diff options
| author | Andrew Kelley <superjoe30@gmail.com> | 2018-07-09 22:06:47 -0400 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2018-07-09 22:06:47 -0400 |
| commit | ccef60a64033a25dbe2351c27f28257546b2ae5b (patch) | |
| tree | 67390c7e43f9852cf3786f2eed35ebf04e15510d /std/event.zig | |
| parent | 10cc49db1ca1f9b3ac63277c0742e05f6412f3c6 (diff) | |
| parent | c89aac85c440ea4cbccf1abdbd6acf84a33077e3 (diff) | |
| download | zig-ccef60a64033a25dbe2351c27f28257546b2ae5b.tar.gz zig-ccef60a64033a25dbe2351c27f28257546b2ae5b.zip | |
Merge pull request #1198 from ziglang/m-n-threading
M:N threading
Diffstat (limited to 'std/event.zig')
| -rw-r--r-- | std/event.zig | 850 |
1 files changed, 774 insertions, 76 deletions
diff --git a/std/event.zig b/std/event.zig index c6ac04a9d0..de51f8c87e 100644 --- a/std/event.zig +++ b/std/event.zig @@ -4,6 +4,7 @@ const assert = std.debug.assert; const event = this; const mem = std.mem; const posix = std.os.posix; +const windows = std.os.windows; const AtomicRmwOp = builtin.AtomicRmwOp; const AtomicOrder = builtin.AtomicOrder; @@ -11,53 +12,69 @@ pub const TcpServer = struct { handleRequestFn: async<*mem.Allocator> fn (*TcpServer, *const std.net.Address, *const std.os.File) void, loop: *Loop, - sockfd: i32, + sockfd: ?i32, accept_coro: ?promise, listen_address: std.net.Address, waiting_for_emfile_node: PromiseNode, + listen_resume_node: event.Loop.ResumeNode, const PromiseNode = std.LinkedList(promise).Node; - pub fn init(loop: *Loop) !TcpServer { - const sockfd = try std.os.posixSocket(posix.AF_INET, posix.SOCK_STREAM | posix.SOCK_CLOEXEC | posix.SOCK_NONBLOCK, posix.PROTO_tcp); - errdefer std.os.close(sockfd); - + pub fn init(loop: *Loop) TcpServer { // TODO can't initialize handler coroutine here because we need well defined copy elision return TcpServer{ .loop = loop, - .sockfd = sockfd, + .sockfd = null, .accept_coro = null, .handleRequestFn = undefined, .waiting_for_emfile_node = undefined, .listen_address = undefined, + .listen_resume_node = event.Loop.ResumeNode{ + .id = event.Loop.ResumeNode.Id.Basic, + .handle = undefined, + }, }; } - pub fn listen(self: *TcpServer, address: *const std.net.Address, handleRequestFn: async<*mem.Allocator> fn (*TcpServer, *const std.net.Address, *const std.os.File) void) !void { + pub fn listen( + self: *TcpServer, + address: *const std.net.Address, + handleRequestFn: async<*mem.Allocator> fn (*TcpServer, *const std.net.Address, *const std.os.File) void, + ) !void { self.handleRequestFn = handleRequestFn; - try std.os.posixBind(self.sockfd, &address.os_addr); - try std.os.posixListen(self.sockfd, posix.SOMAXCONN); - self.listen_address = std.net.Address.initPosix(try std.os.posixGetSockName(self.sockfd)); + const sockfd = try std.os.posixSocket(posix.AF_INET, posix.SOCK_STREAM | posix.SOCK_CLOEXEC | posix.SOCK_NONBLOCK, posix.PROTO_tcp); + errdefer std.os.close(sockfd); + self.sockfd = sockfd; + + try std.os.posixBind(sockfd, &address.os_addr); + try std.os.posixListen(sockfd, posix.SOMAXCONN); + self.listen_address = std.net.Address.initPosix(try std.os.posixGetSockName(sockfd)); self.accept_coro = try async<self.loop.allocator> TcpServer.handler(self); errdefer cancel self.accept_coro.?; - try self.loop.addFd(self.sockfd, self.accept_coro.?); - errdefer self.loop.removeFd(self.sockfd); + self.listen_resume_node.handle = self.accept_coro.?; + try self.loop.addFd(sockfd, &self.listen_resume_node); + errdefer self.loop.removeFd(sockfd); + } + + /// Stop listening + pub fn close(self: *TcpServer) void { + self.loop.removeFd(self.sockfd.?); + std.os.close(self.sockfd.?); } pub fn deinit(self: *TcpServer) void { - self.loop.removeFd(self.sockfd); if (self.accept_coro) |accept_coro| cancel accept_coro; - std.os.close(self.sockfd); + if (self.sockfd) |sockfd| std.os.close(sockfd); } pub async fn handler(self: *TcpServer) void { while (true) { var accepted_addr: std.net.Address = undefined; - if (std.os.posixAccept(self.sockfd, &accepted_addr.os_addr, posix.SOCK_NONBLOCK | posix.SOCK_CLOEXEC)) |accepted_fd| { + if (std.os.posixAccept(self.sockfd.?, &accepted_addr.os_addr, posix.SOCK_NONBLOCK | posix.SOCK_CLOEXEC)) |accepted_fd| { var socket = std.os.File.openHandle(accepted_fd); _ = async<self.loop.allocator> self.handleRequestFn(self, accepted_addr, socket) catch |err| switch (err) { error.OutOfMemory => { @@ -95,46 +112,276 @@ pub const TcpServer = struct { pub const Loop = struct { allocator: *mem.Allocator, - keep_running: bool, next_tick_queue: std.atomic.QueueMpsc(promise), os_data: OsData, + final_resume_node: ResumeNode, + dispatch_lock: u8, // TODO make this a bool + pending_event_count: usize, + extra_threads: []*std.os.Thread, - const OsData = switch (builtin.os) { - builtin.Os.linux => struct { - epollfd: i32, - }, - else => struct {}, - }; + // pre-allocated eventfds. all permanently active. + // this is how we send promises to be resumed on other threads. + available_eventfd_resume_nodes: std.atomic.Stack(ResumeNode.EventFd), + eventfd_resume_nodes: []std.atomic.Stack(ResumeNode.EventFd).Node, pub const NextTickNode = std.atomic.QueueMpsc(promise).Node; + pub const ResumeNode = struct { + id: Id, + handle: promise, + + pub const Id = enum { + Basic, + Stop, + EventFd, + }; + + pub const EventFd = switch (builtin.os) { + builtin.Os.macosx => MacOsEventFd, + builtin.Os.linux => struct { + base: ResumeNode, + epoll_op: u32, + eventfd: i32, + }, + builtin.Os.windows => struct { + base: ResumeNode, + completion_key: usize, + }, + else => @compileError("unsupported OS"), + }; + + const MacOsEventFd = struct { + base: ResumeNode, + kevent: posix.Kevent, + }; + }; + + /// After initialization, call run(). + /// TODO copy elision / named return values so that the threads referencing *Loop + /// have the correct pointer value. + fn initSingleThreaded(self: *Loop, allocator: *mem.Allocator) !void { + return self.initInternal(allocator, 1); + } + /// The allocator must be thread-safe because we use it for multiplexing /// coroutines onto kernel threads. - pub fn init(allocator: *mem.Allocator) !Loop { - var self = Loop{ - .keep_running = true, + /// After initialization, call run(). + /// TODO copy elision / named return values so that the threads referencing *Loop + /// have the correct pointer value. + fn initMultiThreaded(self: *Loop, allocator: *mem.Allocator) !void { + const core_count = try std.os.cpuCount(allocator); + return self.initInternal(allocator, core_count); + } + + /// Thread count is the total thread count. The thread pool size will be + /// max(thread_count - 1, 0) + fn initInternal(self: *Loop, allocator: *mem.Allocator, thread_count: usize) !void { + self.* = Loop{ + .pending_event_count = 0, .allocator = allocator, .os_data = undefined, .next_tick_queue = std.atomic.QueueMpsc(promise).init(), + .dispatch_lock = 1, // start locked so threads go directly into epoll wait + .extra_threads = undefined, + .available_eventfd_resume_nodes = std.atomic.Stack(ResumeNode.EventFd).init(), + .eventfd_resume_nodes = undefined, + .final_resume_node = ResumeNode{ + .id = ResumeNode.Id.Stop, + .handle = undefined, + }, }; - try self.initOsData(); - errdefer self.deinitOsData(); + const extra_thread_count = thread_count - 1; + self.eventfd_resume_nodes = try self.allocator.alloc( + std.atomic.Stack(ResumeNode.EventFd).Node, + extra_thread_count, + ); + errdefer self.allocator.free(self.eventfd_resume_nodes); + + self.extra_threads = try self.allocator.alloc(*std.os.Thread, extra_thread_count); + errdefer self.allocator.free(self.extra_threads); - return self; + try self.initOsData(extra_thread_count); + errdefer self.deinitOsData(); } /// must call stop before deinit pub fn deinit(self: *Loop) void { self.deinitOsData(); + self.allocator.free(self.extra_threads); } - const InitOsDataError = std.os.LinuxEpollCreateError; + const InitOsDataError = std.os.LinuxEpollCreateError || mem.Allocator.Error || std.os.LinuxEventFdError || + std.os.SpawnThreadError || std.os.LinuxEpollCtlError || std.os.BsdKEventError || + std.os.WindowsCreateIoCompletionPortError; - fn initOsData(self: *Loop) InitOsDataError!void { + const wakeup_bytes = []u8{0x1} ** 8; + + fn initOsData(self: *Loop, extra_thread_count: usize) InitOsDataError!void { switch (builtin.os) { builtin.Os.linux => { - self.os_data.epollfd = try std.os.linuxEpollCreate(std.os.linux.EPOLL_CLOEXEC); + errdefer { + while (self.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd); + } + for (self.eventfd_resume_nodes) |*eventfd_node| { + eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{ + .data = ResumeNode.EventFd{ + .base = ResumeNode{ + .id = ResumeNode.Id.EventFd, + .handle = undefined, + }, + .eventfd = try std.os.linuxEventFd(1, posix.EFD_CLOEXEC | posix.EFD_NONBLOCK), + .epoll_op = posix.EPOLL_CTL_ADD, + }, + .next = undefined, + }; + self.available_eventfd_resume_nodes.push(eventfd_node); + } + + self.os_data.epollfd = try std.os.linuxEpollCreate(posix.EPOLL_CLOEXEC); errdefer std.os.close(self.os_data.epollfd); + + self.os_data.final_eventfd = try std.os.linuxEventFd(0, posix.EFD_CLOEXEC | posix.EFD_NONBLOCK); + errdefer std.os.close(self.os_data.final_eventfd); + + self.os_data.final_eventfd_event = posix.epoll_event{ + .events = posix.EPOLLIN, + .data = posix.epoll_data{ .ptr = @ptrToInt(&self.final_resume_node) }, + }; + try std.os.linuxEpollCtl( + self.os_data.epollfd, + posix.EPOLL_CTL_ADD, + self.os_data.final_eventfd, + &self.os_data.final_eventfd_event, + ); + + var extra_thread_index: usize = 0; + errdefer { + // writing 8 bytes to an eventfd cannot fail + std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable; + while (extra_thread_index != 0) { + extra_thread_index -= 1; + self.extra_threads[extra_thread_index].wait(); + } + } + while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) { + self.extra_threads[extra_thread_index] = try std.os.spawnThread(self, workerRun); + } + }, + builtin.Os.macosx => { + self.os_data.kqfd = try std.os.bsdKQueue(); + errdefer std.os.close(self.os_data.kqfd); + + self.os_data.kevents = try self.allocator.alloc(posix.Kevent, extra_thread_count); + errdefer self.allocator.free(self.os_data.kevents); + + const eventlist = ([*]posix.Kevent)(undefined)[0..0]; + + for (self.eventfd_resume_nodes) |*eventfd_node, i| { + eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{ + .data = ResumeNode.EventFd{ + .base = ResumeNode{ + .id = ResumeNode.Id.EventFd, + .handle = undefined, + }, + // this one is for sending events + .kevent = posix.Kevent{ + .ident = i, + .filter = posix.EVFILT_USER, + .flags = posix.EV_CLEAR | posix.EV_ADD | posix.EV_DISABLE, + .fflags = 0, + .data = 0, + .udata = @ptrToInt(&eventfd_node.data.base), + }, + }, + .next = undefined, + }; + self.available_eventfd_resume_nodes.push(eventfd_node); + const kevent_array = (*[1]posix.Kevent)(&eventfd_node.data.kevent); + _ = try std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null); + eventfd_node.data.kevent.flags = posix.EV_CLEAR | posix.EV_ENABLE; + eventfd_node.data.kevent.fflags = posix.NOTE_TRIGGER; + // this one is for waiting for events + self.os_data.kevents[i] = posix.Kevent{ + .ident = i, + .filter = posix.EVFILT_USER, + .flags = 0, + .fflags = 0, + .data = 0, + .udata = @ptrToInt(&eventfd_node.data.base), + }; + } + + // Pre-add so that we cannot get error.SystemResources + // later when we try to activate it. + self.os_data.final_kevent = posix.Kevent{ + .ident = extra_thread_count, + .filter = posix.EVFILT_USER, + .flags = posix.EV_ADD | posix.EV_DISABLE, + .fflags = 0, + .data = 0, + .udata = @ptrToInt(&self.final_resume_node), + }; + const kevent_array = (*[1]posix.Kevent)(&self.os_data.final_kevent); + _ = try std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null); + self.os_data.final_kevent.flags = posix.EV_ENABLE; + self.os_data.final_kevent.fflags = posix.NOTE_TRIGGER; + + var extra_thread_index: usize = 0; + errdefer { + _ = std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null) catch unreachable; + while (extra_thread_index != 0) { + extra_thread_index -= 1; + self.extra_threads[extra_thread_index].wait(); + } + } + while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) { + self.extra_threads[extra_thread_index] = try std.os.spawnThread(self, workerRun); + } + }, + builtin.Os.windows => { + self.os_data.extra_thread_count = extra_thread_count; + + self.os_data.io_port = try std.os.windowsCreateIoCompletionPort( + windows.INVALID_HANDLE_VALUE, + null, + undefined, + undefined, + ); + errdefer std.os.close(self.os_data.io_port); + + for (self.eventfd_resume_nodes) |*eventfd_node, i| { + eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{ + .data = ResumeNode.EventFd{ + .base = ResumeNode{ + .id = ResumeNode.Id.EventFd, + .handle = undefined, + }, + // this one is for sending events + .completion_key = @ptrToInt(&eventfd_node.data.base), + }, + .next = undefined, + }; + self.available_eventfd_resume_nodes.push(eventfd_node); + } + + var extra_thread_index: usize = 0; + errdefer { + var i: usize = 0; + while (i < extra_thread_index) : (i += 1) { + while (true) { + const overlapped = @intToPtr(?*windows.OVERLAPPED, 0x1); + std.os.windowsPostQueuedCompletionStatus(self.os_data.io_port, undefined, @ptrToInt(&self.final_resume_node), overlapped) catch continue; + break; + } + } + while (extra_thread_index != 0) { + extra_thread_index -= 1; + self.extra_threads[extra_thread_index].wait(); + } + } + while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) { + self.extra_threads[extra_thread_index] = try std.os.spawnThread(self, workerRun); + } }, else => {}, } @@ -142,65 +389,281 @@ pub const Loop = struct { fn deinitOsData(self: *Loop) void { switch (builtin.os) { - builtin.Os.linux => std.os.close(self.os_data.epollfd), + builtin.Os.linux => { + std.os.close(self.os_data.final_eventfd); + while (self.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd); + std.os.close(self.os_data.epollfd); + self.allocator.free(self.eventfd_resume_nodes); + }, + builtin.Os.macosx => { + self.allocator.free(self.os_data.kevents); + std.os.close(self.os_data.kqfd); + }, + builtin.Os.windows => { + std.os.close(self.os_data.io_port); + }, else => {}, } } - pub fn addFd(self: *Loop, fd: i32, prom: promise) !void { + /// resume_node must live longer than the promise that it holds a reference to. + pub fn addFd(self: *Loop, fd: i32, resume_node: *ResumeNode) !void { + _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst); + errdefer { + _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); + } + try self.modFd( + fd, + posix.EPOLL_CTL_ADD, + std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET, + resume_node, + ); + } + + pub fn modFd(self: *Loop, fd: i32, op: u32, events: u32, resume_node: *ResumeNode) !void { var ev = std.os.linux.epoll_event{ - .events = std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET, - .data = std.os.linux.epoll_data{ .ptr = @ptrToInt(prom) }, + .events = events, + .data = std.os.linux.epoll_data{ .ptr = @ptrToInt(resume_node) }, }; - try std.os.linuxEpollCtl(self.os_data.epollfd, std.os.linux.EPOLL_CTL_ADD, fd, &ev); + try std.os.linuxEpollCtl(self.os_data.epollfd, op, fd, &ev); } pub fn removeFd(self: *Loop, fd: i32) void { + self.removeFdNoCounter(fd); + _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); + } + + fn removeFdNoCounter(self: *Loop, fd: i32) void { std.os.linuxEpollCtl(self.os_data.epollfd, std.os.linux.EPOLL_CTL_DEL, fd, undefined) catch {}; } - async fn waitFd(self: *Loop, fd: i32) !void { + + pub async fn waitFd(self: *Loop, fd: i32) !void { defer self.removeFd(fd); suspend |p| { - try self.addFd(fd, p); + // TODO explicitly put this memory in the coroutine frame #1194 + var resume_node = ResumeNode{ + .id = ResumeNode.Id.Basic, + .handle = p, + }; + try self.addFd(fd, &resume_node); } } - pub fn stop(self: *Loop) void { - // TODO make atomic - self.keep_running = false; - // TODO activate an fd in the epoll set which should cancel all the promises - } - - /// bring your own linked list node. this means it can't fail. + /// Bring your own linked list node. This means it can't fail. pub fn onNextTick(self: *Loop, node: *NextTickNode) void { + _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst); self.next_tick_queue.put(node); } pub fn run(self: *Loop) void { - while (self.keep_running) { - // TODO multiplex the next tick queue and the epoll event results onto a thread pool - while (self.next_tick_queue.get()) |node| { - resume node.data; - } - if (!self.keep_running) break; - - self.dispatchOsEvents(); + _ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); + self.workerRun(); + for (self.extra_threads) |extra_thread| { + extra_thread.wait(); } } - fn dispatchOsEvents(self: *Loop) void { - switch (builtin.os) { - builtin.Os.linux => { - var events: [16]std.os.linux.epoll_event = undefined; - const count = std.os.linuxEpollWait(self.os_data.epollfd, events[0..], -1); - for (events[0..count]) |ev| { - const p = @intToPtr(promise, ev.data.ptr); - resume p; + fn workerRun(self: *Loop) void { + start_over: while (true) { + if (@atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst) == 0) { + while (self.next_tick_queue.get()) |next_tick_node| { + const handle = next_tick_node.data; + if (self.next_tick_queue.isEmpty()) { + // last node, just resume it + _ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); + resume handle; + _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); + continue :start_over; + } + + // non-last node, stick it in the epoll/kqueue set so that + // other threads can get to it + if (self.available_eventfd_resume_nodes.pop()) |resume_stack_node| { + const eventfd_node = &resume_stack_node.data; + eventfd_node.base.handle = handle; + switch (builtin.os) { + builtin.Os.macosx => { + const kevent_array = (*[1]posix.Kevent)(&eventfd_node.kevent); + const eventlist = ([*]posix.Kevent)(undefined)[0..0]; + _ = std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null) catch { + // fine, we didn't need it anyway + _ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); + self.available_eventfd_resume_nodes.push(resume_stack_node); + resume handle; + _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); + continue :start_over; + }; + }, + builtin.Os.linux => { + // the pending count is already accounted for + const epoll_events = posix.EPOLLONESHOT | std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET; + self.modFd(eventfd_node.eventfd, eventfd_node.epoll_op, epoll_events, &eventfd_node.base) catch { + // fine, we didn't need it anyway + _ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); + self.available_eventfd_resume_nodes.push(resume_stack_node); + resume handle; + _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); + continue :start_over; + }; + }, + builtin.Os.windows => { + // this value is never dereferenced but we need it to be non-null so that + // the consumer code can decide whether to read the completion key. + // it has to do this for normal I/O, so we match that behavior here. + const overlapped = @intToPtr(?*windows.OVERLAPPED, 0x1); + std.os.windowsPostQueuedCompletionStatus(self.os_data.io_port, undefined, eventfd_node.completion_key, overlapped) catch { + // fine, we didn't need it anyway + _ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); + self.available_eventfd_resume_nodes.push(resume_stack_node); + resume handle; + _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); + continue :start_over; + }; + }, + else => @compileError("unsupported OS"), + } + } else { + // threads are too busy, can't add another eventfd to wake one up + _ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); + resume handle; + _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); + continue :start_over; + } } - }, - else => {}, + + const pending_event_count = @atomicLoad(usize, &self.pending_event_count, AtomicOrder.SeqCst); + if (pending_event_count == 0) { + // cause all the threads to stop + switch (builtin.os) { + builtin.Os.linux => { + // writing 8 bytes to an eventfd cannot fail + std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable; + return; + }, + builtin.Os.macosx => { + const final_kevent = (*[1]posix.Kevent)(&self.os_data.final_kevent); + const eventlist = ([*]posix.Kevent)(undefined)[0..0]; + // cannot fail because we already added it and this just enables it + _ = std.os.bsdKEvent(self.os_data.kqfd, final_kevent, eventlist, null) catch unreachable; + return; + }, + builtin.Os.windows => { + var i: usize = 0; + while (i < self.os_data.extra_thread_count) : (i += 1) { + while (true) { + const overlapped = @intToPtr(?*windows.OVERLAPPED, 0x1); + std.os.windowsPostQueuedCompletionStatus(self.os_data.io_port, undefined, @ptrToInt(&self.final_resume_node), overlapped) catch continue; + break; + } + } + return; + }, + else => @compileError("unsupported OS"), + } + } + + _ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); + } + + switch (builtin.os) { + builtin.Os.linux => { + // only process 1 event so we don't steal from other threads + var events: [1]std.os.linux.epoll_event = undefined; + const count = std.os.linuxEpollWait(self.os_data.epollfd, events[0..], -1); + for (events[0..count]) |ev| { + const resume_node = @intToPtr(*ResumeNode, ev.data.ptr); + const handle = resume_node.handle; + const resume_node_id = resume_node.id; + switch (resume_node_id) { + ResumeNode.Id.Basic => {}, + ResumeNode.Id.Stop => return, + ResumeNode.Id.EventFd => { + const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node); + event_fd_node.epoll_op = posix.EPOLL_CTL_MOD; + const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node); + self.available_eventfd_resume_nodes.push(stack_node); + }, + } + resume handle; + if (resume_node_id == ResumeNode.Id.EventFd) { + _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); + } + } + }, + builtin.Os.macosx => { + var eventlist: [1]posix.Kevent = undefined; + const count = std.os.bsdKEvent(self.os_data.kqfd, self.os_data.kevents, eventlist[0..], null) catch unreachable; + for (eventlist[0..count]) |ev| { + const resume_node = @intToPtr(*ResumeNode, ev.udata); + const handle = resume_node.handle; + const resume_node_id = resume_node.id; + switch (resume_node_id) { + ResumeNode.Id.Basic => {}, + ResumeNode.Id.Stop => return, + ResumeNode.Id.EventFd => { + const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node); + const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node); + self.available_eventfd_resume_nodes.push(stack_node); + }, + } + resume handle; + if (resume_node_id == ResumeNode.Id.EventFd) { + _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); + } + } + }, + builtin.Os.windows => { + var completion_key: usize = undefined; + while (true) { + var nbytes: windows.DWORD = undefined; + var overlapped: ?*windows.OVERLAPPED = undefined; + switch (std.os.windowsGetQueuedCompletionStatus(self.os_data.io_port, &nbytes, &completion_key, &overlapped, windows.INFINITE)) { + std.os.WindowsWaitResult.Aborted => return, + std.os.WindowsWaitResult.Normal => {}, + } + if (overlapped != null) break; + } + const resume_node = @intToPtr(*ResumeNode, completion_key); + const handle = resume_node.handle; + const resume_node_id = resume_node.id; + switch (resume_node_id) { + ResumeNode.Id.Basic => {}, + ResumeNode.Id.Stop => return, + ResumeNode.Id.EventFd => { + const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node); + const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node); + self.available_eventfd_resume_nodes.push(stack_node); + }, + } + resume handle; + if (resume_node_id == ResumeNode.Id.EventFd) { + _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); + } + }, + else => @compileError("unsupported OS"), + } } } + + const OsData = switch (builtin.os) { + builtin.Os.linux => struct { + epollfd: i32, + final_eventfd: i32, + final_eventfd_event: std.os.linux.epoll_event, + }, + builtin.Os.macosx => MacOsData, + builtin.Os.windows => struct { + io_port: windows.HANDLE, + extra_thread_count: usize, + }, + else => struct {}, + }; + + const MacOsData = struct { + kqfd: i32, + final_kevent: posix.Kevent, + kevents: []posix.Kevent, + }; }; /// many producer, many consumer, thread-safe, lock-free, runtime configurable buffer size @@ -304,9 +767,7 @@ pub fn Channel(comptime T: type) type { // TODO integrate this function with named return values // so we can get rid of this extra result copy var result: T = undefined; - var debug_handle: usize = undefined; suspend |handle| { - debug_handle = @ptrToInt(handle); var my_tick_node = Loop.NextTickNode{ .next = undefined, .data = handle, @@ -438,9 +899,8 @@ test "listen on a port, send bytes, receive bytes" { const self = @fieldParentPtr(Self, "tcp_server", tcp_server); var socket = _socket.*; // TODO https://github.com/ziglang/zig/issues/733 defer socket.close(); - const next_handler = async errorableHandler(self, _addr, socket) catch |err| switch (err) { - error.OutOfMemory => @panic("unable to handle connection: out of memory"), - }; + // TODO guarantee elision of this allocation + const next_handler = async errorableHandler(self, _addr, socket) catch unreachable; (await next_handler) catch |err| { std.debug.panic("unable to handle connection: {}\n", err); }; @@ -461,17 +921,18 @@ test "listen on a port, send bytes, receive bytes" { const ip4addr = std.net.parseIp4("127.0.0.1") catch unreachable; const addr = std.net.Address.initIp4(ip4addr, 0); - var loop = try Loop.init(std.debug.global_allocator); - var server = MyServer{ .tcp_server = try TcpServer.init(&loop) }; + var loop: Loop = undefined; + try loop.initSingleThreaded(std.debug.global_allocator); + var server = MyServer{ .tcp_server = TcpServer.init(&loop) }; defer server.tcp_server.deinit(); try server.tcp_server.listen(addr, MyServer.handler); - const p = try async<std.debug.global_allocator> doAsyncTest(&loop, server.tcp_server.listen_address); + const p = try async<std.debug.global_allocator> doAsyncTest(&loop, server.tcp_server.listen_address, &server.tcp_server); defer cancel p; loop.run(); } -async fn doAsyncTest(loop: *Loop, address: *const std.net.Address) void { +async fn doAsyncTest(loop: *Loop, address: *const std.net.Address, server: *TcpServer) void { errdefer @panic("test failure"); var socket_file = try await try async event.connect(loop, address); @@ -481,7 +942,7 @@ async fn doAsyncTest(loop: *Loop, address: *const std.net.Address) void { const amt_read = try socket_file.read(buf[0..]); const msg = buf[0..amt_read]; assert(mem.eql(u8, msg, "hello from server\n")); - loop.stop(); + server.close(); } test "std.event.Channel" { @@ -490,7 +951,9 @@ test "std.event.Channel" { const allocator = &da.allocator; - var loop = try Loop.init(allocator); + var loop: Loop = undefined; + // TODO make a multi threaded test + try loop.initSingleThreaded(allocator); defer loop.deinit(); const channel = try Channel(i32).create(&loop, 0); @@ -515,11 +978,246 @@ async fn testChannelGetter(loop: *Loop, channel: *Channel(i32)) void { const value2_promise = try async channel.get(); const value2 = await value2_promise; assert(value2 == 4567); - - loop.stop(); } async fn testChannelPutter(channel: *Channel(i32)) void { await (async channel.put(1234) catch @panic("out of memory")); await (async channel.put(4567) catch @panic("out of memory")); } + +/// Thread-safe async/await lock. +/// Does not make any syscalls - coroutines which are waiting for the lock are suspended, and +/// are resumed when the lock is released, in order. +pub const Lock = struct { + loop: *Loop, + shared_bit: u8, // TODO make this a bool + queue: Queue, + queue_empty_bit: u8, // TODO make this a bool + + const Queue = std.atomic.QueueMpsc(promise); + + pub const Held = struct { + lock: *Lock, + + pub fn release(self: Held) void { + // Resume the next item from the queue. + if (self.lock.queue.get()) |node| { + self.lock.loop.onNextTick(node); + return; + } + + // We need to release the lock. + _ = @atomicRmw(u8, &self.lock.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst); + _ = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); + + // There might be a queue item. If we know the queue is empty, we can be done, + // because the other actor will try to obtain the lock. + // But if there's a queue item, we are the actor which must loop and attempt + // to grab the lock again. + if (@atomicLoad(u8, &self.lock.queue_empty_bit, AtomicOrder.SeqCst) == 1) { + return; + } + + while (true) { + const old_bit = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst); + if (old_bit != 0) { + // We did not obtain the lock. Great, the queue is someone else's problem. + return; + } + + // Resume the next item from the queue. + if (self.lock.queue.get()) |node| { + self.lock.loop.onNextTick(node); + return; + } + + // Release the lock again. + _ = @atomicRmw(u8, &self.lock.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst); + _ = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); + + // Find out if we can be done. + if (@atomicLoad(u8, &self.lock.queue_empty_bit, AtomicOrder.SeqCst) == 1) { + return; + } + } + } + }; + + pub fn init(loop: *Loop) Lock { + return Lock{ + .loop = loop, + .shared_bit = 0, + .queue = Queue.init(), + .queue_empty_bit = 1, + }; + } + + /// Must be called when not locked. Not thread safe. + /// All calls to acquire() and release() must complete before calling deinit(). + pub fn deinit(self: *Lock) void { + assert(self.shared_bit == 0); + while (self.queue.get()) |node| cancel node.data; + } + + pub async fn acquire(self: *Lock) Held { + s: suspend |handle| { + // TODO explicitly put this memory in the coroutine frame #1194 + var my_tick_node = Loop.NextTickNode{ + .data = handle, + .next = undefined, + }; + + self.queue.put(&my_tick_node); + + // At this point, we are in the queue, so we might have already been resumed and this coroutine + // frame might be destroyed. For the rest of the suspend block we cannot access the coroutine frame. + + // We set this bit so that later we can rely on the fact, that if queue_empty_bit is 1, some actor + // will attempt to grab the lock. + _ = @atomicRmw(u8, &self.queue_empty_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); + + while (true) { + const old_bit = @atomicRmw(u8, &self.shared_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst); + if (old_bit != 0) { + // We did not obtain the lock. Trust that our queue entry will resume us, and allow + // suspend to complete. + break; + } + // We got the lock. However we might have already been resumed from the queue. + if (self.queue.get()) |node| { + // Whether this node is us or someone else, we tail resume it. + resume node.data; + break; + } else { + // We already got resumed, and there are none left in the queue, which means that + // we aren't even supposed to hold the lock right now. + _ = @atomicRmw(u8, &self.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst); + _ = @atomicRmw(u8, &self.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); + + // There might be a queue item. If we know the queue is empty, we can be done, + // because the other actor will try to obtain the lock. + // But if there's a queue item, we are the actor which must loop and attempt + // to grab the lock again. + if (@atomicLoad(u8, &self.queue_empty_bit, AtomicOrder.SeqCst) == 1) { + break; + } else { + continue; + } + } + unreachable; + } + } + + return Held{ .lock = self }; + } +}; + +/// Thread-safe async/await lock that protects one piece of data. +/// Does not make any syscalls - coroutines which are waiting for the lock are suspended, and +/// are resumed when the lock is released, in order. +pub fn Locked(comptime T: type) type { + return struct { + lock: Lock, + private_data: T, + + const Self = this; + + pub const HeldLock = struct { + value: *T, + held: Lock.Held, + + pub fn release(self: HeldLock) void { + self.held.release(); + } + }; + + pub fn init(loop: *Loop, data: T) Self { + return Self{ + .lock = Lock.init(loop), + .private_data = data, + }; + } + + pub fn deinit(self: *Self) void { + self.lock.deinit(); + } + + pub async fn acquire(self: *Self) HeldLock { + return HeldLock{ + // TODO guaranteed allocation elision + .held = await (async self.lock.acquire() catch unreachable), + .value = &self.private_data, + }; + } + }; +} + +test "std.event.Lock" { + var da = std.heap.DirectAllocator.init(); + defer da.deinit(); + + const allocator = &da.allocator; + + var loop: Loop = undefined; + try loop.initMultiThreaded(allocator); + defer loop.deinit(); + + var lock = Lock.init(&loop); + defer lock.deinit(); + + const handle = try async<allocator> testLock(&loop, &lock); + defer cancel handle; + loop.run(); + + assert(mem.eql(i32, shared_test_data, [1]i32{3 * @intCast(i32, shared_test_data.len)} ** shared_test_data.len)); +} + +async fn testLock(loop: *Loop, lock: *Lock) void { + // TODO explicitly put next tick node memory in the coroutine frame #1194 + suspend |p| { + resume p; + } + const handle1 = async lockRunner(lock) catch @panic("out of memory"); + var tick_node1 = Loop.NextTickNode{ + .next = undefined, + .data = handle1, + }; + loop.onNextTick(&tick_node1); + + const handle2 = async lockRunner(lock) catch @panic("out of memory"); + var tick_node2 = Loop.NextTickNode{ + .next = undefined, + .data = handle2, + }; + loop.onNextTick(&tick_node2); + + const handle3 = async lockRunner(lock) catch @panic("out of memory"); + var tick_node3 = Loop.NextTickNode{ + .next = undefined, + .data = handle3, + }; + loop.onNextTick(&tick_node3); + + await handle1; + await handle2; + await handle3; +} + +var shared_test_data = [1]i32{0} ** 10; +var shared_test_index: usize = 0; + +async fn lockRunner(lock: *Lock) void { + suspend; // resumed by onNextTick + + var i: usize = 0; + while (i < shared_test_data.len) : (i += 1) { + const lock_promise = async lock.acquire() catch @panic("out of memory"); + const handle = await lock_promise; + defer handle.release(); + + shared_test_index = 0; + while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) { + shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1; + } + } +} |
