diff options
| author | Marc Tiehuis <marctiehuis@gmail.com> | 2017-06-16 20:26:10 +1200 |
|---|---|---|
| committer | Marc Tiehuis <marctiehuis@gmail.com> | 2017-06-16 20:32:31 +1200 |
| commit | 4c16f9a3c35b23b9917f2a27b91ba8cd20e6fd82 (patch) | |
| tree | 778f0f06734f7dc17e9269ee1cf5b513f7b504c0 /std/math/cbrt.zig | |
| parent | 865b53f2860405a718262abf9a794d2bf9529dbc (diff) | |
| download | zig-4c16f9a3c35b23b9917f2a27b91ba8cd20e6fd82.tar.gz zig-4c16f9a3c35b23b9917f2a27b91ba8cd20e6fd82.zip | |
Add math library
This covers the majority of the functions as covered by the C99
specification for a math library.
Code is adapted primarily from musl libc, with the pow and standard
trigonometric functions adapted from the Go stdlib.
Changes:
- Remove assert expose in index and import as needed.
- Add float log function and merge with existing base 2 integer
implementation.
See https://github.com/tiehuis/zig-fmath.
See #374.
Diffstat (limited to 'std/math/cbrt.zig')
| -rw-r--r-- | std/math/cbrt.zig | 134 |
1 files changed, 134 insertions, 0 deletions
diff --git a/std/math/cbrt.zig b/std/math/cbrt.zig new file mode 100644 index 0000000000..e286f94ab4 --- /dev/null +++ b/std/math/cbrt.zig @@ -0,0 +1,134 @@ +const math = @import("index.zig"); +const assert = @import("../debug.zig").assert; + +pub fn cbrt(x: var) -> @typeOf(x) { + const T = @typeOf(x); + switch (T) { + f32 => @inlineCall(cbrt32, x), + f64 => @inlineCall(cbrt64, x), + else => @compileError("cbrt not implemented for " ++ @typeName(T)), + } +} + +fn cbrt32(x: f32) -> f32 { + const B1: u32 = 709958130; // (127 - 127.0 / 3 - 0.03306235651) * 2^23 + const B2: u32 = 642849266; // (127 - 127.0 / 3 - 24 / 3 - 0.03306235651) * 2^23 + + var u = @bitCast(u32, x); + var hx = u & 0x7FFFFFFF; + + // cbrt(nan, inf) = itself + if (hx >= 0x7F800000) { + return x + x; + } + + // cbrt to ~5bits + if (hx < 0x00800000) { + // cbrt(+-0) = itself + if (hx == 0) { + return x; + } + u = @bitCast(u32, x * 0x1.0p24); + hx = u & 0x7FFFFFFF; + hx = hx / 3 + B2; + } else { + hx = hx / 3 + B1; + } + + u &= 0x80000000; + u |= hx; + + // first step newton to 16 bits + var t: f64 = @bitCast(f32, u); + var r: f64 = t * t * t; + t = t * (f64(x) + x + r) / (x + r + r); + + // second step newton to 47 bits + r = t * t * t; + t = t * (f64(x) + x + r) / (x + r + r); + + f32(t) +} + +fn cbrt64(x: f64) -> f64 { + const B1: u32 = 715094163; // (1023 - 1023 / 3 - 0.03306235651 * 2^20 + const B2: u32 = 696219795; // (1023 - 1023 / 3 - 54 / 3 - 0.03306235651 * 2^20 + + // |1 / cbrt(x) - p(x)| < 2^(23.5) + const P0: f64 = 1.87595182427177009643; + const P1: f64 = -1.88497979543377169875; + const P2: f64 = 1.621429720105354466140; + const P3: f64 = -0.758397934778766047437; + const P4: f64 = 0.145996192886612446982; + + var u = @bitCast(u64, x); + var hx = u32(u >> 32) & 0x7FFFFFFF; + + // cbrt(nan, inf) = itself + if (hx >= 0x7FF00000) { + return x + x; + } + + // cbrt to ~5bits + if (hx < 0x00100000) { + u = @bitCast(u64, x * 0x1.0p54); + hx = u32(u >> 32) & 0x7FFFFFFF; + + // cbrt(0) is itself + if (hx == 0) { + return 0; + } + hx = hx / 3 + B2; + } else { + hx = hx / 3 + B1; + } + + u &= 1 << 63; + u |= u64(hx) << 32; + var t = @bitCast(f64, u); + + // cbrt to 23 bits + // cbrt(x) = t * cbrt(x / t^3) ~= t * P(t^3 / x) + var r = (t * t) * (t / x); + t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4)); + + // Round t away from 0 to 23 bits + u = @bitCast(u64, t); + u = (u + 0x80000000) & 0xFFFFFFFFC0000000; + t = @bitCast(f64, u); + + // one step newton to 53 bits + const s = t * t; + var q = x / s; + var w = t + t; + q = (q - t) / (w + q); + + t + t * q +} + +test "cbrt" { + assert(cbrt(f32(0.0)) == cbrt32(0.0)); + assert(cbrt(f64(0.0)) == cbrt64(0.0)); +} + +test "cbrt32" { + const epsilon = 0.000001; + + assert(cbrt32(0.0) == 0.0); + assert(math.approxEq(f32, cbrt32(0.2), 0.584804, epsilon)); + assert(math.approxEq(f32, cbrt32(0.8923), 0.962728, epsilon)); + assert(math.approxEq(f32, cbrt32(1.5), 1.144714, epsilon)); + assert(math.approxEq(f32, cbrt32(37.45), 3.345676, epsilon)); + assert(math.approxEq(f32, cbrt32(123123.234375), 49.748501, epsilon)); +} + +test "cbrt64" { + const epsilon = 0.000001; + + assert(cbrt64(0.0) == 0.0); + assert(math.approxEq(f64, cbrt64(0.2), 0.584804, epsilon)); + assert(math.approxEq(f64, cbrt64(0.8923), 0.962728, epsilon)); + assert(math.approxEq(f64, cbrt64(1.5), 1.144714, epsilon)); + assert(math.approxEq(f64, cbrt64(37.45), 3.345676, epsilon)); + assert(math.approxEq(f64, cbrt64(123123.234375), 49.748501, epsilon)); +} |
