diff options
Diffstat (limited to 'lib/std/math/complex/tanh.zig')
| -rw-r--r-- | lib/std/math/complex/tanh.zig | 125 |
1 files changed, 125 insertions, 0 deletions
diff --git a/lib/std/math/complex/tanh.zig b/lib/std/math/complex/tanh.zig new file mode 100644 index 0000000000..6895e8a769 --- /dev/null +++ b/lib/std/math/complex/tanh.zig @@ -0,0 +1,125 @@ +// Ported from musl, which is licensed under the MIT license: +// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT +// +// https://git.musl-libc.org/cgit/musl/tree/src/complex/ctanhf.c +// https://git.musl-libc.org/cgit/musl/tree/src/complex/ctanh.c + +const builtin = @import("builtin"); +const std = @import("../../std.zig"); +const testing = std.testing; +const math = std.math; +const cmath = math.complex; +const Complex = cmath.Complex; + +/// Returns the hyperbolic tangent of z. +pub fn tanh(z: var) @typeOf(z) { + const T = @typeOf(z.re); + return switch (T) { + f32 => tanh32(z), + f64 => tanh64(z), + else => @compileError("tan not implemented for " ++ @typeName(z)), + }; +} + +fn tanh32(z: Complex(f32)) Complex(f32) { + const x = z.re; + const y = z.im; + + const hx = @bitCast(u32, x); + const ix = hx & 0x7fffffff; + + if (ix >= 0x7f800000) { + if (ix & 0x7fffff != 0) { + const r = if (y == 0) y else x * y; + return Complex(f32).new(x, r); + } + const xx = @bitCast(f32, hx - 0x40000000); + const r = if (math.isInf(y)) y else math.sin(y) * math.cos(y); + return Complex(f32).new(xx, math.copysign(f32, 0, r)); + } + + if (!math.isFinite(y)) { + const r = if (ix != 0) y - y else x; + return Complex(f32).new(r, y - y); + } + + // x >= 11 + if (ix >= 0x41300000) { + const exp_mx = math.exp(-math.fabs(x)); + return Complex(f32).new(math.copysign(f32, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx); + } + + // Kahan's algorithm + const t = math.tan(y); + const beta = 1.0 + t * t; + const s = math.sinh(x); + const rho = math.sqrt(1 + s * s); + const den = 1 + beta * s * s; + + return Complex(f32).new((beta * rho * s) / den, t / den); +} + +fn tanh64(z: Complex(f64)) Complex(f64) { + const x = z.re; + const y = z.im; + + const fx = @bitCast(u64, x); + // TODO: zig should allow this conversion implicitly because it can notice that the value necessarily + // fits in range. + const hx = @intCast(u32, fx >> 32); + const lx = @truncate(u32, fx); + const ix = hx & 0x7fffffff; + + if (ix >= 0x7ff00000) { + if ((ix & 0x7fffff) | lx != 0) { + const r = if (y == 0) y else x * y; + return Complex(f64).new(x, r); + } + + const xx = @bitCast(f64, (u64(hx - 0x40000000) << 32) | lx); + const r = if (math.isInf(y)) y else math.sin(y) * math.cos(y); + return Complex(f64).new(xx, math.copysign(f64, 0, r)); + } + + if (!math.isFinite(y)) { + const r = if (ix != 0) y - y else x; + return Complex(f64).new(r, y - y); + } + + // x >= 22 + if (ix >= 0x40360000) { + const exp_mx = math.exp(-math.fabs(x)); + return Complex(f64).new(math.copysign(f64, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx); + } + + // Kahan's algorithm + const t = math.tan(y); + const beta = 1.0 + t * t; + const s = math.sinh(x); + const rho = math.sqrt(1 + s * s); + const den = 1 + beta * s * s; + + return Complex(f64).new((beta * rho * s) / den, t / den); +} + +const epsilon = 0.0001; + +test "complex.ctanh32" { + const a = Complex(f32).new(5, 3); + const c = tanh(a); + + testing.expect(math.approxEq(f32, c.re, 0.999913, epsilon)); + testing.expect(math.approxEq(f32, c.im, -0.000025, epsilon)); +} + +test "complex.ctanh64" { + if (builtin.os == .linux and builtin.arch == .arm and builtin.abi == .musleabihf) { + // TODO https://github.com/ziglang/zig/issues/3289 + return error.SkipZigTest; + } + const a = Complex(f64).new(5, 3); + const c = tanh(a); + + testing.expect(math.approxEq(f64, c.re, 0.999913, epsilon)); + testing.expect(math.approxEq(f64, c.im, -0.000025, epsilon)); +} |
