diff options
Diffstat (limited to 'lib/std/math/exp.zig')
| -rw-r--r-- | lib/std/math/exp.zig | 218 |
1 files changed, 218 insertions, 0 deletions
diff --git a/lib/std/math/exp.zig b/lib/std/math/exp.zig new file mode 100644 index 0000000000..718bbcd476 --- /dev/null +++ b/lib/std/math/exp.zig @@ -0,0 +1,218 @@ +// Ported from musl, which is licensed under the MIT license: +// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT +// +// https://git.musl-libc.org/cgit/musl/tree/src/math/expf.c +// https://git.musl-libc.org/cgit/musl/tree/src/math/exp.c + +const std = @import("../std.zig"); +const math = std.math; +const assert = std.debug.assert; +const builtin = @import("builtin"); + +/// Returns e raised to the power of x (e^x). +/// +/// Special Cases: +/// - exp(+inf) = +inf +/// - exp(nan) = nan +pub fn exp(x: var) @typeOf(x) { + const T = @typeOf(x); + return switch (T) { + f32 => exp32(x), + f64 => exp64(x), + else => @compileError("exp not implemented for " ++ @typeName(T)), + }; +} + +fn exp32(x_: f32) f32 { + const half = [_]f32{ 0.5, -0.5 }; + const ln2hi = 6.9314575195e-1; + const ln2lo = 1.4286067653e-6; + const invln2 = 1.4426950216e+0; + const P1 = 1.6666625440e-1; + const P2 = -2.7667332906e-3; + + var x = x_; + var hx = @bitCast(u32, x); + const sign = @intCast(i32, hx >> 31); + hx &= 0x7FFFFFFF; + + if (math.isNan(x)) { + return x; + } + + // |x| >= -87.33655 or nan + if (hx >= 0x42AEAC50) { + // nan + if (hx > 0x7F800000) { + return x; + } + // x >= 88.722839 + if (hx >= 0x42b17218 and sign == 0) { + return x * 0x1.0p127; + } + if (sign != 0) { + math.forceEval(-0x1.0p-149 / x); // overflow + // x <= -103.972084 + if (hx >= 0x42CFF1B5) { + return 0; + } + } + } + + var k: i32 = undefined; + var hi: f32 = undefined; + var lo: f32 = undefined; + + // |x| > 0.5 * ln2 + if (hx > 0x3EB17218) { + // |x| > 1.5 * ln2 + if (hx > 0x3F851592) { + k = @floatToInt(i32, invln2 * x + half[@intCast(usize, sign)]); + } else { + k = 1 - sign - sign; + } + + const fk = @intToFloat(f32, k); + hi = x - fk * ln2hi; + lo = fk * ln2lo; + x = hi - lo; + } + // |x| > 2^(-14) + else if (hx > 0x39000000) { + k = 0; + hi = x; + lo = 0; + } else { + math.forceEval(0x1.0p127 + x); // inexact + return 1 + x; + } + + const xx = x * x; + const c = x - xx * (P1 + xx * P2); + const y = 1 + (x * c / (2 - c) - lo + hi); + + if (k == 0) { + return y; + } else { + return math.scalbn(y, k); + } +} + +fn exp64(x_: f64) f64 { + const half = [_]f64{ 0.5, -0.5 }; + const ln2hi: f64 = 6.93147180369123816490e-01; + const ln2lo: f64 = 1.90821492927058770002e-10; + const invln2: f64 = 1.44269504088896338700e+00; + const P1: f64 = 1.66666666666666019037e-01; + const P2: f64 = -2.77777777770155933842e-03; + const P3: f64 = 6.61375632143793436117e-05; + const P4: f64 = -1.65339022054652515390e-06; + const P5: f64 = 4.13813679705723846039e-08; + + var x = x_; + var ux = @bitCast(u64, x); + var hx = ux >> 32; + const sign = @intCast(i32, hx >> 31); + hx &= 0x7FFFFFFF; + + if (math.isNan(x)) { + return x; + } + + // |x| >= 708.39 or nan + if (hx >= 0x4086232B) { + // nan + if (hx > 0x7FF00000) { + return x; + } + if (x > 709.782712893383973096) { + // overflow if x != inf + if (!math.isInf(x)) { + math.raiseOverflow(); + } + return math.inf(f64); + } + if (x < -708.39641853226410622) { + // underflow if x != -inf + // math.forceEval(f32(-0x1.0p-149 / x)); + if (x < -745.13321910194110842) { + return 0; + } + } + } + + // argument reduction + var k: i32 = undefined; + var hi: f64 = undefined; + var lo: f64 = undefined; + + // |x| > 0.5 * ln2 + if (hx > 0x3EB17218) { + // |x| >= 1.5 * ln2 + if (hx > 0x3FF0A2B2) { + k = @floatToInt(i32, invln2 * x + half[@intCast(usize, sign)]); + } else { + k = 1 - sign - sign; + } + + const dk = @intToFloat(f64, k); + hi = x - dk * ln2hi; + lo = dk * ln2lo; + x = hi - lo; + } + // |x| > 2^(-28) + else if (hx > 0x3E300000) { + k = 0; + hi = x; + lo = 0; + } else { + // inexact if x != 0 + // math.forceEval(0x1.0p1023 + x); + return 1 + x; + } + + const xx = x * x; + const c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5)))); + const y = 1 + (x * c / (2 - c) - lo + hi); + + if (k == 0) { + return y; + } else { + return math.scalbn(y, k); + } +} + +test "math.exp" { + assert(exp(f32(0.0)) == exp32(0.0)); + assert(exp(f64(0.0)) == exp64(0.0)); +} + +test "math.exp32" { + const epsilon = 0.000001; + + assert(exp32(0.0) == 1.0); + assert(math.approxEq(f32, exp32(0.0), 1.0, epsilon)); + assert(math.approxEq(f32, exp32(0.2), 1.221403, epsilon)); + assert(math.approxEq(f32, exp32(0.8923), 2.440737, epsilon)); + assert(math.approxEq(f32, exp32(1.5), 4.481689, epsilon)); +} + +test "math.exp64" { + const epsilon = 0.000001; + + assert(exp64(0.0) == 1.0); + assert(math.approxEq(f64, exp64(0.0), 1.0, epsilon)); + assert(math.approxEq(f64, exp64(0.2), 1.221403, epsilon)); + assert(math.approxEq(f64, exp64(0.8923), 2.440737, epsilon)); + assert(math.approxEq(f64, exp64(1.5), 4.481689, epsilon)); +} + +test "math.exp32.special" { + assert(math.isPositiveInf(exp32(math.inf(f32)))); + assert(math.isNan(exp32(math.nan(f32)))); +} + +test "math.exp64.special" { + assert(math.isPositiveInf(exp64(math.inf(f64)))); + assert(math.isNan(exp64(math.nan(f64)))); +} |
