aboutsummaryrefslogtreecommitdiff
path: root/lib/std/heap.zig
diff options
context:
space:
mode:
Diffstat (limited to 'lib/std/heap.zig')
-rw-r--r--lib/std/heap.zig948
1 files changed, 948 insertions, 0 deletions
diff --git a/lib/std/heap.zig b/lib/std/heap.zig
new file mode 100644
index 0000000000..b968b6242f
--- /dev/null
+++ b/lib/std/heap.zig
@@ -0,0 +1,948 @@
+const std = @import("std.zig");
+const debug = std.debug;
+const assert = debug.assert;
+const testing = std.testing;
+const mem = std.mem;
+const os = std.os;
+const builtin = @import("builtin");
+const c = std.c;
+const maxInt = std.math.maxInt;
+
+pub const LoggingAllocator = @import("heap/logging_allocator.zig").LoggingAllocator;
+
+const Allocator = mem.Allocator;
+
+pub const c_allocator = &c_allocator_state;
+var c_allocator_state = Allocator{
+ .reallocFn = cRealloc,
+ .shrinkFn = cShrink,
+};
+
+fn cRealloc(self: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) ![]u8 {
+ assert(new_align <= @alignOf(c_longdouble));
+ const old_ptr = if (old_mem.len == 0) null else @ptrCast(*c_void, old_mem.ptr);
+ const buf = c.realloc(old_ptr, new_size) orelse return error.OutOfMemory;
+ return @ptrCast([*]u8, buf)[0..new_size];
+}
+
+fn cShrink(self: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) []u8 {
+ const old_ptr = @ptrCast(*c_void, old_mem.ptr);
+ const buf = c.realloc(old_ptr, new_size) orelse return old_mem[0..new_size];
+ return @ptrCast([*]u8, buf)[0..new_size];
+}
+
+/// This allocator makes a syscall directly for every allocation and free.
+/// Thread-safe and lock-free.
+pub const direct_allocator = &direct_allocator_state;
+var direct_allocator_state = Allocator{
+ .reallocFn = DirectAllocator.realloc,
+ .shrinkFn = DirectAllocator.shrink,
+};
+
+const DirectAllocator = struct {
+ fn alloc(allocator: *Allocator, n: usize, alignment: u29) error{OutOfMemory}![]u8 {
+ if (n == 0)
+ return (([*]u8)(undefined))[0..0];
+
+ if (os.windows.is_the_target) {
+ const w = os.windows;
+
+ // Although officially it's at least aligned to page boundary,
+ // Windows is known to reserve pages on a 64K boundary. It's
+ // even more likely that the requested alignment is <= 64K than
+ // 4K, so we're just allocating blindly and hoping for the best.
+ // see https://devblogs.microsoft.com/oldnewthing/?p=42223
+ const addr = w.VirtualAlloc(
+ null,
+ n,
+ w.MEM_COMMIT | w.MEM_RESERVE,
+ w.PAGE_READWRITE,
+ ) catch return error.OutOfMemory;
+
+ // If the allocation is sufficiently aligned, use it.
+ if (@ptrToInt(addr) & (alignment - 1) == 0) {
+ return @ptrCast([*]u8, addr)[0..n];
+ }
+
+ // If it wasn't, actually do an explicitely aligned allocation.
+ w.VirtualFree(addr, 0, w.MEM_RELEASE);
+ const alloc_size = n + alignment;
+
+ const final_addr = while (true) {
+ // Reserve a range of memory large enough to find a sufficiently
+ // aligned address.
+ const reserved_addr = w.VirtualAlloc(
+ null,
+ alloc_size,
+ w.MEM_RESERVE,
+ w.PAGE_NOACCESS,
+ ) catch return error.OutOfMemory;
+ const aligned_addr = mem.alignForward(@ptrToInt(reserved_addr), alignment);
+
+ // Release the reserved pages (not actually used).
+ w.VirtualFree(reserved_addr, 0, w.MEM_RELEASE);
+
+ // At this point, it is possible that another thread has
+ // obtained some memory space that will cause the next
+ // VirtualAlloc call to fail. To handle this, we will retry
+ // until it succeeds.
+ const ptr = w.VirtualAlloc(
+ @intToPtr(*c_void, aligned_addr),
+ n,
+ w.MEM_COMMIT | w.MEM_RESERVE,
+ w.PAGE_READWRITE,
+ ) catch continue;
+
+ return @ptrCast([*]u8, ptr)[0..n];
+ };
+
+ return @ptrCast([*]u8, final_addr)[0..n];
+ }
+
+ const alloc_size = if (alignment <= mem.page_size) n else n + alignment;
+ const slice = os.mmap(
+ null,
+ mem.alignForward(alloc_size, mem.page_size),
+ os.PROT_READ | os.PROT_WRITE,
+ os.MAP_PRIVATE | os.MAP_ANONYMOUS,
+ -1,
+ 0,
+ ) catch return error.OutOfMemory;
+ if (alloc_size == n) return slice[0..n];
+
+ const aligned_addr = mem.alignForward(@ptrToInt(slice.ptr), alignment);
+
+ // Unmap the extra bytes that were only requested in order to guarantee
+ // that the range of memory we were provided had a proper alignment in
+ // it somewhere. The extra bytes could be at the beginning, or end, or both.
+ const unused_start_len = aligned_addr - @ptrToInt(slice.ptr);
+ if (unused_start_len != 0) {
+ os.munmap(slice[0..unused_start_len]);
+ }
+ const aligned_end_addr = mem.alignForward(aligned_addr + n, mem.page_size);
+ const unused_end_len = @ptrToInt(slice.ptr) + slice.len - aligned_end_addr;
+ if (unused_end_len != 0) {
+ os.munmap(@intToPtr([*]align(mem.page_size) u8, aligned_end_addr)[0..unused_end_len]);
+ }
+
+ return @intToPtr([*]u8, aligned_addr)[0..n];
+ }
+
+ fn shrink(allocator: *Allocator, old_mem_unaligned: []u8, old_align: u29, new_size: usize, new_align: u29) []u8 {
+ const old_mem = @alignCast(mem.page_size, old_mem_unaligned);
+ if (os.windows.is_the_target) {
+ const w = os.windows;
+ if (new_size == 0) {
+ // From the docs:
+ // "If the dwFreeType parameter is MEM_RELEASE, this parameter
+ // must be 0 (zero). The function frees the entire region that
+ // is reserved in the initial allocation call to VirtualAlloc."
+ // So we can only use MEM_RELEASE when actually releasing the
+ // whole allocation.
+ w.VirtualFree(old_mem.ptr, 0, w.MEM_RELEASE);
+ } else {
+ const base_addr = @ptrToInt(old_mem.ptr);
+ const old_addr_end = base_addr + old_mem.len;
+ const new_addr_end = base_addr + new_size;
+ const new_addr_end_rounded = mem.alignForward(new_addr_end, mem.page_size);
+ if (old_addr_end > new_addr_end_rounded) {
+ // For shrinking that is not releasing, we will only
+ // decommit the pages not needed anymore.
+ w.VirtualFree(
+ @intToPtr(*c_void, new_addr_end_rounded),
+ old_addr_end - new_addr_end_rounded,
+ w.MEM_DECOMMIT,
+ );
+ }
+ }
+ return old_mem[0..new_size];
+ }
+ const base_addr = @ptrToInt(old_mem.ptr);
+ const old_addr_end = base_addr + old_mem.len;
+ const new_addr_end = base_addr + new_size;
+ const new_addr_end_rounded = mem.alignForward(new_addr_end, mem.page_size);
+ if (old_addr_end > new_addr_end_rounded) {
+ const ptr = @intToPtr([*]align(mem.page_size) u8, new_addr_end_rounded);
+ os.munmap(ptr[0 .. old_addr_end - new_addr_end_rounded]);
+ }
+ return old_mem[0..new_size];
+ }
+
+ fn realloc(allocator: *Allocator, old_mem_unaligned: []u8, old_align: u29, new_size: usize, new_align: u29) ![]u8 {
+ const old_mem = @alignCast(mem.page_size, old_mem_unaligned);
+ if (os.windows.is_the_target) {
+ if (old_mem.len == 0) {
+ return alloc(allocator, new_size, new_align);
+ }
+
+ if (new_size <= old_mem.len and new_align <= old_align) {
+ return shrink(allocator, old_mem, old_align, new_size, new_align);
+ }
+
+ const w = os.windows;
+ const base_addr = @ptrToInt(old_mem.ptr);
+
+ if (new_align > old_align and base_addr & (new_align - 1) != 0) {
+ // Current allocation doesn't satisfy the new alignment.
+ // For now we'll do a new one no matter what, but maybe
+ // there is something smarter to do instead.
+ const result = try alloc(allocator, new_size, new_align);
+ assert(old_mem.len != 0);
+ @memcpy(result.ptr, old_mem.ptr, std.math.min(old_mem.len, result.len));
+ w.VirtualFree(old_mem.ptr, 0, w.MEM_RELEASE);
+
+ return result;
+ }
+
+ const old_addr_end = base_addr + old_mem.len;
+ const old_addr_end_rounded = mem.alignForward(old_addr_end, mem.page_size);
+ const new_addr_end = base_addr + new_size;
+ const new_addr_end_rounded = mem.alignForward(new_addr_end, mem.page_size);
+ if (new_addr_end_rounded == old_addr_end_rounded) {
+ // The reallocation fits in the already allocated pages.
+ return @ptrCast([*]u8, old_mem.ptr)[0..new_size];
+ }
+ assert(new_addr_end_rounded > old_addr_end_rounded);
+
+ // We need to commit new pages.
+ const additional_size = new_addr_end - old_addr_end_rounded;
+ const realloc_addr = w.kernel32.VirtualAlloc(
+ @intToPtr(*c_void, old_addr_end_rounded),
+ additional_size,
+ w.MEM_COMMIT | w.MEM_RESERVE,
+ w.PAGE_READWRITE,
+ ) orelse {
+ // Committing new pages at the end of the existing allocation
+ // failed, we need to try a new one.
+ const new_alloc_mem = try alloc(allocator, new_size, new_align);
+ @memcpy(new_alloc_mem.ptr, old_mem.ptr, old_mem.len);
+ w.VirtualFree(old_mem.ptr, 0, w.MEM_RELEASE);
+
+ return new_alloc_mem;
+ };
+
+ assert(@ptrToInt(realloc_addr) == old_addr_end_rounded);
+ return @ptrCast([*]u8, old_mem.ptr)[0..new_size];
+ }
+ if (new_size <= old_mem.len and new_align <= old_align) {
+ return shrink(allocator, old_mem, old_align, new_size, new_align);
+ }
+ const result = try alloc(allocator, new_size, new_align);
+ if (old_mem.len != 0) {
+ @memcpy(result.ptr, old_mem.ptr, std.math.min(old_mem.len, result.len));
+ os.munmap(old_mem);
+ }
+ return result;
+ }
+};
+
+pub const HeapAllocator = switch (builtin.os) {
+ .windows => struct {
+ allocator: Allocator,
+ heap_handle: ?HeapHandle,
+
+ const HeapHandle = os.windows.HANDLE;
+
+ pub fn init() HeapAllocator {
+ return HeapAllocator{
+ .allocator = Allocator{
+ .reallocFn = realloc,
+ .shrinkFn = shrink,
+ },
+ .heap_handle = null,
+ };
+ }
+
+ pub fn deinit(self: *HeapAllocator) void {
+ if (self.heap_handle) |heap_handle| {
+ os.windows.HeapDestroy(heap_handle);
+ }
+ }
+
+ fn alloc(allocator: *Allocator, n: usize, alignment: u29) error{OutOfMemory}![]u8 {
+ const self = @fieldParentPtr(HeapAllocator, "allocator", allocator);
+ if (n == 0)
+ return (([*]u8)(undefined))[0..0];
+
+ const amt = n + alignment + @sizeOf(usize);
+ const optional_heap_handle = @atomicLoad(?HeapHandle, &self.heap_handle, builtin.AtomicOrder.SeqCst);
+ const heap_handle = optional_heap_handle orelse blk: {
+ const options = if (builtin.single_threaded) os.windows.HEAP_NO_SERIALIZE else 0;
+ const hh = os.windows.kernel32.HeapCreate(options, amt, 0) orelse return error.OutOfMemory;
+ const other_hh = @cmpxchgStrong(?HeapHandle, &self.heap_handle, null, hh, builtin.AtomicOrder.SeqCst, builtin.AtomicOrder.SeqCst) orelse break :blk hh;
+ os.windows.HeapDestroy(hh);
+ break :blk other_hh.?; // can't be null because of the cmpxchg
+ };
+ const ptr = os.windows.kernel32.HeapAlloc(heap_handle, 0, amt) orelse return error.OutOfMemory;
+ const root_addr = @ptrToInt(ptr);
+ const adjusted_addr = mem.alignForward(root_addr, alignment);
+ const record_addr = adjusted_addr + n;
+ @intToPtr(*align(1) usize, record_addr).* = root_addr;
+ return @intToPtr([*]u8, adjusted_addr)[0..n];
+ }
+
+ fn shrink(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) []u8 {
+ return realloc(allocator, old_mem, old_align, new_size, new_align) catch {
+ const old_adjusted_addr = @ptrToInt(old_mem.ptr);
+ const old_record_addr = old_adjusted_addr + old_mem.len;
+ const root_addr = @intToPtr(*align(1) usize, old_record_addr).*;
+ const old_ptr = @intToPtr(*c_void, root_addr);
+ const new_record_addr = old_record_addr - new_size + old_mem.len;
+ @intToPtr(*align(1) usize, new_record_addr).* = root_addr;
+ return old_mem[0..new_size];
+ };
+ }
+
+ fn realloc(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) ![]u8 {
+ if (old_mem.len == 0) return alloc(allocator, new_size, new_align);
+
+ const self = @fieldParentPtr(HeapAllocator, "allocator", allocator);
+ const old_adjusted_addr = @ptrToInt(old_mem.ptr);
+ const old_record_addr = old_adjusted_addr + old_mem.len;
+ const root_addr = @intToPtr(*align(1) usize, old_record_addr).*;
+ const old_ptr = @intToPtr(*c_void, root_addr);
+
+ if (new_size == 0) {
+ os.windows.HeapFree(self.heap_handle.?, 0, old_ptr);
+ return old_mem[0..0];
+ }
+
+ const amt = new_size + new_align + @sizeOf(usize);
+ const new_ptr = os.windows.kernel32.HeapReAlloc(
+ self.heap_handle.?,
+ 0,
+ old_ptr,
+ amt,
+ ) orelse return error.OutOfMemory;
+ const offset = old_adjusted_addr - root_addr;
+ const new_root_addr = @ptrToInt(new_ptr);
+ var new_adjusted_addr = new_root_addr + offset;
+ const offset_is_valid = new_adjusted_addr + new_size + @sizeOf(usize) <= new_root_addr + amt;
+ const offset_is_aligned = new_adjusted_addr % new_align == 0;
+ if (!offset_is_valid or !offset_is_aligned) {
+ // If HeapReAlloc didn't happen to move the memory to the new alignment,
+ // or the memory starting at the old offset would be outside of the new allocation,
+ // then we need to copy the memory to a valid aligned address and use that
+ const new_aligned_addr = mem.alignForward(new_root_addr, new_align);
+ @memcpy(@intToPtr([*]u8, new_aligned_addr), @intToPtr([*]u8, new_adjusted_addr), std.math.min(old_mem.len, new_size));
+ new_adjusted_addr = new_aligned_addr;
+ }
+ const new_record_addr = new_adjusted_addr + new_size;
+ @intToPtr(*align(1) usize, new_record_addr).* = new_root_addr;
+ return @intToPtr([*]u8, new_adjusted_addr)[0..new_size];
+ }
+ },
+ else => @compileError("Unsupported OS"),
+};
+
+/// This allocator takes an existing allocator, wraps it, and provides an interface
+/// where you can allocate without freeing, and then free it all together.
+pub const ArenaAllocator = struct {
+ pub allocator: Allocator,
+
+ child_allocator: *Allocator,
+ buffer_list: std.SinglyLinkedList([]u8),
+ end_index: usize,
+
+ const BufNode = std.SinglyLinkedList([]u8).Node;
+
+ pub fn init(child_allocator: *Allocator) ArenaAllocator {
+ return ArenaAllocator{
+ .allocator = Allocator{
+ .reallocFn = realloc,
+ .shrinkFn = shrink,
+ },
+ .child_allocator = child_allocator,
+ .buffer_list = std.SinglyLinkedList([]u8).init(),
+ .end_index = 0,
+ };
+ }
+
+ pub fn deinit(self: *ArenaAllocator) void {
+ var it = self.buffer_list.first;
+ while (it) |node| {
+ // this has to occur before the free because the free frees node
+ const next_it = node.next;
+ self.child_allocator.free(node.data);
+ it = next_it;
+ }
+ }
+
+ fn createNode(self: *ArenaAllocator, prev_len: usize, minimum_size: usize) !*BufNode {
+ const actual_min_size = minimum_size + @sizeOf(BufNode);
+ var len = prev_len;
+ while (true) {
+ len += len / 2;
+ len += mem.page_size - @rem(len, mem.page_size);
+ if (len >= actual_min_size) break;
+ }
+ const buf = try self.child_allocator.alignedAlloc(u8, @alignOf(BufNode), len);
+ const buf_node_slice = @bytesToSlice(BufNode, buf[0..@sizeOf(BufNode)]);
+ const buf_node = &buf_node_slice[0];
+ buf_node.* = BufNode{
+ .data = buf,
+ .next = null,
+ };
+ self.buffer_list.prepend(buf_node);
+ self.end_index = 0;
+ return buf_node;
+ }
+
+ fn alloc(allocator: *Allocator, n: usize, alignment: u29) ![]u8 {
+ const self = @fieldParentPtr(ArenaAllocator, "allocator", allocator);
+
+ var cur_node = if (self.buffer_list.first) |first_node| first_node else try self.createNode(0, n + alignment);
+ while (true) {
+ const cur_buf = cur_node.data[@sizeOf(BufNode)..];
+ const addr = @ptrToInt(cur_buf.ptr) + self.end_index;
+ const adjusted_addr = mem.alignForward(addr, alignment);
+ const adjusted_index = self.end_index + (adjusted_addr - addr);
+ const new_end_index = adjusted_index + n;
+ if (new_end_index > cur_buf.len) {
+ cur_node = try self.createNode(cur_buf.len, n + alignment);
+ continue;
+ }
+ const result = cur_buf[adjusted_index..new_end_index];
+ self.end_index = new_end_index;
+ return result;
+ }
+ }
+
+ fn realloc(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) ![]u8 {
+ if (new_size <= old_mem.len and new_align <= new_size) {
+ // We can't do anything with the memory, so tell the client to keep it.
+ return error.OutOfMemory;
+ } else {
+ const result = try alloc(allocator, new_size, new_align);
+ @memcpy(result.ptr, old_mem.ptr, std.math.min(old_mem.len, result.len));
+ return result;
+ }
+ }
+
+ fn shrink(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) []u8 {
+ return old_mem[0..new_size];
+ }
+};
+
+pub const FixedBufferAllocator = struct {
+ allocator: Allocator,
+ end_index: usize,
+ buffer: []u8,
+
+ pub fn init(buffer: []u8) FixedBufferAllocator {
+ return FixedBufferAllocator{
+ .allocator = Allocator{
+ .reallocFn = realloc,
+ .shrinkFn = shrink,
+ },
+ .buffer = buffer,
+ .end_index = 0,
+ };
+ }
+
+ fn alloc(allocator: *Allocator, n: usize, alignment: u29) ![]u8 {
+ const self = @fieldParentPtr(FixedBufferAllocator, "allocator", allocator);
+ const addr = @ptrToInt(self.buffer.ptr) + self.end_index;
+ const adjusted_addr = mem.alignForward(addr, alignment);
+ const adjusted_index = self.end_index + (adjusted_addr - addr);
+ const new_end_index = adjusted_index + n;
+ if (new_end_index > self.buffer.len) {
+ return error.OutOfMemory;
+ }
+ const result = self.buffer[adjusted_index..new_end_index];
+ self.end_index = new_end_index;
+
+ return result;
+ }
+
+ fn realloc(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) ![]u8 {
+ const self = @fieldParentPtr(FixedBufferAllocator, "allocator", allocator);
+ assert(old_mem.len <= self.end_index);
+ if (old_mem.ptr == self.buffer.ptr + self.end_index - old_mem.len and
+ mem.alignForward(@ptrToInt(old_mem.ptr), new_align) == @ptrToInt(old_mem.ptr))
+ {
+ const start_index = self.end_index - old_mem.len;
+ const new_end_index = start_index + new_size;
+ if (new_end_index > self.buffer.len) return error.OutOfMemory;
+ const result = self.buffer[start_index..new_end_index];
+ self.end_index = new_end_index;
+ return result;
+ } else if (new_size <= old_mem.len and new_align <= old_align) {
+ // We can't do anything with the memory, so tell the client to keep it.
+ return error.OutOfMemory;
+ } else {
+ const result = try alloc(allocator, new_size, new_align);
+ @memcpy(result.ptr, old_mem.ptr, std.math.min(old_mem.len, result.len));
+ return result;
+ }
+ }
+
+ fn shrink(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) []u8 {
+ return old_mem[0..new_size];
+ }
+
+ pub fn reset(self: *FixedBufferAllocator) void {
+ self.end_index = 0;
+ }
+};
+
+// FIXME: Exposed LLVM intrinsics is a bug
+// See: https://github.com/ziglang/zig/issues/2291
+extern fn @"llvm.wasm.memory.size.i32"(u32) u32;
+extern fn @"llvm.wasm.memory.grow.i32"(u32, u32) i32;
+
+pub const wasm_allocator = &wasm_allocator_state.allocator;
+var wasm_allocator_state = WasmAllocator{
+ .allocator = Allocator{
+ .reallocFn = WasmAllocator.realloc,
+ .shrinkFn = WasmAllocator.shrink,
+ },
+ .start_ptr = undefined,
+ .num_pages = 0,
+ .end_index = 0,
+};
+
+const WasmAllocator = struct {
+ allocator: Allocator,
+ start_ptr: [*]u8,
+ num_pages: usize,
+ end_index: usize,
+
+ comptime {
+ if (builtin.arch != .wasm32) {
+ @compileError("WasmAllocator is only available for wasm32 arch");
+ }
+ }
+
+ fn alloc(allocator: *Allocator, size: usize, alignment: u29) ![]u8 {
+ const self = @fieldParentPtr(WasmAllocator, "allocator", allocator);
+
+ const addr = @ptrToInt(self.start_ptr) + self.end_index;
+ const adjusted_addr = mem.alignForward(addr, alignment);
+ const adjusted_index = self.end_index + (adjusted_addr - addr);
+ const new_end_index = adjusted_index + size;
+
+ if (new_end_index > self.num_pages * mem.page_size) {
+ const required_memory = new_end_index - (self.num_pages * mem.page_size);
+
+ var num_pages: usize = required_memory / mem.page_size;
+ if (required_memory % mem.page_size != 0) {
+ num_pages += 1;
+ }
+
+ const prev_page = @"llvm.wasm.memory.grow.i32"(0, @intCast(u32, num_pages));
+ if (prev_page == -1) {
+ return error.OutOfMemory;
+ }
+
+ self.num_pages += num_pages;
+ }
+
+ const result = self.start_ptr[adjusted_index..new_end_index];
+ self.end_index = new_end_index;
+
+ return result;
+ }
+
+ // Check if memory is the last "item" and is aligned correctly
+ fn is_last_item(allocator: *Allocator, memory: []u8, alignment: u29) bool {
+ const self = @fieldParentPtr(WasmAllocator, "allocator", allocator);
+ return memory.ptr == self.start_ptr + self.end_index - memory.len and mem.alignForward(@ptrToInt(memory.ptr), alignment) == @ptrToInt(memory.ptr);
+ }
+
+ fn realloc(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) ![]u8 {
+ const self = @fieldParentPtr(WasmAllocator, "allocator", allocator);
+
+ // Initialize start_ptr at the first realloc
+ if (self.num_pages == 0) {
+ self.start_ptr = @intToPtr([*]u8, @intCast(usize, @"llvm.wasm.memory.size.i32"(0)) * mem.page_size);
+ }
+
+ if (is_last_item(allocator, old_mem, new_align)) {
+ const start_index = self.end_index - old_mem.len;
+ const new_end_index = start_index + new_size;
+
+ if (new_end_index > self.num_pages * mem.page_size) {
+ _ = try alloc(allocator, new_end_index - self.end_index, new_align);
+ }
+ const result = self.start_ptr[start_index..new_end_index];
+
+ self.end_index = new_end_index;
+ return result;
+ } else if (new_size <= old_mem.len and new_align <= old_align) {
+ return error.OutOfMemory;
+ } else {
+ const result = try alloc(allocator, new_size, new_align);
+ mem.copy(u8, result, old_mem);
+ return result;
+ }
+ }
+
+ fn shrink(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) []u8 {
+ return old_mem[0..new_size];
+ }
+};
+
+pub const ThreadSafeFixedBufferAllocator = blk: {
+ if (builtin.single_threaded) {
+ break :blk FixedBufferAllocator;
+ } else {
+ // lock free
+ break :blk struct {
+ allocator: Allocator,
+ end_index: usize,
+ buffer: []u8,
+
+ pub fn init(buffer: []u8) ThreadSafeFixedBufferAllocator {
+ return ThreadSafeFixedBufferAllocator{
+ .allocator = Allocator{
+ .reallocFn = realloc,
+ .shrinkFn = shrink,
+ },
+ .buffer = buffer,
+ .end_index = 0,
+ };
+ }
+
+ fn alloc(allocator: *Allocator, n: usize, alignment: u29) ![]u8 {
+ const self = @fieldParentPtr(ThreadSafeFixedBufferAllocator, "allocator", allocator);
+ var end_index = @atomicLoad(usize, &self.end_index, builtin.AtomicOrder.SeqCst);
+ while (true) {
+ const addr = @ptrToInt(self.buffer.ptr) + end_index;
+ const adjusted_addr = mem.alignForward(addr, alignment);
+ const adjusted_index = end_index + (adjusted_addr - addr);
+ const new_end_index = adjusted_index + n;
+ if (new_end_index > self.buffer.len) {
+ return error.OutOfMemory;
+ }
+ end_index = @cmpxchgWeak(usize, &self.end_index, end_index, new_end_index, builtin.AtomicOrder.SeqCst, builtin.AtomicOrder.SeqCst) orelse return self.buffer[adjusted_index..new_end_index];
+ }
+ }
+
+ fn realloc(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) ![]u8 {
+ if (new_size <= old_mem.len and new_align <= old_align) {
+ // We can't do anything useful with the memory, tell the client to keep it.
+ return error.OutOfMemory;
+ } else {
+ const result = try alloc(allocator, new_size, new_align);
+ @memcpy(result.ptr, old_mem.ptr, std.math.min(old_mem.len, result.len));
+ return result;
+ }
+ }
+
+ fn shrink(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) []u8 {
+ return old_mem[0..new_size];
+ }
+ };
+ }
+};
+
+pub fn stackFallback(comptime size: usize, fallback_allocator: *Allocator) StackFallbackAllocator(size) {
+ return StackFallbackAllocator(size){
+ .buffer = undefined,
+ .fallback_allocator = fallback_allocator,
+ .fixed_buffer_allocator = undefined,
+ .allocator = Allocator{
+ .reallocFn = StackFallbackAllocator(size).realloc,
+ .shrinkFn = StackFallbackAllocator(size).shrink,
+ },
+ };
+}
+
+pub fn StackFallbackAllocator(comptime size: usize) type {
+ return struct {
+ const Self = @This();
+
+ buffer: [size]u8,
+ allocator: Allocator,
+ fallback_allocator: *Allocator,
+ fixed_buffer_allocator: FixedBufferAllocator,
+
+ pub fn get(self: *Self) *Allocator {
+ self.fixed_buffer_allocator = FixedBufferAllocator.init(self.buffer[0..]);
+ return &self.allocator;
+ }
+
+ fn realloc(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) ![]u8 {
+ const self = @fieldParentPtr(Self, "allocator", allocator);
+ const in_buffer = @ptrToInt(old_mem.ptr) >= @ptrToInt(&self.buffer) and
+ @ptrToInt(old_mem.ptr) < @ptrToInt(&self.buffer) + self.buffer.len;
+ if (in_buffer) {
+ return FixedBufferAllocator.realloc(
+ &self.fixed_buffer_allocator.allocator,
+ old_mem,
+ old_align,
+ new_size,
+ new_align,
+ ) catch {
+ const result = try self.fallback_allocator.reallocFn(
+ self.fallback_allocator,
+ ([*]u8)(undefined)[0..0],
+ undefined,
+ new_size,
+ new_align,
+ );
+ mem.copy(u8, result, old_mem);
+ return result;
+ };
+ }
+ return self.fallback_allocator.reallocFn(
+ self.fallback_allocator,
+ old_mem,
+ old_align,
+ new_size,
+ new_align,
+ );
+ }
+
+ fn shrink(allocator: *Allocator, old_mem: []u8, old_align: u29, new_size: usize, new_align: u29) []u8 {
+ const self = @fieldParentPtr(Self, "allocator", allocator);
+ const in_buffer = @ptrToInt(old_mem.ptr) >= @ptrToInt(&self.buffer) and
+ @ptrToInt(old_mem.ptr) < @ptrToInt(&self.buffer) + self.buffer.len;
+ if (in_buffer) {
+ return FixedBufferAllocator.shrink(
+ &self.fixed_buffer_allocator.allocator,
+ old_mem,
+ old_align,
+ new_size,
+ new_align,
+ );
+ }
+ return self.fallback_allocator.shrinkFn(
+ self.fallback_allocator,
+ old_mem,
+ old_align,
+ new_size,
+ new_align,
+ );
+ }
+ };
+}
+
+test "c_allocator" {
+ if (builtin.link_libc) {
+ var slice = try c_allocator.alloc(u8, 50);
+ defer c_allocator.free(slice);
+ slice = try c_allocator.realloc(slice, 100);
+ }
+}
+
+test "DirectAllocator" {
+ const allocator = direct_allocator;
+ try testAllocator(allocator);
+ try testAllocatorAligned(allocator, 16);
+ try testAllocatorLargeAlignment(allocator);
+ try testAllocatorAlignedShrink(allocator);
+
+ if (builtin.os == .windows) {
+ // Trying really large alignment. As mentionned in the implementation,
+ // VirtualAlloc returns 64K aligned addresses. We want to make sure
+ // DirectAllocator works beyond that, as it's not tested by
+ // `testAllocatorLargeAlignment`.
+ const slice = try allocator.alignedAlloc(u8, 1 << 20, 128);
+ slice[0] = 0x12;
+ slice[127] = 0x34;
+ allocator.free(slice);
+ }
+}
+
+test "HeapAllocator" {
+ if (builtin.os == .windows) {
+ var heap_allocator = HeapAllocator.init();
+ defer heap_allocator.deinit();
+
+ const allocator = &heap_allocator.allocator;
+ try testAllocator(allocator);
+ try testAllocatorAligned(allocator, 16);
+ try testAllocatorLargeAlignment(allocator);
+ try testAllocatorAlignedShrink(allocator);
+ }
+}
+
+test "ArenaAllocator" {
+ var arena_allocator = ArenaAllocator.init(direct_allocator);
+ defer arena_allocator.deinit();
+
+ try testAllocator(&arena_allocator.allocator);
+ try testAllocatorAligned(&arena_allocator.allocator, 16);
+ try testAllocatorLargeAlignment(&arena_allocator.allocator);
+ try testAllocatorAlignedShrink(&arena_allocator.allocator);
+}
+
+var test_fixed_buffer_allocator_memory: [80000 * @sizeOf(u64)]u8 = undefined;
+test "FixedBufferAllocator" {
+ var fixed_buffer_allocator = FixedBufferAllocator.init(test_fixed_buffer_allocator_memory[0..]);
+
+ try testAllocator(&fixed_buffer_allocator.allocator);
+ try testAllocatorAligned(&fixed_buffer_allocator.allocator, 16);
+ try testAllocatorLargeAlignment(&fixed_buffer_allocator.allocator);
+ try testAllocatorAlignedShrink(&fixed_buffer_allocator.allocator);
+}
+
+test "FixedBufferAllocator.reset" {
+ var buf: [8]u8 align(@alignOf(u64)) = undefined;
+ var fba = FixedBufferAllocator.init(buf[0..]);
+
+ const X = 0xeeeeeeeeeeeeeeee;
+ const Y = 0xffffffffffffffff;
+
+ var x = try fba.allocator.create(u64);
+ x.* = X;
+ testing.expectError(error.OutOfMemory, fba.allocator.create(u64));
+
+ fba.reset();
+ var y = try fba.allocator.create(u64);
+ y.* = Y;
+
+ // we expect Y to have overwritten X.
+ testing.expect(x.* == y.*);
+ testing.expect(y.* == Y);
+}
+
+test "FixedBufferAllocator Reuse memory on realloc" {
+ var small_fixed_buffer: [10]u8 = undefined;
+ // check if we re-use the memory
+ {
+ var fixed_buffer_allocator = FixedBufferAllocator.init(small_fixed_buffer[0..]);
+
+ var slice0 = try fixed_buffer_allocator.allocator.alloc(u8, 5);
+ testing.expect(slice0.len == 5);
+ var slice1 = try fixed_buffer_allocator.allocator.realloc(slice0, 10);
+ testing.expect(slice1.ptr == slice0.ptr);
+ testing.expect(slice1.len == 10);
+ testing.expectError(error.OutOfMemory, fixed_buffer_allocator.allocator.realloc(slice1, 11));
+ }
+ // check that we don't re-use the memory if it's not the most recent block
+ {
+ var fixed_buffer_allocator = FixedBufferAllocator.init(small_fixed_buffer[0..]);
+
+ var slice0 = try fixed_buffer_allocator.allocator.alloc(u8, 2);
+ slice0[0] = 1;
+ slice0[1] = 2;
+ var slice1 = try fixed_buffer_allocator.allocator.alloc(u8, 2);
+ var slice2 = try fixed_buffer_allocator.allocator.realloc(slice0, 4);
+ testing.expect(slice0.ptr != slice2.ptr);
+ testing.expect(slice1.ptr != slice2.ptr);
+ testing.expect(slice2[0] == 1);
+ testing.expect(slice2[1] == 2);
+ }
+}
+
+test "ThreadSafeFixedBufferAllocator" {
+ var fixed_buffer_allocator = ThreadSafeFixedBufferAllocator.init(test_fixed_buffer_allocator_memory[0..]);
+
+ try testAllocator(&fixed_buffer_allocator.allocator);
+ try testAllocatorAligned(&fixed_buffer_allocator.allocator, 16);
+ try testAllocatorLargeAlignment(&fixed_buffer_allocator.allocator);
+ try testAllocatorAlignedShrink(&fixed_buffer_allocator.allocator);
+}
+
+fn testAllocator(allocator: *mem.Allocator) !void {
+ var slice = try allocator.alloc(*i32, 100);
+ testing.expect(slice.len == 100);
+ for (slice) |*item, i| {
+ item.* = try allocator.create(i32);
+ item.*.* = @intCast(i32, i);
+ }
+
+ slice = try allocator.realloc(slice, 20000);
+ testing.expect(slice.len == 20000);
+
+ for (slice[0..100]) |item, i| {
+ testing.expect(item.* == @intCast(i32, i));
+ allocator.destroy(item);
+ }
+
+ slice = allocator.shrink(slice, 50);
+ testing.expect(slice.len == 50);
+ slice = allocator.shrink(slice, 25);
+ testing.expect(slice.len == 25);
+ slice = allocator.shrink(slice, 0);
+ testing.expect(slice.len == 0);
+ slice = try allocator.realloc(slice, 10);
+ testing.expect(slice.len == 10);
+
+ allocator.free(slice);
+}
+
+fn testAllocatorAligned(allocator: *mem.Allocator, comptime alignment: u29) !void {
+ // initial
+ var slice = try allocator.alignedAlloc(u8, alignment, 10);
+ testing.expect(slice.len == 10);
+ // grow
+ slice = try allocator.realloc(slice, 100);
+ testing.expect(slice.len == 100);
+ // shrink
+ slice = allocator.shrink(slice, 10);
+ testing.expect(slice.len == 10);
+ // go to zero
+ slice = allocator.shrink(slice, 0);
+ testing.expect(slice.len == 0);
+ // realloc from zero
+ slice = try allocator.realloc(slice, 100);
+ testing.expect(slice.len == 100);
+ // shrink with shrink
+ slice = allocator.shrink(slice, 10);
+ testing.expect(slice.len == 10);
+ // shrink to zero
+ slice = allocator.shrink(slice, 0);
+ testing.expect(slice.len == 0);
+}
+
+fn testAllocatorLargeAlignment(allocator: *mem.Allocator) mem.Allocator.Error!void {
+ //Maybe a platform's page_size is actually the same as or
+ // very near usize?
+ if (mem.page_size << 2 > maxInt(usize)) return;
+
+ const USizeShift = @IntType(false, std.math.log2(usize.bit_count));
+ const large_align = u29(mem.page_size << 2);
+
+ var align_mask: usize = undefined;
+ _ = @shlWithOverflow(usize, ~usize(0), USizeShift(@ctz(u29, large_align)), &align_mask);
+
+ var slice = try allocator.alignedAlloc(u8, large_align, 500);
+ testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
+
+ slice = allocator.shrink(slice, 100);
+ testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
+
+ slice = try allocator.realloc(slice, 5000);
+ testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
+
+ slice = allocator.shrink(slice, 10);
+ testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
+
+ slice = try allocator.realloc(slice, 20000);
+ testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
+
+ allocator.free(slice);
+}
+
+fn testAllocatorAlignedShrink(allocator: *mem.Allocator) mem.Allocator.Error!void {
+ var debug_buffer: [1000]u8 = undefined;
+ const debug_allocator = &FixedBufferAllocator.init(&debug_buffer).allocator;
+
+ const alloc_size = mem.page_size * 2 + 50;
+ var slice = try allocator.alignedAlloc(u8, 16, alloc_size);
+ defer allocator.free(slice);
+
+ var stuff_to_free = std.ArrayList([]align(16) u8).init(debug_allocator);
+ // On Windows, VirtualAlloc returns addresses aligned to a 64K boundary,
+ // which is 16 pages, hence the 32. This test may require to increase
+ // the size of the allocations feeding the `allocator` parameter if they
+ // fail, because of this high over-alignment we want to have.
+ while (@ptrToInt(slice.ptr) == mem.alignForward(@ptrToInt(slice.ptr), mem.page_size * 32)) {
+ try stuff_to_free.append(slice);
+ slice = try allocator.alignedAlloc(u8, 16, alloc_size);
+ }
+ while (stuff_to_free.popOrNull()) |item| {
+ allocator.free(item);
+ }
+ slice[0] = 0x12;
+ slice[60] = 0x34;
+
+ // realloc to a smaller size but with a larger alignment
+ slice = try allocator.alignedRealloc(slice, mem.page_size * 32, alloc_size / 2);
+ testing.expect(slice[0] == 0x12);
+ testing.expect(slice[60] == 0x34);
+}