aboutsummaryrefslogtreecommitdiff
path: root/lib/std/math/exp.zig
diff options
context:
space:
mode:
Diffstat (limited to 'lib/std/math/exp.zig')
-rw-r--r--lib/std/math/exp.zig218
1 files changed, 218 insertions, 0 deletions
diff --git a/lib/std/math/exp.zig b/lib/std/math/exp.zig
new file mode 100644
index 0000000000..718bbcd476
--- /dev/null
+++ b/lib/std/math/exp.zig
@@ -0,0 +1,218 @@
+// Ported from musl, which is licensed under the MIT license:
+// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
+//
+// https://git.musl-libc.org/cgit/musl/tree/src/math/expf.c
+// https://git.musl-libc.org/cgit/musl/tree/src/math/exp.c
+
+const std = @import("../std.zig");
+const math = std.math;
+const assert = std.debug.assert;
+const builtin = @import("builtin");
+
+/// Returns e raised to the power of x (e^x).
+///
+/// Special Cases:
+/// - exp(+inf) = +inf
+/// - exp(nan) = nan
+pub fn exp(x: var) @typeOf(x) {
+ const T = @typeOf(x);
+ return switch (T) {
+ f32 => exp32(x),
+ f64 => exp64(x),
+ else => @compileError("exp not implemented for " ++ @typeName(T)),
+ };
+}
+
+fn exp32(x_: f32) f32 {
+ const half = [_]f32{ 0.5, -0.5 };
+ const ln2hi = 6.9314575195e-1;
+ const ln2lo = 1.4286067653e-6;
+ const invln2 = 1.4426950216e+0;
+ const P1 = 1.6666625440e-1;
+ const P2 = -2.7667332906e-3;
+
+ var x = x_;
+ var hx = @bitCast(u32, x);
+ const sign = @intCast(i32, hx >> 31);
+ hx &= 0x7FFFFFFF;
+
+ if (math.isNan(x)) {
+ return x;
+ }
+
+ // |x| >= -87.33655 or nan
+ if (hx >= 0x42AEAC50) {
+ // nan
+ if (hx > 0x7F800000) {
+ return x;
+ }
+ // x >= 88.722839
+ if (hx >= 0x42b17218 and sign == 0) {
+ return x * 0x1.0p127;
+ }
+ if (sign != 0) {
+ math.forceEval(-0x1.0p-149 / x); // overflow
+ // x <= -103.972084
+ if (hx >= 0x42CFF1B5) {
+ return 0;
+ }
+ }
+ }
+
+ var k: i32 = undefined;
+ var hi: f32 = undefined;
+ var lo: f32 = undefined;
+
+ // |x| > 0.5 * ln2
+ if (hx > 0x3EB17218) {
+ // |x| > 1.5 * ln2
+ if (hx > 0x3F851592) {
+ k = @floatToInt(i32, invln2 * x + half[@intCast(usize, sign)]);
+ } else {
+ k = 1 - sign - sign;
+ }
+
+ const fk = @intToFloat(f32, k);
+ hi = x - fk * ln2hi;
+ lo = fk * ln2lo;
+ x = hi - lo;
+ }
+ // |x| > 2^(-14)
+ else if (hx > 0x39000000) {
+ k = 0;
+ hi = x;
+ lo = 0;
+ } else {
+ math.forceEval(0x1.0p127 + x); // inexact
+ return 1 + x;
+ }
+
+ const xx = x * x;
+ const c = x - xx * (P1 + xx * P2);
+ const y = 1 + (x * c / (2 - c) - lo + hi);
+
+ if (k == 0) {
+ return y;
+ } else {
+ return math.scalbn(y, k);
+ }
+}
+
+fn exp64(x_: f64) f64 {
+ const half = [_]f64{ 0.5, -0.5 };
+ const ln2hi: f64 = 6.93147180369123816490e-01;
+ const ln2lo: f64 = 1.90821492927058770002e-10;
+ const invln2: f64 = 1.44269504088896338700e+00;
+ const P1: f64 = 1.66666666666666019037e-01;
+ const P2: f64 = -2.77777777770155933842e-03;
+ const P3: f64 = 6.61375632143793436117e-05;
+ const P4: f64 = -1.65339022054652515390e-06;
+ const P5: f64 = 4.13813679705723846039e-08;
+
+ var x = x_;
+ var ux = @bitCast(u64, x);
+ var hx = ux >> 32;
+ const sign = @intCast(i32, hx >> 31);
+ hx &= 0x7FFFFFFF;
+
+ if (math.isNan(x)) {
+ return x;
+ }
+
+ // |x| >= 708.39 or nan
+ if (hx >= 0x4086232B) {
+ // nan
+ if (hx > 0x7FF00000) {
+ return x;
+ }
+ if (x > 709.782712893383973096) {
+ // overflow if x != inf
+ if (!math.isInf(x)) {
+ math.raiseOverflow();
+ }
+ return math.inf(f64);
+ }
+ if (x < -708.39641853226410622) {
+ // underflow if x != -inf
+ // math.forceEval(f32(-0x1.0p-149 / x));
+ if (x < -745.13321910194110842) {
+ return 0;
+ }
+ }
+ }
+
+ // argument reduction
+ var k: i32 = undefined;
+ var hi: f64 = undefined;
+ var lo: f64 = undefined;
+
+ // |x| > 0.5 * ln2
+ if (hx > 0x3EB17218) {
+ // |x| >= 1.5 * ln2
+ if (hx > 0x3FF0A2B2) {
+ k = @floatToInt(i32, invln2 * x + half[@intCast(usize, sign)]);
+ } else {
+ k = 1 - sign - sign;
+ }
+
+ const dk = @intToFloat(f64, k);
+ hi = x - dk * ln2hi;
+ lo = dk * ln2lo;
+ x = hi - lo;
+ }
+ // |x| > 2^(-28)
+ else if (hx > 0x3E300000) {
+ k = 0;
+ hi = x;
+ lo = 0;
+ } else {
+ // inexact if x != 0
+ // math.forceEval(0x1.0p1023 + x);
+ return 1 + x;
+ }
+
+ const xx = x * x;
+ const c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5))));
+ const y = 1 + (x * c / (2 - c) - lo + hi);
+
+ if (k == 0) {
+ return y;
+ } else {
+ return math.scalbn(y, k);
+ }
+}
+
+test "math.exp" {
+ assert(exp(f32(0.0)) == exp32(0.0));
+ assert(exp(f64(0.0)) == exp64(0.0));
+}
+
+test "math.exp32" {
+ const epsilon = 0.000001;
+
+ assert(exp32(0.0) == 1.0);
+ assert(math.approxEq(f32, exp32(0.0), 1.0, epsilon));
+ assert(math.approxEq(f32, exp32(0.2), 1.221403, epsilon));
+ assert(math.approxEq(f32, exp32(0.8923), 2.440737, epsilon));
+ assert(math.approxEq(f32, exp32(1.5), 4.481689, epsilon));
+}
+
+test "math.exp64" {
+ const epsilon = 0.000001;
+
+ assert(exp64(0.0) == 1.0);
+ assert(math.approxEq(f64, exp64(0.0), 1.0, epsilon));
+ assert(math.approxEq(f64, exp64(0.2), 1.221403, epsilon));
+ assert(math.approxEq(f64, exp64(0.8923), 2.440737, epsilon));
+ assert(math.approxEq(f64, exp64(1.5), 4.481689, epsilon));
+}
+
+test "math.exp32.special" {
+ assert(math.isPositiveInf(exp32(math.inf(f32))));
+ assert(math.isNan(exp32(math.nan(f32))));
+}
+
+test "math.exp64.special" {
+ assert(math.isPositiveInf(exp64(math.inf(f64))));
+ assert(math.isNan(exp64(math.nan(f64))));
+}