCast([*]volatile u8, s.ptr); + const length = s.len * @sizeOf(T); + @memset(ptr, 0, length); +} + +test "mem.secureZero" { + var a = [_]u8{0xfe} ** 8; + var b = [_]u8{0xfe} ** 8; + + set(u8, a[0..], 0); + secureZero(u8, b[0..]); + + testing.expectEqualSlices(u8, a[0..], b[0..]); +} + +pub fn compare(comptime T: type, lhs: []const T, rhs: []const T) Compare { + const n = math.min(lhs.len, rhs.len); + var i: usize = 0; + while (i < n) : (i += 1) { + if (lhs[i] == rhs[i]) { + continue; + } else if (lhs[i] < rhs[i]) { + return Compare.LessThan; + } else if (lhs[i] > rhs[i]) { + return Compare.GreaterThan; + } else { + unreachable; + } + } + + if (lhs.len == rhs.len) { + return Compare.Equal; + } else if (lhs.len < rhs.len) { + return Compare.LessThan; + } else if (lhs.len > rhs.len) { + return Compare.GreaterThan; + } + unreachable; +} + +test "mem.compare" { + testing.expect(compare(u8, "abcd", "bee") == Compare.LessThan); + testing.expect(compare(u8, "abc", "abc") == Compare.Equal); + testing.expect(compare(u8, "abc", "abc0") == Compare.LessThan); + testing.expect(compare(u8, "", "") == Compare.Equal); + testing.expect(compare(u8, "", "a") == Compare.LessThan); +} + +/// Returns true if lhs < rhs, false otherwise +pub fn lessThan(comptime T: type, lhs: []const T, rhs: []const T) bool { + var result = compare(T, lhs, rhs); + if (result == Compare.LessThan) { + return true; + } else + return false; +} + +test "mem.lessThan" { + testing.expect(lessThan(u8, "abcd", "bee")); + testing.expect(!lessThan(u8, "abc", "abc")); + testing.expect(lessThan(u8, "abc", "abc0")); + testing.expect(!lessThan(u8, "", "")); + testing.expect(lessThan(u8, "", "a")); +} + +/// Compares two slices and returns whether they are equal. +pub fn eql(comptime T: type, a: []const T, b: []const T) bool { + if (a.len != b.len) return false; + if (a.ptr == b.ptr) return true; + for (a) |item, index| { + if (b[index] != item) return false; + } + return true; +} + +pub fn len(comptime T: type, ptr: [*]const T) usize { + var count: usize = 0; + while (ptr[count] != 0) : (count += 1) {} + return count; +} + +pub fn toSliceConst(comptime T: type, ptr: [*]const T) []const T { + return ptr[0..len(T, ptr)]; +} + +pub fn toSlice(comptime T: type, ptr: [*]T) []T { + return ptr[0..len(T, ptr)]; +} + +/// Returns true if all elements in a slice are equal to the scalar value provided +pub fn allEqual(comptime T: type, slice: []const T, scalar: T) bool { + for (slice) |item| { + if (item != scalar) return false; + } + return true; +} + +/// Copies ::m to newly allocated memory. Caller is responsible to free it. +pub fn dupe(allocator: *Allocator, comptime T: type, m: []const T) ![]T { + const new_buf = try allocator.alloc(T, m.len); + copy(T, new_buf, m); + return new_buf; +} + +/// Remove values from the beginning of a slice. +pub fn trimLeft(comptime T: type, slice: []const T, values_to_strip: []const T) []const T { + var begin: usize = 0; + while (begin < slice.len and indexOfScalar(T, values_to_strip, slice[begin]) != null) : (begin += 1) {} + return slice[begin..]; +} + +/// Remove values from the end of a slice. +pub fn trimRight(comptime T: type, slice: []const T, values_to_strip: []const T) []const T { + var end: usize = slice.len; + while (end > 0 and indexOfScalar(T, values_to_strip, slice[end - 1]) != null) : (end -= 1) {} + return slice[0..end]; +} + +/// Remove values from the beginning and end of a slice. +pub fn trim(comptime T: type, slice: []const T, values_to_strip: []const T) []const T { + var begin: usize = 0; + var end: usize = slice.len; + while (begin < end and indexOfScalar(T, values_to_strip, slice[begin]) != null) : (begin += 1) {} + while (end > begin and indexOfScalar(T, values_to_strip, slice[end - 1]) != null) : (end -= 1) {} + return slice[begin..end]; +} + +test "mem.trim" { + testing.expectEqualSlices(u8, "foo\n ", trimLeft(u8, " foo\n ", " \n")); + testing.expectEqualSlices(u8, " foo", trimRight(u8, " foo\n ", " \n")); + testing.expectEqualSlices(u8, "foo", trim(u8, " foo\n ", " \n")); + testing.expectEqualSlices(u8, "foo", trim(u8, "foo", " \n")); +} + +/// Linear search for the index of a scalar value inside a slice. +pub fn indexOfScalar(comptime T: type, slice: []const T, value: T) ?usize { + return indexOfScalarPos(T, slice, 0, value); +} + +/// Linear search for the last index of a scalar value inside a slice. +pub fn lastIndexOfScalar(comptime T: type, slice: []const T, value: T) ?usize { + var i: usize = slice.len; + while (i != 0) { + i -= 1; + if (slice[i] == value) return i; + } + return null; +} + +pub fn indexOfScalarPos(comptime T: type, slice: []const T, start_index: usize, value: T) ?usize { + var i: usize = start_index; + while (i < slice.len) : (i += 1) { + if (slice[i] == value) return i; + } + return null; +} + +pub fn indexOfAny(comptime T: type, slice: []const T, values: []const T) ?usize { + return indexOfAnyPos(T, slice, 0, values); +} + +pub fn lastIndexOfAny(comptime T: type, slice: []const T, values: []const T) ?usize { + var i: usize = slice.len; + while (i != 0) { + i -= 1; + for (values) |value| { + if (slice[i] == value) return i; + } + } + return null; +} + +pub fn indexOfAnyPos(comptime T: type, slice: []const T, start_index: usize, values: []const T) ?usize { + var i: usize = start_index; + while (i < slice.len) : (i += 1) { + for (values) |value| { + if (slice[i] == value) return i; + } + } + return null; +} + +pub fn indexOf(comptime T: type, haystack: []const T, needle: []const T) ?usize { + return indexOfPos(T, haystack, 0, needle); +} + +/// Find the index in a slice of a sub-slice, searching from the end backwards. +/// To start looking at a different index, slice the haystack first. +/// TODO is there even a better algorithm for this? +pub fn lastIndexOf(comptime T: type, haystack: []const T, needle: []const T) ?usize { + if (needle.len > haystack.len) return null; + + var i: usize = haystack.len - needle.len; + while (true) : (i -= 1) { + if (mem.eql(T, haystack[i .. i + needle.len], needle)) return i; + if (i == 0) return null; + } +} + +// TODO boyer-moore algorithm +pub fn indexOfPos(comptime T: type, haystack: []const T, start_index: usize, needle: []const T) ?usize { + if (needle.len > haystack.len) return null; + + var i: usize = start_index; + const end = haystack.len - needle.len; + while (i <= end) : (i += 1) { + if (eql(T, haystack[i .. i + needle.len], needle)) return i; + } + return null; +} + +test "mem.indexOf" { + testing.expect(indexOf(u8, "one two three four", "four").? == 14); + testing.expect(lastIndexOf(u8, "one two three two four", "two").? == 14); + testing.expect(indexOf(u8, "one two three four", "gour") == null); + testing.expect(lastIndexOf(u8, "one two three four", "gour") == null); + testing.expect(indexOf(u8, "foo", "foo").? == 0); + testing.expect(lastIndexOf(u8, "foo", "foo").? == 0); + testing.expect(indexOf(u8, "foo", "fool") == null); + testing.expect(lastIndexOf(u8, "foo", "lfoo") == null); + testing.expect(lastIndexOf(u8, "foo", "fool") == null); + + testing.expect(indexOf(u8, "foo foo", "foo").? == 0); + testing.expect(lastIndexOf(u8, "foo foo", "foo").? == 4); + testing.expect(lastIndexOfAny(u8, "boo, cat", "abo").? == 6); + testing.expect(lastIndexOfScalar(u8, "boo", 'o').? == 2); +} + +/// Reads an integer from memory with size equal to bytes.len. +/// T specifies the return type, which must be large enough to store +/// the result. +pub fn readVarInt(comptime ReturnType: type, bytes: []const u8, endian: builtin.Endian) ReturnType { + var result: ReturnType = 0; + switch (endian) { + builtin.Endian.Big => { + for (bytes) |b| { + result = (result << 8) | b; + } + }, + builtin.Endian.Little => { + const ShiftType = math.Log2Int(ReturnType); + for (bytes) |b, index| { + result = result | (ReturnType(b) << @intCast(ShiftType, index * 8)); + } + }, + } + return result; +} + +/// Reads an integer from memory with bit count specified by T. +/// The bit count of T must be evenly divisible by 8. +/// This function cannot fail and cannot cause undefined behavior. +/// Assumes the endianness of memory is native. This means the function can +/// simply pointer cast memory. +pub fn readIntNative(comptime T: type, bytes: *const [@divExact(T.bit_count, 8)]u8) T { + return @ptrCast(*align(1) const T, bytes).*; +} + +/// Reads an integer from memory with bit count specified by T. +/// The bit count of T must be evenly divisible by 8. +/// This function cannot fail and cannot cause undefined behavior. +/// Assumes the endianness of memory is foreign, so it must byte-swap. +pub fn readIntForeign(comptime T: type, bytes: *const [@divExact(T.bit_count, 8)]u8) T { + return @byteSwap(T, readIntNative(T, bytes)); +} + +pub const readIntLittle = switch (builtin.endian) { + builtin.Endian.Little => readIntNative, + builtin.Endian.Big => readIntForeign, +}; + +pub const readIntBig = switch (builtin.endian) { + builtin.Endian.Little => readIntForeign, + builtin.Endian.Big => readIntNative, +}; + +/// Asserts that bytes.len >= T.bit_count / 8. Reads the integer starting from index 0 +/// and ignores extra bytes. +/// The bit count of T must be evenly divisible by 8. +/// Assumes the endianness of memory is native. This means the function can +/// simply pointer cast memory. +pub fn readIntSliceNative(comptime T: type, bytes: []const u8) T { + const n = @divExact(T.bit_count, 8); + assert(bytes.len >= n); + // TODO https://github.com/ziglang/zig/issues/863 + return readIntNative(T, @ptrCast(*const [n]u8, bytes.ptr)); +} + +/// Asserts that bytes.len >= T.bit_count / 8. Reads the integer starting from index 0 +/// and ignores extra bytes. +/// The bit count of T must be evenly divisible by 8. +/// Assumes the endianness of memory is foreign, so it must byte-swap. +pub fn readIntSliceForeign(comptime T: type, bytes: []const u8) T { + return @byteSwap(T, readIntSliceNative(T, bytes)); +} + +pub const readIntSliceLittle = switch (builtin.endian) { + builtin.Endian.Little => readIntSliceNative, + builtin.Endian.Big => readIntSliceForeign, +}; + +pub const readIntSliceBig = switch (builtin.endian) { + builtin.Endian.Little => readIntSliceForeign, + builtin.Endian.Big => readIntSliceNative, +}; + +/// Reads an integer from memory with bit count specified by T. +/// The bit count of T must be evenly divisible by 8. +/// This function cannot fail and cannot cause undefined behavior. +pub fn readInt(comptime T: type, bytes: *const [@divExact(T.bit_count, 8)]u8, endian: builtin.Endian) T { + if (endian == builtin.endian) { + return readIntNative(T, bytes); + } else { + return readIntForeign(T, bytes); + } +} + +/// Asserts that bytes.len >= T.bit_count / 8. Reads the integer starting from index 0 +/// and ignores extra bytes. +/// The bit count of T must be evenly divisible by 8. +pub fn readIntSlice(comptime T: type, bytes: []const u8, endian: builtin.Endian) T { + const n = @divExact(T.bit_count, 8); + assert(bytes.len >= n); + // TODO https://github.com/ziglang/zig/issues/863 + return readInt(T, @ptrCast(*const [n]u8, bytes.ptr), endian); +} + +test "comptime read/write int" { + comptime { + var bytes: [2]u8 = undefined; + writeIntLittle(u16, &bytes, 0x1234); + const result = readIntBig(u16, &bytes); + testing.expect(result == 0x3412); + } + comptime { + var bytes: [2]u8 = undefined; + writeIntBig(u16, &bytes, 0x1234); + const result = readIntLittle(u16, &bytes); + testing.expect(result == 0x3412); + } +} + +test "readIntBig and readIntLittle" { + testing.expect(readIntSliceBig(u0, [_]u8{}) == 0x0); + testing.expect(readIntSliceLittle(u0, [_]u8{}) == 0x0); + + testing.expect(readIntSliceBig(u8, [_]u8{0x32}) == 0x32); + testing.expect(readIntSliceLittle(u8, [_]u8{0x12}) == 0x12); + + testing.expect(readIntSliceBig(u16, [_]u8{ 0x12, 0x34 }) == 0x1234); + testing.expect(readIntSliceLittle(u16, [_]u8{ 0x12, 0x34 }) == 0x3412); + + testing.expect(readIntSliceBig(u72, [_]u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 }) == 0x123456789abcdef024); + testing.expect(readIntSliceLittle(u72, [_]u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }) == 0xfedcba9876543210ec); + + testing.expect(readIntSliceBig(i8, [_]u8{0xff}) == -1); + testing.expect(readIntSliceLittle(i8, [_]u8{0xfe}) == -2); + + testing.expect(readIntSliceBig(i16, [_]u8{ 0xff, 0xfd }) == -3); + testing.expect(readIntSliceLittle(i16, [_]u8{ 0xfc, 0xff }) == -4); +} + +/// Writes an integer to memory, storing it in twos-complement. +/// This function always succeeds, has defined behavior for all inputs, and +/// accepts any integer bit width. +/// This function stores in native endian, which means it is implemented as a simple +/// memory store. +pub fn writeIntNative(comptime T: type, buf: *[(T.bit_count + 7) / 8]u8, value: T) void { + @ptrCast(*align(1) T, buf).* = value; +} + +/// Writes an integer to memory, storing it in twos-complement. +/// This function always succeeds, has defined behavior for all inputs, but +/// the integer bit width must be divisible by 8. +/// This function stores in foreign endian, which means it does a @byteSwap first. +pub fn writeIntForeign(comptime T: type, buf: *[@divExact(T.bit_count, 8)]u8, value: T) void { + writeIntNative(T, buf, @byteSwap(T, value)); +} + +pub const writeIntLittle = switch (builtin.endian) { + builtin.Endian.Little => writeIntNative, + builtin.Endian.Big => writeIntForeign, +}; + +pub const writeIntBig = switch (builtin.endian) { + builtin.Endian.Little => writeIntForeign, + builtin.Endian.Big => writeIntNative, +}; + +/// Writes an integer to memory, storing it in twos-complement. +/// This function always succeeds, has defined behavior for all inputs, but +/// the integer bit width must be divisible by 8. +pub fn writeInt(comptime T: type, buffer: *[@divExact(T.bit_count, 8)]u8, value: T, endian: builtin.Endian) void { + if (endian == builtin.endian) { + return writeIntNative(T, buffer, value); + } else { + return writeIntForeign(T, buffer, value); + } +} + +/// Writes a twos-complement little-endian integer to memory. +/// Asserts that buf.len >= T.bit_count / 8. +/// The bit count of T must be divisible by 8. +/// Any extra bytes in buffer after writing the integer are set to zero. To +/// avoid the branch to check for extra buffer bytes, use writeIntLittle +/// instead. +pub fn writeIntSliceLittle(comptime T: type, buffer: []u8, value: T) void { + assert(buffer.len >= @divExact(T.bit_count, 8)); + + // TODO I want to call writeIntLittle here but comptime eval facilities aren't good enough + const uint = @IntType(false, T.bit_count); + var bits = @truncate(uint, value); + for (buffer) |*b| { + b.* = @truncate(u8, bits); + bits >>= 8; + } +} + +/// Writes a twos-complement big-endian integer to memory. +/// Asserts that buffer.len >= T.bit_count / 8. +/// The bit count of T must be divisible by 8. +/// Any extra bytes in buffer before writing the integer are set to zero. To +/// avoid the branch to check for extra buffer bytes, use writeIntBig instead. +pub fn writeIntSliceBig(comptime T: type, buffer: []u8, value: T) void { + assert(buffer.len >= @divExact(T.bit_count, 8)); + + // TODO I want to call writeIntBig here but comptime eval facilities aren't good enough + const uint = @IntType(false, T.bit_count); + var bits = @truncate(uint, value); + var index: usize = buffer.len; + while (index != 0) { + index -= 1; + buffer[index] = @truncate(u8, bits); + bits >>= 8; + } +} + +pub const writeIntSliceNative = switch (builtin.endian) { + builtin.Endian.Little => writeIntSliceLittle, + builtin.Endian.Big => writeIntSliceBig, +}; + +pub const writeIntSliceForeign = switch (builtin.endian) { + builtin.Endian.Little => writeIntSliceBig, + builtin.Endian.Big => writeIntSliceLittle, +}; + +/// Writes a twos-complement integer to memory, with the specified endianness. +/// Asserts that buf.len >= T.bit_count / 8. +/// The bit count of T must be evenly divisible by 8. +/// Any extra bytes in buffer not part of the integer are set to zero, with +/// respect to endianness. To avoid the branch to check for extra buffer bytes, +/// use writeInt instead. +pub fn writeIntSlice(comptime T: type, buffer: []u8, value: T, endian: builtin.Endian) void { + comptime assert(T.bit_count % 8 == 0); + switch (endian) { + builtin.Endian.Little => return writeIntSliceLittle(T, buffer, value), + builtin.Endian.Big => return writeIntSliceBig(T, buffer, value), + } +} + +test "writeIntBig and writeIntLittle" { + var buf0: [0]u8 = undefined; + var buf1: [1]u8 = undefined; + var buf2: [2]u8 = undefined; + var buf9: [9]u8 = undefined; + + writeIntBig(u0, &buf0, 0x0); + testing.expect(eql(u8, buf0[0..], [_]u8{})); + writeIntLittle(u0, &buf0, 0x0); + testing.expect(eql(u8, buf0[0..], [_]u8{})); + + writeIntBig(u8, &buf1, 0x12); + testing.expect(eql(u8, buf1[0..], [_]u8{0x12})); + writeIntLittle(u8, &buf1, 0x34); + testing.expect(eql(u8, buf1[0..], [_]u8{0x34})); + + writeIntBig(u16, &buf2, 0x1234); + testing.expect(eql(u8, buf2[0..], [_]u8{ 0x12, 0x34 })); + writeIntLittle(u16, &buf2, 0x5678); + testing.expect(eql(u8, buf2[0..], [_]u8{ 0x78, 0x56 })); + + writeIntBig(u72, &buf9, 0x123456789abcdef024); + testing.expect(eql(u8, buf9[0..], [_]u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 })); + writeIntLittle(u72, &buf9, 0xfedcba9876543210ec); + testing.expect(eql(u8, buf9[0..], [_]u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe })); + + writeIntBig(i8, &buf1, -1); + testing.expect(eql(u8, buf1[0..], [_]u8{0xff})); + writeIntLittle(i8, &buf1, -2); + testing.expect(eql(u8, buf1[0..], [_]u8{0xfe})); + + writeIntBig(i16, &buf2, -3); + testing.expect(eql(u8, buf2[0..], [_]u8{ 0xff, 0xfd })); + writeIntLittle(i16, &buf2, -4); + testing.expect(eql(u8, buf2[0..], [_]u8{ 0xfc, 0xff })); +} + +/// Returns an iterator that iterates over the slices of `buffer` that are not +/// any of the bytes in `delimiter_bytes`. +/// tokenize(" abc def ghi ", " ") +/// Will return slices for "abc", "def", "ghi", null, in that order. +/// If `buffer` is empty, the iterator will return null. +/// If `delimiter_bytes` does not exist in buffer, +/// the iterator will return `buffer`, null, in that order. +/// See also the related function `separate`. +pub fn tokenize(buffer: []const u8, delimiter_bytes: []const u8) TokenIterator { + return TokenIterator{ + .index = 0, + .buffer = buffer, + .delimiter_bytes = delimiter_bytes, + }; +} + +test "mem.tokenize" { + var it = tokenize(" abc def ghi ", " "); + testing.expect(eql(u8, it.next().?, "abc")); + testing.expect(eql(u8, it.next().?, "def")); + testing.expect(eql(u8, it.next().?, "ghi")); + testing.expect(it.next() == null); + + it = tokenize("..\\bob", "\\"); + testing.expect(eql(u8, it.next().?, "..")); + testing.expect(eql(u8, "..", "..\\bob"[0..it.index])); + testing.expect(eql(u8, it.next().?, "bob")); + testing.expect(it.next() == null); + + it = tokenize("//a/b", "/"); + testing.expect(eql(u8, it.next().?, "a")); + testing.expect(eql(u8, it.next().?, "b")); + testing.expect(eql(u8, "//a/b", "//a/b"[0..it.index])); + testing.expect(it.next() == null); + + it = tokenize("|", "|"); + testing.expect(it.next() == null); + + it = tokenize("", "|"); + testing.expect(it.next() == null); + + it = tokenize("hello", ""); + testing.expect(eql(u8, it.next().?, "hello")); + testing.expect(it.next() == null); + + it = tokenize("hello", " "); + testing.expect(eql(u8, it.next().?, "hello")); + testing.expect(it.next() == null); +} + +test "mem.tokenize (multibyte)" { + var it = tokenize("a|b,c/d e", " /,|"); + testing.expect(eql(u8, it.next().?, "a")); + testing.expect(eql(u8, it.next().?, "b")); + testing.expect(eql(u8, it.next().?, "c")); + testing.expect(eql(u8, it.next().?, "d")); + testing.expect(eql(u8, it.next().?, "e")); + testing.expect(it.next() == null); +} + +/// Returns an iterator that iterates over the slices of `buffer` that +/// are separated by bytes in `delimiter`. +/// separate("abc|def||ghi", "|") +/// will return slices for "abc", "def", "", "ghi", null, in that order. +/// If `delimiter` does not exist in buffer, +/// the iterator will return `buffer`, null, in that order. +/// The delimiter length must not be zero. +/// See also the related function `tokenize`. +/// It is planned to rename this function to `split` before 1.0.0, like this: +/// pub fn split(buffer: []const u8, delimiter: []const u8) SplitIterator { +pub fn separate(buffer: []const u8, delimiter: []const u8) SplitIterator { + assert(delimiter.len != 0); + return SplitIterator{ + .index = 0, + .buffer = buffer, + .delimiter = delimiter, + }; +} + +test "mem.separate" { + var it = separate("abc|def||ghi", "|"); + testing.expect(eql(u8, it.next().?, "abc")); + testing.expect(eql(u8, it.next().?, "def")); + testing.expect(eql(u8, it.next().?, "")); + testing.expect(eql(u8, it.next().?, "ghi")); + testing.expect(it.next() == null); + + it = separate("", "|"); + testing.expect(eql(u8, it.next().?, "")); + testing.expect(it.next() == null); + + it = separate("|", "|"); + testing.expect(eql(u8, it.next().?, "")); + testing.expect(eql(u8, it.next().?, "")); + testing.expect(it.next() == null); + + it = separate("hello", " "); + testing.expect(eql(u8, it.next().?, "hello")); + testing.expect(it.next() == null); +} + +test "mem.separate (multibyte)" { + var it = separate("a, b ,, c, d, e", ", "); + testing.expect(eql(u8, it.next().?, "a")); + testing.expect(eql(u8, it.next().?, "b ,")); + testing.expect(eql(u8, it.next().?, "c")); + testing.expect(eql(u8, it.next().?, "d")); + testing.expect(eql(u8, it.next().?, "e")); + testing.expect(it.next() == null); +} + +pub fn startsWith(comptime T: type, haystack: []const T, needle: []const T) bool { + return if (needle.len > haystack.len) false else eql(T, haystack[0..needle.len], needle); +} + +test "mem.startsWith" { + testing.expect(startsWith(u8, "Bob", "Bo")); + testing.expect(!startsWith(u8, "Needle in haystack", "haystack")); +} + +pub fn endsWith(comptime T: type, haystack: []const T, needle: []const T) bool { + return if (needle.len > haystack.len) false else eql(T, haystack[haystack.len - needle.len ..], needle); +} + +test "mem.endsWith" { + testing.expect(endsWith(u8, "Needle in haystack", "haystack")); + testing.expect(!endsWith(u8, "Bob", "Bo")); +} + +pub const TokenIterator = struct { + buffer: []const u8, + delimiter_bytes: []const u8, + index: usize, + + /// Returns a slice of the next token, or null if tokenization is complete. + pub fn next(self: *TokenIterator) ?[]const u8 { + // move to beginning of token + while (self.index < self.buffer.len and self.isSplitByte(self.buffer[self.index])) : (self.index += 1) {} + const start = self.index; + if (start == self.buffer.len) { + return null; + } + + // move to end of token + while (self.index < self.buffer.len and !self.isSplitByte(self.buffer[self.index])) : (self.index += 1) {} + const end = self.index; + + return self.buffer[start..end]; + } + + /// Returns a slice of the remaining bytes. Does not affect iterator state. + pub fn rest(self: TokenIterator) []const u8 { + // move to beginning of token + var index: usize = self.index; + while (index < self.buffer.len and self.isSplitByte(self.buffer[index])) : (index += 1) {} + return self.buffer[index..]; + } + + fn isSplitByte(self: TokenIterator, byte: u8) bool { + for (self.delimiter_bytes) |delimiter_byte| { + if (byte == delimiter_byte) { + return true; + } + } + return false; + } +}; + +pub const SplitIterator = struct { + buffer: []const u8, + index: ?usize, + delimiter: []const u8, + + /// Returns a slice of the next field, or null if splitting is complete. + pub fn next(self: *SplitIterator) ?[]const u8 { + const start = self.index orelse return null; + const end = if (indexOfPos(u8, self.buffer, start, self.delimiter)) |delim_start| blk: { + self.index = delim_start + self.delimiter.len; + break :blk delim_start; + } else blk: { + self.index = null; + break :blk self.buffer.len; + }; + return self.buffer[start..end]; + } + + /// Returns a slice of the remaining bytes. Does not affect iterator state. + pub fn rest(self: SplitIterator) []const u8 { + const end = self.buffer.len; + const start = self.index orelse end; + return self.buffer[start..end]; + } +}; + +/// Naively combines a series of slices with a separator. +/// Allocates memory for the result, which must be freed by the caller. +pub fn join(allocator: *Allocator, separator: []const u8, slices: []const []const u8) ![]u8 { + if (slices.len == 0) return (([*]u8)(undefined))[0..0]; + + const total_len = blk: { + var sum: usize = separator.len * (slices.len - 1); + for (slices) |slice| + sum += slice.len; + break :blk sum; + }; + + const buf = try allocator.alloc(u8, total_len); + errdefer allocator.free(buf); + + copy(u8, buf, slices[0]); + var buf_index: usize = slices[0].len; + for (slices[1..]) |slice| { + copy(u8, buf[buf_index..], separator); + buf_index += separator.len; + copy(u8, buf[buf_index..], slice); + buf_index += slice.len; + } + + // No need for shrink since buf is exactly the correct size. + return buf; +} + +test "mem.join" { + var buf: [1024]u8 = undefined; + const a = &std.heap.FixedBufferAllocator.init(&buf).allocator; + testing.expect(eql(u8, try join(a, ",", [_][]const u8{ "a", "b", "c" }), "a,b,c")); + testing.expect(eql(u8, try join(a, ",", [_][]const u8{"a"}), "a")); + testing.expect(eql(u8, try join(a, ",", [_][]const u8{ "a", "", "b", "", "c" }), "a,,b,,c")); +} + +/// Copies each T from slices into a new slice that exactly holds all the elements. +pub fn concat(allocator: *Allocator, comptime T: type, slices: []const []const T) ![]T { + if (slices.len == 0) return (([*]T)(undefined))[0..0]; + + const total_len = blk: { + var sum: usize = 0; + for (slices) |slice| { + sum += slice.len; + } + break :blk sum; + }; + + const buf = try allocator.alloc(T, total_len); + errdefer allocator.free(buf); + + var buf_index: usize = 0; + for (slices) |slice| { + copy(T, buf[buf_index..], slice); + buf_index += slice.len; + } + + // No need for shrink since buf is exactly the correct size. + return buf; +} + +test "concat" { + var buf: [1024]u8 = undefined; + const a = &std.heap.FixedBufferAllocator.init(&buf).allocator; + testing.expect(eql(u8, try concat(a, u8, [_][]const u8{ "abc", "def", "ghi" }), "abcdefghi")); + testing.expect(eql(u32, try concat(a, u32, [_][]const u32{ + [_]u32{ 0, 1 }, + [_]u32{ 2, 3, 4 }, + [_]u32{}, + [_]u32{5}, + }), [_]u32{ 0, 1, 2, 3, 4, 5 })); +} + +test "testStringEquality" { + testing.expect(eql(u8, "abcd", "abcd")); + testing.expect(!eql(u8, "abcdef", "abZdef")); + testing.expect(!eql(u8, "abcdefg", "abcdef")); +} + +test "testReadInt" { + testReadIntImpl(); + comptime testReadIntImpl(); +} +fn testReadIntImpl() void { + { + const bytes = [_]u8{ + 0x12, + 0x34, + 0x56, + 0x78, + }; + testing.expect(readInt(u32, &bytes, builtin.Endian.Big) == 0x12345678); + testing.expect(readIntBig(u32, &bytes) == 0x12345678); + testing.expect(readIntBig(i32, &bytes) == 0x12345678); + testing.expect(readInt(u32, &bytes, builtin.Endian.Little) == 0x78563412); + testing.expect(readIntLittle(u32, &bytes) == 0x78563412); + testing.expect(readIntLittle(i32, &bytes) == 0x78563412); + } + { + const buf = [_]u8{ + 0x00, + 0x00, + 0x12, + 0x34, + }; + const answer = readInt(u32, &buf, builtin.Endian.Big); + testing.expect(answer == 0x00001234); + } + { + const buf = [_]u8{ + 0x12, + 0x34, + 0x00, + 0x00, + }; + const answer = readInt(u32, &buf, builtin.Endian.Little); + testing.expect(answer == 0x00003412); + } + { + const bytes = [_]u8{ + 0xff, + 0xfe, + }; + testing.expect(readIntBig(u16, &bytes) == 0xfffe); + testing.expect(readIntBig(i16, &bytes) == -0x0002); + testing.expect(readIntLittle(u16, &bytes) == 0xfeff); + testing.expect(readIntLittle(i16, &bytes) == -0x0101); + } +} + +test "writeIntSlice" { + testWriteIntImpl(); + comptime testWriteIntImpl(); +} +fn testWriteIntImpl() void { + var bytes: [8]u8 = undefined; + + writeIntSlice(u0, bytes[0..], 0, builtin.Endian.Big); + testing.expect(eql(u8, bytes, [_]u8{ + 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, + })); + + writeIntSlice(u0, bytes[0..], 0, builtin.Endian.Little); + testing.expect(eql(u8, bytes, [_]u8{ + 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, + })); + + writeIntSlice(u64, bytes[0..], 0x12345678CAFEBABE, builtin.Endian.Big); + testing.expect(eql(u8, bytes, [_]u8{ + 0x12, + 0x34, + 0x56, + 0x78, + 0xCA, + 0xFE, + 0xBA, + 0xBE, + })); + + writeIntSlice(u64, bytes[0..], 0xBEBAFECA78563412, builtin.Endian.Little); + testing.expect(eql(u8, bytes, [_]u8{ + 0x12, + 0x34, + 0x56, + 0x78, + 0xCA, + 0xFE, + 0xBA, + 0xBE, + })); + + writeIntSlice(u32, bytes[0..], 0x12345678, builtin.Endian.Big); + testing.expect(eql(u8, bytes, [_]u8{ + 0x00, + 0x00, + 0x00, + 0x00, + 0x12, + 0x34, + 0x56, + 0x78, + })); + + writeIntSlice(u32, bytes[0..], 0x78563412, builtin.Endian.Little); + testing.expect(eql(u8, bytes, [_]u8{ + 0x12, + 0x34, + 0x56, + 0x78, + 0x00, + 0x00, + 0x00, + 0x00, + })); + + writeIntSlice(u16, bytes[0..], 0x1234, builtin.Endian.Big); + testing.expect(eql(u8, bytes, [_]u8{ + 0x00, + 0x00, + 0x00, + 0x00, + 0x00, + 0x00, + 0x12, + 0x34, + })); + + writeIntSlice(u16, bytes[0..], 0x1234, builtin.Endian.Little); + testing.expect(eql(u8, bytes, [_]u8{ + 0x34, + 0x12, + 0x00, + 0x00, + 0x00, + 0x00, + 0x00, + 0x00, + })); +} + +pub fn min(comptime T: type, slice: []const T) T { + var best = slice[0]; + for (slice[1..]) |item| { + best = math.min(best, item); + } + return best; +} + +test "mem.min" { + testing.expect(min(u8, "abcdefg") == 'a'); +} + +pub fn max(comptime T: type, slice: []const T) T { + var best = slice[0]; + for (slice[1..]) |item| { + best = math.max(best, item); + } + return best; +} + +test "mem.max" { + testing.expect(max(u8, "abcdefg") == 'g'); +} + +pub fn swap(comptime T: type, a: *T, b: *T) void { + const tmp = a.*; + a.* = b.*; + b.* = tmp; +} + +/// In-place order reversal of a slice +pub fn reverse(comptime T: type, items: []T) void { + var i: usize = 0; + const end = items.len / 2; + while (i < end) : (i += 1) { + swap(T, &items[i], &items[items.len - i - 1]); + } +} + +test "reverse" { + var arr = [_]i32{ + 5, + 3, + 1, + 2, + 4, + }; + reverse(i32, arr[0..]); + + testing.expect(eql(i32, arr, [_]i32{ + 4, + 2, + 1, + 3, + 5, + })); +} + +/// In-place rotation of the values in an array ([0 1 2 3] becomes [1 2 3 0] if we rotate by 1) +/// Assumes 0 <= amount <= items.len +pub fn rotate(comptime T: type, items: []T, amount: usize) void { + reverse(T, items[0..amount]); + reverse(T, items[amount..]); + reverse(T, items); +} + +test "rotate" { + var arr = [_]i32{ + 5, + 3, + 1, + 2, + 4, + }; + rotate(i32, arr[0..], 2); + + testing.expect(eql(i32, arr, [_]i32{ + 1, + 2, + 4, + 5, + 3, + })); +} + +/// Converts a little-endian integer to host endianness. +pub fn littleToNative(comptime T: type, x: T) T { + return switch (builtin.endian) { + builtin.Endian.Little => x, + builtin.Endian.Big => @byteSwap(T, x), + }; +} + +/// Converts a big-endian integer to host endianness. +pub fn bigToNative(comptime T: type, x: T) T { + return switch (builtin.endian) { + builtin.Endian.Little => @byteSwap(T, x), + builtin.Endian.Big => x, + }; +} + +/// Converts an integer from specified endianness to host endianness. +pub fn toNative(comptime T: type, x: T, endianness_of_x: builtin.Endian) T { + return switch (endianness_of_x) { + builtin.Endian.Little => littleToNative(T, x), + builtin.Endian.Big => bigToNative(T, x), + }; +} + +/// Converts an integer which has host endianness to the desired endianness. +pub fn nativeTo(comptime T: type, x: T, desired_endianness: builtin.Endian) T { + return switch (desired_endianness) { + builtin.Endian.Little => nativeToLittle(T, x), + builtin.Endian.Big => nativeToBig(T, x), + }; +} + +/// Converts an integer which has host endianness to little endian. +pub fn nativeToLittle(comptime T: type, x: T) T { + return switch (builtin.endian) { + builtin.Endian.Little => x, + builtin.Endian.Big => @byteSwap(T, x), + }; +} + +/// Converts an integer which has host endianness to big endian. +pub fn nativeToBig(comptime T: type, x: T) T { + return switch (builtin.endian) { + builtin.Endian.Little => @byteSwap(T, x), + builtin.Endian.Big => x, + }; +} + +fn AsBytesReturnType(comptime P: type) type { + if (comptime !trait.isSingleItemPtr(P)) + @compileError("expected single item " ++ "pointer, passed " ++ @typeName(P)); + + const size = usize(@sizeOf(meta.Child(P))); + const alignment = comptime meta.alignment(P); + + if (comptime trait.isConstPtr(P)) + return *align(alignment) const [size]u8; + return *align(alignment) [size]u8; +} + +///Given a pointer to a single item, returns a slice of the underlying bytes, preserving constness. +pub fn asBytes(ptr: var) AsBytesReturnType(@typeOf(ptr)) { + const P = @typeOf(ptr); + return @ptrCast(AsBytesReturnType(P), ptr); +} + +test "asBytes" { + const deadbeef = u32(0xDEADBEEF); + const deadbeef_bytes = switch (builtin.endian) { + builtin.Endian.Big => "\xDE\xAD\xBE\xEF", + builtin.Endian.Little => "\xEF\xBE\xAD\xDE", + }; + + testing.expect(eql(u8, asBytes(&deadbeef), deadbeef_bytes)); + + var codeface = u32(0xC0DEFACE); + for (asBytes(&codeface).*) |*b| + b.* = 0; + testing.expect(codeface == 0); + + const S = packed struct { + a: u8, + b: u8, + c: u8, + d: u8, + }; + + const inst = S{ + .a = 0xBE, + .b = 0xEF, + .c = 0xDE, + .d = 0xA1, + }; + testing.expect(eql(u8, asBytes(&inst), "\xBE\xEF\xDE\xA1")); +} + +///Given any value, returns a copy of its bytes in an array. +pub fn toBytes(value: var) [@sizeOf(@typeOf(value))]u8 { + return asBytes(&value).*; +} + +test "toBytes" { + var my_bytes = toBytes(u32(0x12345678)); + switch (builtin.endian) { + builtin.Endian.Big => testing.expect(eql(u8, my_bytes, "\x12\x34\x56\x78")), + builtin.Endian.Little => testing.expect(eql(u8, my_bytes, "\x78\x56\x34\x12")), + } + + my_bytes[0] = '\x99'; + switch (builtin.endian) { + builtin.Endian.Big => testing.expect(eql(u8, my_bytes, "\x99\x34\x56\x78")), + builtin.Endian.Little => testing.expect(eql(u8, my_bytes, "\x99\x56\x34\x12")), + } +} + +fn BytesAsValueReturnType(comptime T: type, comptime B: type) type { + const size = usize(@sizeOf(T)); + + if (comptime !trait.is(builtin.TypeId.Pointer)(B) or meta.Child(B) != [size]u8) { + @compileError("expected *[N]u8 " ++ ", passed " ++ @typeName(B)); + } + + const alignment = comptime meta.alignment(B); + + return if (comptime trait.isConstPtr(B)) *align(alignment) const T else *align(alignment) T; +} + +///Given a pointer to an array of bytes, returns a pointer to a value of the specified type +/// backed by those bytes, preserving constness. +pub fn bytesAsValue(comptime T: type, bytes: var) BytesAsValueReturnType(T, @typeOf(bytes)) { + return @ptrCast(BytesAsValueReturnType(T, @typeOf(bytes)), bytes); +} + +test "bytesAsValue" { + const deadbeef = u32(0xDEADBEEF); + const deadbeef_bytes = switch (builtin.endian) { + builtin.Endian.Big => "\xDE\xAD\xBE\xEF", + builtin.Endian.Little => "\xEF\xBE\xAD\xDE", + }; + + testing.expect(deadbeef == bytesAsValue(u32, &deadbeef_bytes).*); + + var codeface_bytes = switch (builtin.endian) { + builtin.Endian.Big => "\xC0\xDE\xFA\xCE", + builtin.Endian.Little => "\xCE\xFA\xDE\xC0", + }; + var codeface = bytesAsValue(u32, &codeface_bytes); + testing.expect(codeface.* == 0xC0DEFACE); + codeface.* = 0; + for (codeface_bytes) |b| + testing.expect(b == 0); + + const S = packed struct { + a: u8, + b: u8, + c: u8, + d: u8, + }; + + const inst = S{ + .a = 0xBE, + .b = 0xEF, + .c = 0xDE, + .d = 0xA1, + }; + const inst_bytes = "\xBE\xEF\xDE\xA1"; + const inst2 = bytesAsValue(S, &inst_bytes); + testing.expect(meta.eql(inst, inst2.*)); +} + +///Given a pointer to an array of bytes, returns a value of the specified type backed by a +/// copy of those bytes. +pub fn bytesToValue(comptime T: type, bytes: var) T { + return bytesAsValue(T, &bytes).*; +} +test "bytesToValue" { + const deadbeef_bytes = switch (builtin.endian) { + builtin.Endian.Big => "\xDE\xAD\xBE\xEF", + builtin.Endian.Little => "\xEF\xBE\xAD\xDE", + }; + + const deadbeef = bytesToValue(u32, deadbeef_bytes); + testing.expect(deadbeef == u32(0xDEADBEEF)); +} + +fn SubArrayPtrReturnType(comptime T: type, comptime length: usize) type { + if (trait.isConstPtr(T)) + return *const [length]meta.Child(meta.Child(T)); + return *[length]meta.Child(meta.Child(T)); +} + +///Given a pointer to an array, returns a pointer to a portion of that array, preserving constness. +pub fn subArrayPtr(ptr: var, comptime start: usize, comptime length: usize) SubArrayPtrReturnType(@typeOf(ptr), length) { + assert(start + length <= ptr.*.len); + + const ReturnType = SubArrayPtrReturnType(@typeOf(ptr), length); + const T = meta.Child(meta.Child(@typeOf(ptr))); + return @ptrCast(ReturnType, &ptr[start]); +} + +test "subArrayPtr" { + const a1 = "abcdef"; + const sub1 = subArrayPtr(&a1, 2, 3); + testing.expect(eql(u8, sub1.*, "cde")); + + var a2 = "abcdef"; + var sub2 = subArrayPtr(&a2, 2, 3); + + testing.expect(eql(u8, sub2, "cde")); + sub2[1] = 'X'; + testing.expect(eql(u8, a2, "abcXef")); +} + +/// Round an address up to the nearest aligned address +/// The alignment must be a power of 2 and greater than 0. +pub fn alignForward(addr: usize, alignment: usize) usize { + return alignBackward(addr + (alignment - 1), alignment); +} + +test "alignForward" { + testing.expect(alignForward(1, 1) == 1); + testing.expect(alignForward(2, 1) == 2); + testing.expect(alignForward(1, 2) == 2); + testing.expect(alignForward(2, 2) == 2); + testing.expect(alignForward(3, 2) == 4); + testing.expect(alignForward(4, 2) == 4); + testing.expect(alignForward(7, 8) == 8); + testing.expect(alignForward(8, 8) == 8); + testing.expect(alignForward(9, 8) == 16); + testing.expect(alignForward(15, 8) == 16); + testing.expect(alignForward(16, 8) == 16); + testing.expect(alignForward(17, 8) == 24); +} + +/// Round an address up to the previous aligned address +/// The alignment must be a power of 2 and greater than 0. +pub fn alignBackward(addr: usize, alignment: usize) usize { + assert(@popCount(usize, alignment) == 1); + // 000010000 // example addr + // 000001111 // subtract 1 + // 111110000 // binary not + return addr & ~(alignment - 1); +} + +/// Given an address and an alignment, return true if the address is a multiple of the alignment +/// The alignment must be a power of 2 and greater than 0. +pub fn isAligned(addr: usize, alignment: usize) bool { + return alignBackward(addr, alignment) == addr; +} + +test "isAligned" { + testing.expect(isAligned(0, 4)); + testing.expect(isAligned(1, 1)); + testing.expect(isAligned(2, 1)); + testing.expect(isAligned(2, 2)); + testing.expect(!isAligned(2, 4)); + testing.expect(isAligned(3, 1)); + testing.expect(!isAligned(3, 2)); + testing.expect(!isAligned(3, 4)); + testing.expect(isAligned(4, 4)); + testing.expect(isAligned(4, 2)); + testing.expect(isAligned(4, 1)); + testing.expect(!isAligned(4, 8)); + testing.expect(!isAligned(4, 16)); +} |
