aboutsummaryrefslogtreecommitdiff
path: root/src/stage1/bigint.cpp
diff options
context:
space:
mode:
authorAndrew Kelley <andrew@ziglang.org>2022-12-06 18:52:39 -0500
committerGitHub <noreply@github.com>2022-12-06 18:52:39 -0500
commite7d28344fa3ee81d6ad7ca5ce1f83d50d8502118 (patch)
tree012b2556f2bda10ae663fab8efb235efe30e02f4 /src/stage1/bigint.cpp
parent817cf6a82efa7ed274371a28621bbf88a723d9b7 (diff)
parent20d86d9c63476b6312b87dc5b0e4aa4822eb7717 (diff)
downloadzig-e7d28344fa3ee81d6ad7ca5ce1f83d50d8502118.tar.gz
zig-e7d28344fa3ee81d6ad7ca5ce1f83d50d8502118.zip
Merge pull request #13560 from ziglang/wasi-bootstrap
Nuke the C++ implementation of Zig from orbit using WASI
Diffstat (limited to 'src/stage1/bigint.cpp')
-rw-r--r--src/stage1/bigint.cpp1895
1 files changed, 0 insertions, 1895 deletions
diff --git a/src/stage1/bigint.cpp b/src/stage1/bigint.cpp
deleted file mode 100644
index 3180095be6..0000000000
--- a/src/stage1/bigint.cpp
+++ /dev/null
@@ -1,1895 +0,0 @@
-/*
- * Copyright (c) 2017 Andrew Kelley
- *
- * This file is part of zig, which is MIT licensed.
- * See http://opensource.org/licenses/MIT
- */
-
-#include "bigfloat.hpp"
-#include "bigint.hpp"
-#include "buffer.hpp"
-#include "list.hpp"
-#include "os.hpp"
-#include "softfloat.hpp"
-
-#include <limits>
-#include <algorithm>
-
-static uint64_t bigint_as_unsigned(const BigInt *bigint);
-
-static void bigint_normalize(BigInt *dest) {
- const uint64_t *digits = bigint_ptr(dest);
-
- size_t last_nonzero_digit = SIZE_MAX;
- for (size_t i = 0; i < dest->digit_count; i += 1) {
- uint64_t digit = digits[i];
- if (digit != 0) {
- last_nonzero_digit = i;
- }
- }
- if (last_nonzero_digit == SIZE_MAX) {
- dest->is_negative = false;
- dest->digit_count = 0;
- } else {
- dest->digit_count = last_nonzero_digit + 1;
- if (last_nonzero_digit == 0) {
- dest->data.digit = digits[0];
- }
- }
-}
-
-static uint8_t digit_to_char(uint8_t digit, bool uppercase) {
- if (digit <= 9) {
- return digit + '0';
- } else if (digit <= 35) {
- return (digit - 10) + (uppercase ? 'A' : 'a');
- } else {
- zig_unreachable();
- }
-}
-
-size_t bigint_bits_needed(const BigInt *op) {
- size_t full_bits = op->digit_count * 64;
- size_t leading_zero_count = bigint_clz(op, full_bits);
- size_t bits_needed = full_bits - leading_zero_count;
- return bits_needed + op->is_negative;
-}
-
-static void to_twos_complement(BigInt *dest, const BigInt *op, size_t bit_count) {
- if (bit_count == 0 || op->digit_count == 0) {
- bigint_init_unsigned(dest, 0);
- return;
- }
-
- BigInt pos_op = {0};
-
- if (op->is_negative) {
- BigInt negated = {0};
- bigint_negate(&negated, op);
-
- BigInt inverted = {0};
- bigint_not(&inverted, &negated, bit_count, false);
-
- BigInt one = {0};
- bigint_init_unsigned(&one, 1);
-
- bigint_add(&pos_op, &inverted, &one);
- } else {
- bigint_init_bigint(&pos_op, op);
- }
-
- dest->is_negative = false;
- const uint64_t *op_digits = bigint_ptr(&pos_op);
- if (pos_op.digit_count == 1) {
- dest->data.digit = op_digits[0];
- if (bit_count < 64) {
- dest->data.digit &= (1ULL << bit_count) - 1;
- }
- dest->digit_count = 1;
- bigint_normalize(dest);
- return;
- }
- size_t digits_to_copy = bit_count / 64;
- size_t leftover_bits = bit_count % 64;
- dest->digit_count = digits_to_copy + ((leftover_bits == 0) ? 0 : 1);
- if (dest->digit_count == 1) {
- dest->data.digit = op_digits[0];
- if (leftover_bits != 0) {
- dest->data.digit &= (1ULL << leftover_bits) - 1;
- }
- if (dest->data.digit == 0) dest->digit_count = 0;
- return;
- }
- dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
- for (size_t i = 0; i < digits_to_copy; i += 1) {
- uint64_t digit = (i < pos_op.digit_count) ? op_digits[i] : 0;
- dest->data.digits[i] = digit;
- }
- if (leftover_bits != 0) {
- uint64_t digit = (digits_to_copy < pos_op.digit_count) ? op_digits[digits_to_copy] : 0;
- dest->data.digits[digits_to_copy] = digit & ((1ULL << leftover_bits) - 1);
- }
- bigint_normalize(dest);
-}
-
-static bool bit_at_index(const BigInt *bi, size_t index) {
- size_t digit_index = index / 64;
- if (digit_index >= bi->digit_count)
- return false;
- size_t digit_bit_index = index % 64;
- const uint64_t *digits = bigint_ptr(bi);
- uint64_t digit = digits[digit_index];
- return ((digit >> digit_bit_index) & 0x1) == 0x1;
-}
-
-static void from_twos_complement(BigInt *dest, const BigInt *src, size_t bit_count, bool is_signed) {
- assert(!src->is_negative);
-
- if (bit_count == 0 || src->digit_count == 0) {
- bigint_init_unsigned(dest, 0);
- return;
- }
-
- if (is_signed && bit_at_index(src, bit_count - 1)) {
- BigInt negative_one = {0};
- bigint_init_signed(&negative_one, -1);
-
- BigInt minus_one = {0};
- bigint_add(&minus_one, src, &negative_one);
-
- BigInt inverted = {0};
- bigint_not(&inverted, &minus_one, bit_count, false);
-
- bigint_negate(dest, &inverted);
- return;
-
- }
-
- bigint_init_bigint(dest, src);
-}
-
-void bigint_init_unsigned(BigInt *dest, uint64_t x) {
- if (x == 0) {
- dest->digit_count = 0;
- dest->is_negative = false;
- return;
- }
- dest->digit_count = 1;
- dest->data.digit = x;
- dest->is_negative = false;
-}
-
-void bigint_init_signed(BigInt *dest, int64_t x) {
- if (x >= 0) {
- return bigint_init_unsigned(dest, x);
- }
- dest->is_negative = true;
- dest->digit_count = 1;
- dest->data.digit = ((uint64_t)(-(x + 1))) + 1;
-}
-
-void bigint_init_data(BigInt *dest, const uint64_t *digits, size_t digit_count, bool is_negative) {
- if (digit_count == 0) {
- return bigint_init_unsigned(dest, 0);
- } else if (digit_count == 1) {
- dest->digit_count = 1;
- dest->data.digit = digits[0];
- dest->is_negative = is_negative;
- bigint_normalize(dest);
- return;
- }
-
- dest->digit_count = digit_count;
- dest->is_negative = is_negative;
- dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(digit_count);
- memcpy(dest->data.digits, digits, sizeof(uint64_t) * digit_count);
-
- bigint_normalize(dest);
-}
-
-void bigint_init_bigint(BigInt *dest, const BigInt *src) {
- if (src->digit_count == 0) {
- return bigint_init_unsigned(dest, 0);
- } else if (src->digit_count == 1) {
- dest->digit_count = 1;
- dest->data.digit = src->data.digit;
- dest->is_negative = src->is_negative;
- return;
- }
- dest->is_negative = src->is_negative;
- dest->digit_count = src->digit_count;
- dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
- memcpy(dest->data.digits, src->data.digits, sizeof(uint64_t) * dest->digit_count);
-}
-
-void bigint_deinit(BigInt *bi) {
- if (bi->digit_count > 1)
- heap::c_allocator.deallocate(bi->data.digits, bi->digit_count);
-}
-
-void bigint_init_bigfloat(BigInt *dest, const BigFloat *op) {
- float128_t zero;
- ui32_to_f128M(0, &zero);
-
- dest->is_negative = f128M_lt(&op->value, &zero);
- float128_t abs_val;
- if (dest->is_negative) {
- f128M_sub(&zero, &op->value, &abs_val);
- } else {
- memcpy(&abs_val, &op->value, sizeof(float128_t));
- }
-
- float128_t max_u64;
- ui64_to_f128M(UINT64_MAX, &max_u64);
- if (f128M_le(&abs_val, &max_u64)) {
- dest->digit_count = 1;
- dest->data.digit = f128M_to_ui64(&abs_val, softfloat_round_minMag, false);
- bigint_normalize(dest);
- return;
- }
-
- float128_t amt;
- f128M_div(&abs_val, &max_u64, &amt);
- float128_t remainder;
- f128M_rem(&abs_val, &max_u64, &remainder);
-
- dest->digit_count = 2;
- dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
- dest->data.digits[0] = f128M_to_ui64(&remainder, softfloat_round_minMag, false);
- dest->data.digits[1] = f128M_to_ui64(&amt, softfloat_round_minMag, false);
- bigint_normalize(dest);
-}
-
-bool bigint_fits_in_bits(const BigInt *bn, size_t bit_count, bool is_signed) {
- assert(bn->digit_count != 1 || bn->data.digit != 0);
- if (bit_count == 0) {
- return bigint_cmp_zero(bn) == CmpEQ;
- }
- if (bn->digit_count == 0) {
- return true;
- }
-
- if (!is_signed) {
- if(bn->is_negative) return false;
- size_t full_bits = bn->digit_count * 64;
- size_t leading_zero_count = bigint_clz(bn, full_bits);
- return bit_count >= full_bits - leading_zero_count;
- }
-
- BigInt one = {0};
- bigint_init_unsigned(&one, 1);
-
- BigInt shl_amt = {0};
- bigint_init_unsigned(&shl_amt, bit_count - 1);
-
- BigInt max_value_plus_one = {0};
- bigint_shl(&max_value_plus_one, &one, &shl_amt);
-
- BigInt max_value = {0};
- bigint_sub(&max_value, &max_value_plus_one, &one);
-
- BigInt min_value = {0};
- bigint_negate(&min_value, &max_value_plus_one);
-
- Cmp min_cmp = bigint_cmp(bn, &min_value);
- Cmp max_cmp = bigint_cmp(bn, &max_value);
-
- return (min_cmp == CmpGT || min_cmp == CmpEQ) && (max_cmp == CmpLT || max_cmp == CmpEQ);
-}
-
-void bigint_write_twos_complement(const BigInt *big_int, uint8_t *buf, size_t bit_count, bool is_big_endian) {
- if (bit_count == 0)
- return;
-
- BigInt twos_comp = {0};
- to_twos_complement(&twos_comp, big_int, bit_count);
-
- const uint64_t *twos_comp_digits = bigint_ptr(&twos_comp);
-
- size_t bits_in_last_digit = bit_count % 64;
- if (bits_in_last_digit == 0) bits_in_last_digit = 64;
- size_t bytes_in_last_digit = (bits_in_last_digit + 7) / 8;
- size_t unwritten_byte_count = 8 - bytes_in_last_digit;
-
- if (is_big_endian) {
- size_t last_digit_index = (bit_count - 1) / 64;
- size_t digit_index = last_digit_index;
- size_t buf_index = 0;
- for (;;) {
- uint64_t x = (digit_index < twos_comp.digit_count) ? twos_comp_digits[digit_index] : 0;
-
- for (size_t byte_index = 7;;) {
- uint8_t byte = x & 0xff;
- if (digit_index == last_digit_index) {
- buf[buf_index + byte_index - unwritten_byte_count] = byte;
- if (byte_index == unwritten_byte_count) break;
- } else {
- buf[buf_index + byte_index] = byte;
- }
-
- if (byte_index == 0) break;
- byte_index -= 1;
- x >>= 8;
- }
-
- if (digit_index == 0) break;
- if (digit_index == last_digit_index) {
- buf_index += bytes_in_last_digit;
- } else {
- buf_index += 8;
- }
- digit_index -= 1;
- }
- } else {
- size_t digit_count = (bit_count + 63) / 64;
- size_t buf_index = 0;
- for (size_t digit_index = 0; digit_index < digit_count; digit_index += 1) {
- uint64_t x = (digit_index < twos_comp.digit_count) ? twos_comp_digits[digit_index] : 0;
-
- for (size_t byte_index = 0;
- byte_index < 8 && (digit_index + 1 < digit_count || byte_index < bytes_in_last_digit);
- byte_index += 1)
- {
- uint8_t byte = x & 0xff;
- buf[buf_index] = byte;
- buf_index += 1;
- x >>= 8;
- }
- }
- }
-}
-
-
-void bigint_read_twos_complement(BigInt *dest, const uint8_t *buf, size_t bit_count, bool is_big_endian,
- bool is_signed)
-{
- if (bit_count == 0) {
- bigint_init_unsigned(dest, 0);
- return;
- }
-
- dest->digit_count = (bit_count + 63) / 64;
- uint64_t *digits;
- if (dest->digit_count == 1) {
- digits = &dest->data.digit;
- } else {
- digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
- dest->data.digits = digits;
- }
-
- size_t bits_in_last_digit = bit_count % 64;
- if (bits_in_last_digit == 0) {
- bits_in_last_digit = 64;
- }
- size_t bytes_in_last_digit = (bits_in_last_digit + 7) / 8;
- size_t unread_byte_count = 8 - bytes_in_last_digit;
-
- if (is_big_endian) {
- size_t buf_index = 0;
- uint64_t digit = 0;
- for (size_t byte_index = unread_byte_count; byte_index < 8; byte_index += 1) {
- uint8_t byte = buf[buf_index];
- buf_index += 1;
- digit <<= 8;
- digit |= byte;
- }
- digits[dest->digit_count - 1] = digit;
- for (size_t digit_index = 1; digit_index < dest->digit_count; digit_index += 1) {
- digit = 0;
- for (size_t byte_index = 0; byte_index < 8; byte_index += 1) {
- uint8_t byte = buf[buf_index];
- buf_index += 1;
- digit <<= 8;
- digit |= byte;
- }
- digits[dest->digit_count - 1 - digit_index] = digit;
- }
- } else {
- size_t buf_index = 0;
- for (size_t digit_index = 0; digit_index < dest->digit_count; digit_index += 1) {
- uint64_t digit = 0;
- size_t end_byte_index = (digit_index == dest->digit_count - 1) ? bytes_in_last_digit : 8;
- for (size_t byte_index = 0; byte_index < end_byte_index; byte_index += 1) {
- uint64_t byte = buf[buf_index];
- buf_index += 1;
-
- digit |= byte << (8 * byte_index);
- }
- digits[digit_index] = digit;
- }
- }
-
- if (is_signed) {
- bigint_normalize(dest);
- BigInt tmp = {0};
- bigint_init_bigint(&tmp, dest);
- from_twos_complement(dest, &tmp, bit_count, true);
- } else {
- dest->is_negative = false;
- bigint_normalize(dest);
- }
-}
-
-#if defined(_MSC_VER)
-static bool add_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
- *result = op1 + op2;
- return *result < op1 || *result < op2;
-}
-
-static bool sub_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
- *result = op1 - op2;
- return *result > op1;
-}
-
-bool mul_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
- *result = op1 * op2;
-
- if (op1 == 0 || op2 == 0)
- return false;
-
- if (op1 > UINT64_MAX / op2)
- return true;
-
- if (op2 > UINT64_MAX / op1)
- return true;
-
- return false;
-}
-#else
-static bool add_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
- return __builtin_uaddll_overflow((unsigned long long)op1, (unsigned long long)op2,
- (unsigned long long *)result);
-}
-
-static bool sub_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
- return __builtin_usubll_overflow((unsigned long long)op1, (unsigned long long)op2,
- (unsigned long long *)result);
-}
-
-bool mul_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
- return __builtin_umulll_overflow((unsigned long long)op1, (unsigned long long)op2,
- (unsigned long long *)result);
-}
-#endif
-
-void bigint_max(BigInt* dest, const BigInt *op1, const BigInt *op2) {
- switch (bigint_cmp(op1, op2)) {
- case CmpEQ:
- case CmpLT:
- return bigint_init_bigint(dest, op2);
- case CmpGT:
- return bigint_init_bigint(dest, op1);
- }
-}
-
-void bigint_min(BigInt* dest, const BigInt *op1, const BigInt *op2) {
- switch (bigint_cmp(op1, op2)) {
- case CmpEQ:
- case CmpLT:
- return bigint_init_bigint(dest, op1);
- case CmpGT:
- return bigint_init_bigint(dest, op2);
- }
-}
-
-/// clamps op within bit_count/signedness boundaries
-/// signed bounds are [-2^(bit_count-1)..2^(bit_count-1)-1]
-/// unsigned bounds are [0..2^bit_count-1]
-void bigint_clamp_by_bitcount(BigInt* dest, uint32_t bit_count, bool is_signed) {
- bool is_negative = dest->is_negative;
- // unsigned and dest->is_negative => clamp to 0
- if (is_negative && !is_signed) {
- bigint_deinit(dest);
- bigint_init_unsigned(dest, 0);
- return;
- }
- // compute the number of bits required to store the value, and use that
- // to decide whether to clamp the result
- // to workaround the fact this bits_needed calculation would yield 65 or more for
- // all negative numbers, set is_negative to false. this is a cheap way to find
- // bits_needed(abs(dest)).
- dest->is_negative = false;
- // because we've set is_negative to false, we have to account for the extra bit here
- // by adding 1 additional bit_needed when (is_negative && !is_signed).
- size_t full_bits = dest->digit_count * 64;
- size_t leading_zero_count = bigint_clz(dest, full_bits);
- size_t bits_needed = full_bits - leading_zero_count + (is_negative && !is_signed);
-
- bit_count -= is_signed;
- if(bits_needed > bit_count) {
- BigInt one;
- bigint_init_unsigned(&one, 1);
- BigInt bit_count_big;
- bigint_init_unsigned(&bit_count_big, bit_count);
-
- if(is_signed) {
- if(is_negative) {
- BigInt bound;
- bigint_shl(&bound, &one, &bit_count_big);
- bigint_deinit(dest);
- *dest = bound;
- } else {
- BigInt bound;
- bigint_shl(&bound, &one, &bit_count_big);
- BigInt bound_sub_one;
- bigint_sub(&bound_sub_one, &bound, &one);
- bigint_deinit(&bound);
- bigint_deinit(dest);
- *dest = bound_sub_one;
- }
- } else {
- BigInt bound;
- bigint_shl(&bound, &one, &bit_count_big);
- BigInt bound_sub_one;
- bigint_sub(&bound_sub_one, &bound, &one);
- bigint_deinit(&bound);
- bigint_deinit(dest);
- *dest = bound_sub_one;
- }
- }
- dest->is_negative = is_negative;
-}
-
-void bigint_add_sat(BigInt* dest, const BigInt *op1, const BigInt *op2, uint32_t bit_count, bool is_signed) {
- bigint_add(dest, op1, op2);
- bigint_clamp_by_bitcount(dest, bit_count, is_signed);
-}
-
-void bigint_sub_sat(BigInt* dest, const BigInt *op1, const BigInt *op2, uint32_t bit_count, bool is_signed) {
- bigint_sub(dest, op1, op2);
- bigint_clamp_by_bitcount(dest, bit_count, is_signed);
-}
-
-void bigint_mul_sat(BigInt* dest, const BigInt *op1, const BigInt *op2, uint32_t bit_count, bool is_signed) {
- bigint_mul(dest, op1, op2);
- bigint_clamp_by_bitcount(dest, bit_count, is_signed);
-}
-
-void bigint_shl_sat(BigInt* dest, const BigInt *op1, const BigInt *op2, uint32_t bit_count, bool is_signed) {
- bigint_shl(dest, op1, op2);
- bigint_clamp_by_bitcount(dest, bit_count, is_signed);
-}
-
-void bigint_add(BigInt *dest, const BigInt *op1, const BigInt *op2) {
- if (op1->digit_count == 0) {
- return bigint_init_bigint(dest, op2);
- }
- if (op2->digit_count == 0) {
- return bigint_init_bigint(dest, op1);
- }
- if (op1->is_negative == op2->is_negative) {
- dest->is_negative = op1->is_negative;
-
- const uint64_t *op1_digits = bigint_ptr(op1);
- const uint64_t *op2_digits = bigint_ptr(op2);
- bool overflow = add_u64_overflow(op1_digits[0], op2_digits[0], &dest->data.digit);
- if (overflow == 0 && op1->digit_count == 1 && op2->digit_count == 1) {
- dest->digit_count = 1;
- bigint_normalize(dest);
- return;
- }
- size_t i = 1;
- uint64_t first_digit = dest->data.digit;
- dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(max(op1->digit_count, op2->digit_count) + 1);
- dest->data.digits[0] = first_digit;
-
- for (;;) {
- bool found_digit = false;
- uint64_t x = overflow;
- overflow = 0;
-
- if (i < op1->digit_count) {
- found_digit = true;
- uint64_t digit = op1_digits[i];
- overflow += add_u64_overflow(x, digit, &x);
- }
-
- if (i < op2->digit_count) {
- found_digit = true;
- uint64_t digit = op2_digits[i];
- overflow += add_u64_overflow(x, digit, &x);
- }
-
- dest->data.digits[i] = x;
- i += 1;
-
- if (!found_digit) {
- dest->digit_count = i;
- bigint_normalize(dest);
- return;
- }
- }
- }
- const BigInt *op_pos;
- const BigInt *op_neg;
- if (op1->is_negative) {
- op_neg = op1;
- op_pos = op2;
- } else {
- op_pos = op1;
- op_neg = op2;
- }
-
- BigInt op_neg_abs = {0};
- bigint_negate(&op_neg_abs, op_neg);
- const BigInt *bigger_op;
- const BigInt *smaller_op;
- switch (bigint_cmp(op_pos, &op_neg_abs)) {
- case CmpEQ:
- bigint_init_unsigned(dest, 0);
- return;
- case CmpLT:
- bigger_op = &op_neg_abs;
- smaller_op = op_pos;
- dest->is_negative = true;
- break;
- case CmpGT:
- bigger_op = op_pos;
- smaller_op = &op_neg_abs;
- dest->is_negative = false;
- break;
- }
- const uint64_t *bigger_op_digits = bigint_ptr(bigger_op);
- const uint64_t *smaller_op_digits = bigint_ptr(smaller_op);
- uint64_t overflow = sub_u64_overflow(bigger_op_digits[0], smaller_op_digits[0], &dest->data.digit);
- if (overflow == 0 && bigger_op->digit_count == 1 && smaller_op->digit_count == 1) {
- dest->digit_count = 1;
- bigint_normalize(dest);
- return;
- }
- uint64_t first_digit = dest->data.digit;
- dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(bigger_op->digit_count);
- dest->data.digits[0] = first_digit;
- size_t i = 1;
-
- for (;;) {
- uint64_t x = bigger_op_digits[i];
- uint64_t prev_overflow = overflow;
- overflow = 0;
-
- if (i < smaller_op->digit_count) {
- uint64_t digit = smaller_op_digits[i];
- overflow += sub_u64_overflow(x, digit, &x);
- }
-
- overflow += sub_u64_overflow(x, prev_overflow, &x);
- dest->data.digits[i] = x;
- i += 1;
-
- if (i >= bigger_op->digit_count) {
- break;
- }
- }
- assert(overflow == 0);
- dest->digit_count = i;
- bigint_normalize(dest);
-}
-
-void bigint_add_wrap(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
- BigInt unwrapped = {0};
- bigint_add(&unwrapped, op1, op2);
- bigint_truncate(dest, &unwrapped, bit_count, is_signed);
-}
-
-void bigint_sub(BigInt *dest, const BigInt *op1, const BigInt *op2) {
- BigInt op2_negated = {0};
- bigint_negate(&op2_negated, op2);
- return bigint_add(dest, op1, &op2_negated);
-}
-
-void bigint_sub_wrap(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
- BigInt op2_negated = {0};
- bigint_negate(&op2_negated, op2);
- return bigint_add_wrap(dest, op1, &op2_negated, bit_count, is_signed);
-}
-
-static void mul_overflow(uint64_t op1, uint64_t op2, uint64_t *lo, uint64_t *hi) {
- uint64_t u1 = (op1 & 0xffffffff);
- uint64_t v1 = (op2 & 0xffffffff);
- uint64_t t = (u1 * v1);
- uint64_t w3 = (t & 0xffffffff);
- uint64_t k = (t >> 32);
-
- op1 >>= 32;
- t = (op1 * v1) + k;
- k = (t & 0xffffffff);
- uint64_t w1 = (t >> 32);
-
- op2 >>= 32;
- t = (u1 * op2) + k;
- k = (t >> 32);
-
- *hi = (op1 * op2) + w1 + k;
- *lo = (t << 32) + w3;
-}
-
-static void mul_scalar(BigInt *dest, const BigInt *op, uint64_t scalar) {
- bigint_init_unsigned(dest, 0);
-
- BigInt bi_64;
- bigint_init_unsigned(&bi_64, 64);
-
- const uint64_t *op_digits = bigint_ptr(op);
- size_t i = op->digit_count - 1;
-
- for (;;) {
- BigInt shifted;
- bigint_shl(&shifted, dest, &bi_64);
-
- uint64_t result_scalar;
- uint64_t carry_scalar;
- mul_overflow(scalar, op_digits[i], &result_scalar, &carry_scalar);
-
- BigInt result;
- bigint_init_unsigned(&result, result_scalar);
-
- BigInt carry;
- bigint_init_unsigned(&carry, carry_scalar);
-
- BigInt carry_shifted;
- bigint_shl(&carry_shifted, &carry, &bi_64);
-
- BigInt tmp;
- bigint_add(&tmp, &shifted, &carry_shifted);
-
- bigint_add(dest, &tmp, &result);
-
- if (i == 0) {
- break;
- }
- i -= 1;
- }
-}
-
-void bigint_mul(BigInt *dest, const BigInt *op1, const BigInt *op2) {
- if (op1->digit_count == 0 || op2->digit_count == 0) {
- return bigint_init_unsigned(dest, 0);
- }
- const uint64_t *op1_digits = bigint_ptr(op1);
- const uint64_t *op2_digits = bigint_ptr(op2);
-
- uint64_t carry;
- mul_overflow(op1_digits[0], op2_digits[0], &dest->data.digit, &carry);
- if (carry == 0 && op1->digit_count == 1 && op2->digit_count == 1) {
- dest->is_negative = (op1->is_negative != op2->is_negative);
- dest->digit_count = 1;
- bigint_normalize(dest);
- return;
- }
-
- bigint_init_unsigned(dest, 0);
-
- BigInt bi_64;
- bigint_init_unsigned(&bi_64, 64);
-
- size_t i = op2->digit_count - 1;
- for (;;) {
- BigInt shifted;
- bigint_shl(&shifted, dest, &bi_64);
-
- BigInt scalar_result;
- mul_scalar(&scalar_result, op1, op2_digits[i]);
-
- bigint_add(dest, &scalar_result, &shifted);
-
- if (i == 0) {
- break;
- }
- i -= 1;
- }
-
- dest->is_negative = (op1->is_negative != op2->is_negative);
- bigint_normalize(dest);
-}
-
-void bigint_mul_wrap(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
- BigInt unwrapped = {0};
- bigint_mul(&unwrapped, op1, op2);
- bigint_truncate(dest, &unwrapped, bit_count, is_signed);
-}
-
-enum ZeroBehavior {
- /// \brief The returned value is undefined.
- ZB_Undefined,
- /// \brief The returned value is numeric_limits<T>::max()
- ZB_Max,
- /// \brief The returned value is numeric_limits<T>::digits
- ZB_Width
-};
-
-template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
- static std::size_t count(T Val, ZeroBehavior) {
- if (!Val)
- return std::numeric_limits<T>::digits;
-
- // Bisection method.
- std::size_t ZeroBits = 0;
- for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
- T Tmp = Val >> Shift;
- if (Tmp)
- Val = Tmp;
- else
- ZeroBits |= Shift;
- }
- return ZeroBits;
- }
-};
-
-#if __GNUC__ >= 4 || defined(_MSC_VER)
-template <typename T> struct LeadingZerosCounter<T, 4> {
- static std::size_t count(T Val, ZeroBehavior ZB) {
- if (ZB != ZB_Undefined && Val == 0)
- return 32;
-
-#if defined(_MSC_VER)
- unsigned long Index;
- _BitScanReverse(&Index, Val);
- return Index ^ 31;
-#else
- return __builtin_clz(Val);
-#endif
- }
-};
-
-#if !defined(_MSC_VER) || defined(_M_X64)
-template <typename T> struct LeadingZerosCounter<T, 8> {
- static std::size_t count(T Val, ZeroBehavior ZB) {
- if (ZB != ZB_Undefined && Val == 0)
- return 64;
-
-#if defined(_MSC_VER)
- unsigned long Index;
- _BitScanReverse64(&Index, Val);
- return Index ^ 63;
-#else
- return __builtin_clzll(Val);
-#endif
- }
-};
-#endif
-#endif
-
-/// \brief Count number of 0's from the most significant bit to the least
-/// stopping at the first 1.
-///
-/// Only unsigned integral types are allowed.
-///
-/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
-/// valid arguments.
-template <typename T>
-std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
- static_assert(std::numeric_limits<T>::is_integer &&
- !std::numeric_limits<T>::is_signed,
- "Only unsigned integral types are allowed.");
- return LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
-}
-
-/// Make a 64-bit integer from a high / low pair of 32-bit integers.
-constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
- return ((uint64_t)High << 32) | (uint64_t)Low;
-}
-
-/// Return the high 32 bits of a 64 bit value.
-constexpr inline uint32_t Hi_32(uint64_t Value) {
- return static_cast<uint32_t>(Value >> 32);
-}
-
-/// Return the low 32 bits of a 64 bit value.
-constexpr inline uint32_t Lo_32(uint64_t Value) {
- return static_cast<uint32_t>(Value);
-}
-
-/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
-/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
-/// variables here have the same names as in the algorithm. Comments explain
-/// the algorithm and any deviation from it.
-static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
- unsigned m, unsigned n)
-{
- assert(u && "Must provide dividend");
- assert(v && "Must provide divisor");
- assert(q && "Must provide quotient");
- assert(u != v && u != q && v != q && "Must use different memory");
- assert(n>1 && "n must be > 1");
-
- // b denotes the base of the number system. In our case b is 2^32.
- const uint64_t b = uint64_t(1) << 32;
-
- // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
- // u and v by d. Note that we have taken Knuth's advice here to use a power
- // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
- // 2 allows us to shift instead of multiply and it is easy to determine the
- // shift amount from the leading zeros. We are basically normalizing the u
- // and v so that its high bits are shifted to the top of v's range without
- // overflow. Note that this can require an extra word in u so that u must
- // be of length m+n+1.
- unsigned shift = countLeadingZeros(v[n-1]);
- uint32_t v_carry = 0;
- uint32_t u_carry = 0;
- if (shift) {
- for (unsigned i = 0; i < m+n; ++i) {
- uint32_t u_tmp = u[i] >> (32 - shift);
- u[i] = (u[i] << shift) | u_carry;
- u_carry = u_tmp;
- }
- for (unsigned i = 0; i < n; ++i) {
- uint32_t v_tmp = v[i] >> (32 - shift);
- v[i] = (v[i] << shift) | v_carry;
- v_carry = v_tmp;
- }
- }
- u[m+n] = u_carry;
-
- // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
- int j = m;
- do {
- // D3. [Calculate q'.].
- // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
- // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
- // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
- // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
- // on v[n-2] determines at high speed most of the cases in which the trial
- // value qp is one too large, and it eliminates all cases where qp is two
- // too large.
- uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
- uint64_t qp = dividend / v[n-1];
- uint64_t rp = dividend % v[n-1];
- if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
- qp--;
- rp += v[n-1];
- if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
- qp--;
- }
-
- // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
- // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
- // consists of a simple multiplication by a one-place number, combined with
- // a subtraction.
- // The digits (u[j+n]...u[j]) should be kept positive; if the result of
- // this step is actually negative, (u[j+n]...u[j]) should be left as the
- // true value plus b**(n+1), namely as the b's complement of
- // the true value, and a "borrow" to the left should be remembered.
- int64_t borrow = 0;
- for (unsigned i = 0; i < n; ++i) {
- uint64_t p = uint64_t(qp) * uint64_t(v[i]);
- int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
- u[j+i] = Lo_32(subres);
- borrow = Hi_32(p) - Hi_32(subres);
- }
- bool isNeg = u[j+n] < borrow;
- u[j+n] -= Lo_32(borrow);
-
- // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
- // negative, go to step D6; otherwise go on to step D7.
- q[j] = Lo_32(qp);
- if (isNeg) {
- // D6. [Add back]. The probability that this step is necessary is very
- // small, on the order of only 2/b. Make sure that test data accounts for
- // this possibility. Decrease q[j] by 1
- q[j]--;
- // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
- // A carry will occur to the left of u[j+n], and it should be ignored
- // since it cancels with the borrow that occurred in D4.
- bool carry = false;
- for (unsigned i = 0; i < n; i++) {
- uint32_t limit = std::min(u[j+i],v[i]);
- u[j+i] += v[i] + carry;
- carry = u[j+i] < limit || (carry && u[j+i] == limit);
- }
- u[j+n] += carry;
- }
-
- // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
- } while (--j >= 0);
-
- // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
- // remainder may be obtained by dividing u[...] by d. If r is non-null we
- // compute the remainder (urem uses this).
- if (r) {
- // The value d is expressed by the "shift" value above since we avoided
- // multiplication by d by using a shift left. So, all we have to do is
- // shift right here.
- if (shift) {
- uint32_t carry = 0;
- for (int i = n-1; i >= 0; i--) {
- r[i] = (u[i] >> shift) | carry;
- carry = u[i] << (32 - shift);
- }
- } else {
- for (int i = n-1; i >= 0; i--) {
- r[i] = u[i];
- }
- }
- }
-}
-
-// Implementation ported from LLVM/lib/Support/APInt.cpp
-static void bigint_unsigned_division(const BigInt *op1, const BigInt *op2, BigInt *Quotient, BigInt *Remainder) {
- Cmp cmp = bigint_cmp(op1, op2);
- if (cmp == CmpLT) {
- if (Quotient != nullptr) {
- bigint_init_unsigned(Quotient, 0);
- }
- if (Remainder != nullptr) {
- bigint_init_bigint(Remainder, op1);
- }
- return;
- }
- if (cmp == CmpEQ) {
- if (Quotient != nullptr) {
- bigint_init_unsigned(Quotient, 1);
- }
- if (Remainder != nullptr) {
- bigint_init_unsigned(Remainder, 0);
- }
- return;
- }
-
- const uint64_t *LHS = bigint_ptr(op1);
- const uint64_t *RHS = bigint_ptr(op2);
- unsigned lhsWords = op1->digit_count;
- unsigned rhsWords = op2->digit_count;
-
- // First, compose the values into an array of 32-bit words instead of
- // 64-bit words. This is a necessity of both the "short division" algorithm
- // and the Knuth "classical algorithm" which requires there to be native
- // operations for +, -, and * on an m bit value with an m*2 bit result. We
- // can't use 64-bit operands here because we don't have native results of
- // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
- // work on large-endian machines.
- unsigned n = rhsWords * 2;
- unsigned m = (lhsWords * 2) - n;
-
- // Allocate space for the temporary values we need either on the stack, if
- // it will fit, or on the heap if it won't.
- uint32_t SPACE[128];
- uint32_t *U = nullptr;
- uint32_t *V = nullptr;
- uint32_t *Q = nullptr;
- uint32_t *R = nullptr;
- if ((Remainder?4:3)*n+2*m+1 <= 128) {
- U = &SPACE[0];
- V = &SPACE[m+n+1];
- Q = &SPACE[(m+n+1) + n];
- if (Remainder)
- R = &SPACE[(m+n+1) + n + (m+n)];
- } else {
- U = new uint32_t[m + n + 1];
- V = new uint32_t[n];
- Q = new uint32_t[m+n];
- if (Remainder)
- R = new uint32_t[n];
- }
-
- // Initialize the dividend
- memset(U, 0, (m+n+1)*sizeof(uint32_t));
- for (unsigned i = 0; i < lhsWords; ++i) {
- uint64_t tmp = LHS[i];
- U[i * 2] = Lo_32(tmp);
- U[i * 2 + 1] = Hi_32(tmp);
- }
- U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
-
- // Initialize the divisor
- memset(V, 0, (n)*sizeof(uint32_t));
- for (unsigned i = 0; i < rhsWords; ++i) {
- uint64_t tmp = RHS[i];
- V[i * 2] = Lo_32(tmp);
- V[i * 2 + 1] = Hi_32(tmp);
- }
-
- // initialize the quotient and remainder
- memset(Q, 0, (m+n) * sizeof(uint32_t));
- if (Remainder)
- memset(R, 0, n * sizeof(uint32_t));
-
- // Now, adjust m and n for the Knuth division. n is the number of words in
- // the divisor. m is the number of words by which the dividend exceeds the
- // divisor (i.e. m+n is the length of the dividend). These sizes must not
- // contain any zero words or the Knuth algorithm fails.
- for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
- n--;
- m++;
- }
- for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
- m--;
-
- // If we're left with only a single word for the divisor, Knuth doesn't work
- // so we implement the short division algorithm here. This is much simpler
- // and faster because we are certain that we can divide a 64-bit quantity
- // by a 32-bit quantity at hardware speed and short division is simply a
- // series of such operations. This is just like doing short division but we
- // are using base 2^32 instead of base 10.
- assert(n != 0 && "Divide by zero?");
- if (n == 1) {
- uint32_t divisor = V[0];
- uint32_t remainder = 0;
- for (int i = m; i >= 0; i--) {
- uint64_t partial_dividend = Make_64(remainder, U[i]);
- if (partial_dividend == 0) {
- Q[i] = 0;
- remainder = 0;
- } else if (partial_dividend < divisor) {
- Q[i] = 0;
- remainder = Lo_32(partial_dividend);
- } else if (partial_dividend == divisor) {
- Q[i] = 1;
- remainder = 0;
- } else {
- Q[i] = Lo_32(partial_dividend / divisor);
- remainder = Lo_32(partial_dividend - (Q[i] * divisor));
- }
- }
- if (R)
- R[0] = remainder;
- } else {
- // Now we're ready to invoke the Knuth classical divide algorithm. In this
- // case n > 1.
- KnuthDiv(U, V, Q, R, m, n);
- }
-
- // If the caller wants the quotient
- if (Quotient) {
- Quotient->is_negative = false;
- Quotient->digit_count = lhsWords;
- if (lhsWords == 1) {
- Quotient->data.digit = Make_64(Q[1], Q[0]);
- } else {
- Quotient->data.digits = heap::c_allocator.allocate<uint64_t>(lhsWords);
- for (size_t i = 0; i < lhsWords; i += 1) {
- Quotient->data.digits[i] = Make_64(Q[i*2+1], Q[i*2]);
- }
- }
- }
-
- // If the caller wants the remainder
- if (Remainder) {
- Remainder->is_negative = false;
- Remainder->digit_count = rhsWords;
- if (rhsWords == 1) {
- Remainder->data.digit = Make_64(R[1], R[0]);
- } else {
- Remainder->data.digits = heap::c_allocator.allocate<uint64_t>(rhsWords);
- for (size_t i = 0; i < rhsWords; i += 1) {
- Remainder->data.digits[i] = Make_64(R[i*2+1], R[i*2]);
- }
- }
- }
-}
-
-void bigint_div_trunc(BigInt *dest, const BigInt *op1, const BigInt *op2) {
- assert(op2->digit_count != 0); // division by zero
- if (op1->digit_count == 0) {
- bigint_init_unsigned(dest, 0);
- return;
- }
- const uint64_t *op1_digits = bigint_ptr(op1);
- const uint64_t *op2_digits = bigint_ptr(op2);
- if (op1->digit_count == 1 && op2->digit_count == 1) {
- dest->data.digit = op1_digits[0] / op2_digits[0];
- dest->digit_count = 1;
- dest->is_negative = op1->is_negative != op2->is_negative;
- bigint_normalize(dest);
- return;
- }
- if (op2->digit_count == 1 && op2_digits[0] == 1) {
- // X / 1 == X
- bigint_init_bigint(dest, op1);
- dest->is_negative = op1->is_negative != op2->is_negative;
- bigint_normalize(dest);
- return;
- }
-
- const BigInt *op1_positive;
- BigInt op1_positive_data;
- if (op1->is_negative) {
- bigint_negate(&op1_positive_data, op1);
- op1_positive = &op1_positive_data;
- } else {
- op1_positive = op1;
- }
-
- const BigInt *op2_positive;
- BigInt op2_positive_data;
- if (op2->is_negative) {
- bigint_negate(&op2_positive_data, op2);
- op2_positive = &op2_positive_data;
- } else {
- op2_positive = op2;
- }
-
- bigint_unsigned_division(op1_positive, op2_positive, dest, nullptr);
- dest->is_negative = op1->is_negative != op2->is_negative;
- bigint_normalize(dest);
-}
-
-void bigint_div_floor(BigInt *dest, const BigInt *op1, const BigInt *op2) {
- if (op1->is_negative != op2->is_negative) {
- bigint_div_trunc(dest, op1, op2);
- BigInt mult_again = {0};
- bigint_mul(&mult_again, dest, op2);
- mult_again.is_negative = op1->is_negative;
- if (bigint_cmp(&mult_again, op1) != CmpEQ) {
- BigInt tmp = {0};
- bigint_init_bigint(&tmp, dest);
- BigInt neg_one = {0};
- bigint_init_signed(&neg_one, -1);
- bigint_add(dest, &tmp, &neg_one);
- }
- bigint_normalize(dest);
- } else {
- bigint_div_trunc(dest, op1, op2);
- }
-}
-
-void bigint_rem(BigInt *dest, const BigInt *op1, const BigInt *op2) {
- assert(op2->digit_count != 0); // division by zero
- if (op1->digit_count == 0) {
- bigint_init_unsigned(dest, 0);
- return;
- }
- const uint64_t *op1_digits = bigint_ptr(op1);
- const uint64_t *op2_digits = bigint_ptr(op2);
-
- if (op1->digit_count == 1 && op2->digit_count == 1) {
- dest->data.digit = op1_digits[0] % op2_digits[0];
- dest->digit_count = 1;
- dest->is_negative = op1->is_negative;
- bigint_normalize(dest);
- return;
- }
- if (op2->digit_count == 2 && op2_digits[0] == 0 && op2_digits[1] == 1) {
- // special case this divisor
- bigint_init_unsigned(dest, op1_digits[0]);
- dest->is_negative = op1->is_negative;
- bigint_normalize(dest);
- return;
- }
-
- if (op2->digit_count == 1 && op2_digits[0] == 1) {
- // X % 1 == 0
- bigint_init_unsigned(dest, 0);
- return;
- }
-
- const BigInt *op1_positive;
- BigInt op1_positive_data;
- if (op1->is_negative) {
- bigint_negate(&op1_positive_data, op1);
- op1_positive = &op1_positive_data;
- } else {
- op1_positive = op1;
- }
-
- const BigInt *op2_positive;
- BigInt op2_positive_data;
- if (op2->is_negative) {
- bigint_negate(&op2_positive_data, op2);
- op2_positive = &op2_positive_data;
- } else {
- op2_positive = op2;
- }
-
- bigint_unsigned_division(op1_positive, op2_positive, nullptr, dest);
- dest->is_negative = op1->is_negative;
- bigint_normalize(dest);
-}
-
-void bigint_mod(BigInt *dest, const BigInt *op1, const BigInt *op2) {
- if (op1->is_negative) {
- BigInt first_rem;
- bigint_rem(&first_rem, op1, op2);
- first_rem.is_negative = !op2->is_negative;
- BigInt op2_minus_rem;
- bigint_add(&op2_minus_rem, op2, &first_rem);
- bigint_rem(dest, &op2_minus_rem, op2);
- dest->is_negative = false;
- } else {
- bigint_rem(dest, op1, op2);
- dest->is_negative = false;
- }
-}
-
-void bigint_or(BigInt *dest, const BigInt *op1, const BigInt *op2) {
- if (op1->digit_count == 0) {
- return bigint_init_bigint(dest, op2);
- }
- if (op2->digit_count == 0) {
- return bigint_init_bigint(dest, op1);
- }
- if (op1->is_negative || op2->is_negative) {
- size_t big_bit_count = max(bigint_bits_needed(op1), bigint_bits_needed(op2));
-
- BigInt twos_comp_op1 = {0};
- to_twos_complement(&twos_comp_op1, op1, big_bit_count);
-
- BigInt twos_comp_op2 = {0};
- to_twos_complement(&twos_comp_op2, op2, big_bit_count);
-
- BigInt twos_comp_dest = {0};
- bigint_or(&twos_comp_dest, &twos_comp_op1, &twos_comp_op2);
-
- from_twos_complement(dest, &twos_comp_dest, big_bit_count, true);
- } else {
- dest->is_negative = false;
- const uint64_t *op1_digits = bigint_ptr(op1);
- const uint64_t *op2_digits = bigint_ptr(op2);
- if (op1->digit_count == 1 && op2->digit_count == 1) {
- dest->digit_count = 1;
- dest->data.digit = op1_digits[0] | op2_digits[0];
- bigint_normalize(dest);
- return;
- }
- dest->digit_count = max(op1->digit_count, op2->digit_count);
- dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
- for (size_t i = 0; i < dest->digit_count; i += 1) {
- uint64_t digit = 0;
- if (i < op1->digit_count) {
- digit |= op1_digits[i];
- }
- if (i < op2->digit_count) {
- digit |= op2_digits[i];
- }
- dest->data.digits[i] = digit;
- }
- bigint_normalize(dest);
- }
-}
-
-void bigint_and(BigInt *dest, const BigInt *op1, const BigInt *op2) {
- if (op1->digit_count == 0 || op2->digit_count == 0) {
- return bigint_init_unsigned(dest, 0);
- }
- if (op1->is_negative || op2->is_negative) {
- size_t big_bit_count = max(bigint_bits_needed(op1), bigint_bits_needed(op2));
-
- BigInt twos_comp_op1 = {0};
- to_twos_complement(&twos_comp_op1, op1, big_bit_count);
-
- BigInt twos_comp_op2 = {0};
- to_twos_complement(&twos_comp_op2, op2, big_bit_count);
-
- BigInt twos_comp_dest = {0};
- bigint_and(&twos_comp_dest, &twos_comp_op1, &twos_comp_op2);
-
- from_twos_complement(dest, &twos_comp_dest, big_bit_count, true);
- } else {
- dest->is_negative = false;
- const uint64_t *op1_digits = bigint_ptr(op1);
- const uint64_t *op2_digits = bigint_ptr(op2);
- if (op1->digit_count == 1 && op2->digit_count == 1) {
- dest->digit_count = 1;
- dest->data.digit = op1_digits[0] & op2_digits[0];
- bigint_normalize(dest);
- return;
- }
-
- dest->digit_count = max(op1->digit_count, op2->digit_count);
- dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
-
- size_t i = 0;
- for (; i < op1->digit_count && i < op2->digit_count; i += 1) {
- dest->data.digits[i] = op1_digits[i] & op2_digits[i];
- }
- for (; i < dest->digit_count; i += 1) {
- dest->data.digits[i] = 0;
- }
- bigint_normalize(dest);
- }
-}
-
-void bigint_xor(BigInt *dest, const BigInt *op1, const BigInt *op2) {
- if (op1->digit_count == 0) {
- return bigint_init_bigint(dest, op2);
- }
- if (op2->digit_count == 0) {
- return bigint_init_bigint(dest, op1);
- }
- if (op1->is_negative || op2->is_negative) {
- size_t big_bit_count = max(bigint_bits_needed(op1), bigint_bits_needed(op2));
-
- BigInt twos_comp_op1 = {0};
- to_twos_complement(&twos_comp_op1, op1, big_bit_count);
-
- BigInt twos_comp_op2 = {0};
- to_twos_complement(&twos_comp_op2, op2, big_bit_count);
-
- BigInt twos_comp_dest = {0};
- bigint_xor(&twos_comp_dest, &twos_comp_op1, &twos_comp_op2);
-
- from_twos_complement(dest, &twos_comp_dest, big_bit_count, true);
- } else {
- dest->is_negative = false;
- const uint64_t *op1_digits = bigint_ptr(op1);
- const uint64_t *op2_digits = bigint_ptr(op2);
-
- assert(op1->digit_count > 0 && op2->digit_count > 0);
- if (op1->digit_count == 1 && op2->digit_count == 1) {
- dest->digit_count = 1;
- dest->data.digit = op1_digits[0] ^ op2_digits[0];
- bigint_normalize(dest);
- return;
- }
- dest->digit_count = max(op1->digit_count, op2->digit_count);
- dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
- size_t i = 0;
- for (; i < op1->digit_count && i < op2->digit_count; i += 1) {
- dest->data.digits[i] = op1_digits[i] ^ op2_digits[i];
- }
- for (; i < dest->digit_count; i += 1) {
- if (i < op1->digit_count) {
- dest->data.digits[i] = op1_digits[i];
- } else if (i < op2->digit_count) {
- dest->data.digits[i] = op2_digits[i];
- } else {
- zig_unreachable();
- }
- }
- bigint_normalize(dest);
- }
-}
-
-void bigint_shl(BigInt *dest, const BigInt *op1, const BigInt *op2) {
- assert(!op2->is_negative);
-
- if (op2->digit_count == 0) {
- bigint_init_bigint(dest, op1);
- return;
- }
-
- if (op1->digit_count == 0) {
- bigint_init_unsigned(dest, 0);
- return;
- }
-
- if (op2->digit_count != 1) {
- zig_panic("TODO shift left by amount greater than 64 bit integer");
- }
-
- const uint64_t *op1_digits = bigint_ptr(op1);
- uint64_t shift_amt = bigint_as_unsigned(op2);
-
- if (op1->digit_count == 1 && shift_amt < 64) {
- dest->data.digit = op1_digits[0] << shift_amt;
- if (dest->data.digit >> shift_amt == op1_digits[0]) {
- dest->digit_count = 1;
- dest->is_negative = op1->is_negative;
- return;
- }
- }
-
- uint64_t digit_shift_count = shift_amt / 64;
- uint64_t leftover_shift_count = shift_amt % 64;
-
- dest->data.digits = heap::c_allocator.allocate<uint64_t>(op1->digit_count + digit_shift_count + 1);
- dest->digit_count = digit_shift_count;
- uint64_t carry = 0;
- for (size_t i = 0; i < op1->digit_count; i += 1) {
- uint64_t digit = op1_digits[i];
- dest->data.digits[dest->digit_count] = carry | (digit << leftover_shift_count);
- dest->digit_count += 1;
- if (leftover_shift_count > 0) {
- carry = digit >> (64 - leftover_shift_count);
- } else {
- carry = 0;
- }
- }
- dest->data.digits[dest->digit_count] = carry;
- dest->digit_count += 1;
- dest->is_negative = op1->is_negative;
- bigint_normalize(dest);
-}
-
-void bigint_shl_trunc(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
- BigInt unwrapped = {0};
- bigint_shl(&unwrapped, op1, op2);
- bigint_truncate(dest, &unwrapped, bit_count, is_signed);
-}
-
-void bigint_shr(BigInt *dest, const BigInt *op1, const BigInt *op2) {
- assert(!op2->is_negative);
-
- if (op1->digit_count == 0) {
- return bigint_init_unsigned(dest, 0);
- }
-
- if (op2->digit_count == 0) {
- return bigint_init_bigint(dest, op1);
- }
-
- if (op2->digit_count != 1) {
- zig_panic("TODO shift right by amount greater than 64 bit integer");
- }
-
- const uint64_t *op1_digits = bigint_ptr(op1);
- uint64_t shift_amt = bigint_as_unsigned(op2);
-
- if (op1->digit_count == 1) {
- dest->data.digit = (shift_amt < 64) ? op1_digits[0] >> shift_amt : 0;
- dest->digit_count = 1;
- dest->is_negative = op1->is_negative;
- bigint_normalize(dest);
- return;
- }
-
- size_t digit_shift_count = shift_amt / 64;
- size_t leftover_shift_count = shift_amt % 64;
-
- if (digit_shift_count >= op1->digit_count) {
- return bigint_init_unsigned(dest, 0);
- }
-
- dest->digit_count = op1->digit_count - digit_shift_count;
- uint64_t *digits;
- if (dest->digit_count == 1) {
- digits = &dest->data.digit;
- } else {
- digits = heap::c_allocator.allocate<uint64_t>(dest->digit_count);
- dest->data.digits = digits;
- }
-
- uint64_t carry = 0;
- for (size_t op_digit_index = op1->digit_count - 1;;) {
- uint64_t digit = op1_digits[op_digit_index];
- size_t dest_digit_index = op_digit_index - digit_shift_count;
- digits[dest_digit_index] = carry | (digit >> leftover_shift_count);
- carry = (leftover_shift_count != 0) ? (digit << (64 - leftover_shift_count)) : 0;
-
- if (dest_digit_index == 0) { break; }
- op_digit_index -= 1;
- }
- dest->is_negative = op1->is_negative;
- bigint_normalize(dest);
-}
-
-void bigint_negate(BigInt *dest, const BigInt *op) {
- bigint_init_bigint(dest, op);
- dest->is_negative = !dest->is_negative;
- bigint_normalize(dest);
-}
-
-void bigint_negate_wrap(BigInt *dest, const BigInt *op, size_t bit_count, bool is_signed) {
- BigInt zero;
- bigint_init_unsigned(&zero, 0);
- bigint_sub_wrap(dest, &zero, op, bit_count, is_signed);
-}
-
-void bigint_not(BigInt *dest, const BigInt *op, size_t bit_count, bool is_signed) {
- if (bit_count == 0) {
- bigint_init_unsigned(dest, 0);
- return;
- }
-
- if (is_signed) {
- BigInt twos_comp = {0};
- to_twos_complement(&twos_comp, op, bit_count);
-
- BigInt inverted = {0};
- bigint_not(&inverted, &twos_comp, bit_count, false);
-
- from_twos_complement(dest, &inverted, bit_count, true);
- return;
- }
-
- assert(!op->is_negative);
-
- dest->is_negative = false;
- const uint64_t *op_digits = bigint_ptr(op);
- if (bit_count <= 64) {
- dest->digit_count = 1;
- if (op->digit_count == 0) {
- if (bit_count == 64) {
- dest->data.digit = UINT64_MAX;
- } else {
- dest->data.digit = (1ULL << bit_count) - 1;
- }
- } else if (op->digit_count == 1) {
- dest->data.digit = ~op_digits[0];
- if (bit_count != 64) {
- uint64_t mask = (1ULL << bit_count) - 1;
- dest->data.digit &= mask;
- }
- }
- bigint_normalize(dest);
- return;
- }
- dest->digit_count = (bit_count + 63) / 64;
- assert(dest->digit_count >= op->digit_count);
- dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
- size_t i = 0;
- for (; i < op->digit_count; i += 1) {
- dest->data.digits[i] = ~op_digits[i];
- }
- for (; i < dest->digit_count; i += 1) {
- dest->data.digits[i] = 0xffffffffffffffffULL;
- }
- size_t digit_index = dest->digit_count - 1;
- size_t digit_bit_index = bit_count % 64;
- if (digit_bit_index != 0) {
- uint64_t mask = (1ULL << digit_bit_index) - 1;
- dest->data.digits[digit_index] &= mask;
- }
- bigint_normalize(dest);
-}
-
-void bigint_truncate(BigInt *dest, const BigInt *op, size_t bit_count, bool is_signed) {
- BigInt twos_comp;
- to_twos_complement(&twos_comp, op, bit_count);
- from_twos_complement(dest, &twos_comp, bit_count, is_signed);
-}
-
-Cmp bigint_cmp(const BigInt *op1, const BigInt *op2) {
- if (op1->is_negative && !op2->is_negative) {
- return CmpLT;
- } else if (!op1->is_negative && op2->is_negative) {
- return CmpGT;
- } else if (op1->digit_count > op2->digit_count) {
- return op1->is_negative ? CmpLT : CmpGT;
- } else if (op2->digit_count > op1->digit_count) {
- return op1->is_negative ? CmpGT : CmpLT;
- } else if (op1->digit_count == 0) {
- return CmpEQ;
- }
- const uint64_t *op1_digits = bigint_ptr(op1);
- const uint64_t *op2_digits = bigint_ptr(op2);
- for (size_t i = op1->digit_count - 1; ;) {
- uint64_t op1_digit = op1_digits[i];
- uint64_t op2_digit = op2_digits[i];
-
- if (op1_digit > op2_digit) {
- return op1->is_negative ? CmpLT : CmpGT;
- }
- if (op1_digit < op2_digit) {
- return op1->is_negative ? CmpGT : CmpLT;
- }
-
- if (i == 0) {
- return CmpEQ;
- }
- i -= 1;
- }
-}
-
-void bigint_append_buf(Buf *buf, const BigInt *op, uint64_t base) {
- if (op->digit_count == 0) {
- buf_append_char(buf, '0');
- return;
- }
- if (op->is_negative) {
- buf_append_char(buf, '-');
- }
- if (op->digit_count == 1 && base == 10) {
- buf_appendf(buf, "%" ZIG_PRI_u64, op->data.digit);
- return;
- }
- if (op->digit_count == 1 && base == 16) {
- buf_appendf(buf, "%" ZIG_PRI_x64, op->data.digit);
- return;
- }
- size_t first_digit_index = buf_len(buf);
-
- BigInt digit_bi = {0};
- BigInt a1 = {0};
- BigInt a2 = {0};
-
- BigInt *a = &a1;
- BigInt *other_a = &a2;
- bigint_init_bigint(a, op);
-
- BigInt base_bi = {0};
- bigint_init_unsigned(&base_bi, base);
-
- for (;;) {
- bigint_rem(&digit_bi, a, &base_bi);
- uint8_t digit = bigint_as_unsigned(&digit_bi);
- buf_append_char(buf, digit_to_char(digit, false));
- bigint_div_trunc(other_a, a, &base_bi);
- {
- BigInt *tmp = a;
- a = other_a;
- other_a = tmp;
- }
- if (bigint_cmp_zero(a) == CmpEQ) {
- break;
- }
- }
-
- // reverse
- for (size_t i = first_digit_index; i < buf_len(buf) / 2; i += 1) {
- size_t other_i = buf_len(buf) + first_digit_index - i - 1;
- uint8_t tmp = buf_ptr(buf)[i];
- buf_ptr(buf)[i] = buf_ptr(buf)[other_i];
- buf_ptr(buf)[other_i] = tmp;
- }
-}
-
-size_t bigint_popcount_unsigned(const BigInt *bi) {
- assert(!bi->is_negative);
- if (bi->digit_count == 0)
- return 0;
-
- size_t count = 0;
- size_t bit_count = bi->digit_count * 64;
- for (size_t i = 0; i < bit_count; i += 1) {
- if (bit_at_index(bi, i))
- count += 1;
- }
- return count;
-}
-
-size_t bigint_popcount_signed(const BigInt *bi, size_t bit_count) {
- if (bit_count == 0)
- return 0;
- if (bi->digit_count == 0)
- return 0;
-
- BigInt twos_comp = {0};
- to_twos_complement(&twos_comp, bi, bit_count);
-
- size_t count = 0;
- for (size_t i = 0; i < bit_count; i += 1) {
- if (bit_at_index(&twos_comp, i))
- count += 1;
- }
- return count;
-}
-
-size_t bigint_ctz(const BigInt *bi, size_t bit_count) {
- if (bit_count == 0)
- return 0;
- if (bi->digit_count == 0)
- return bit_count;
-
- BigInt twos_comp = {0};
- to_twos_complement(&twos_comp, bi, bit_count);
-
- size_t count = 0;
- for (size_t i = 0; i < bit_count; i += 1) {
- if (bit_at_index(&twos_comp, i))
- return count;
- count += 1;
- }
- return count;
-}
-
-size_t bigint_clz(const BigInt *bi, size_t bit_count) {
- if (bi->is_negative || bit_count == 0)
- return 0;
- if (bi->digit_count == 0)
- return bit_count;
-
- size_t count = 0;
- for (size_t i = bit_count - 1;;) {
- if (bit_at_index(bi, i))
- return count;
- count += 1;
-
- if (i == 0) break;
- i -= 1;
- }
- return count;
-}
-
-static uint64_t bigint_as_unsigned(const BigInt *bigint) {
- assert(!bigint->is_negative);
- if (bigint->digit_count == 0) {
- return 0;
- } else if (bigint->digit_count == 1) {
- return bigint->data.digit;
- } else {
- zig_unreachable();
- }
-}
-
-uint64_t bigint_as_u64(const BigInt *bigint)
-{
- return bigint_as_unsigned(bigint);
-}
-
-uint32_t bigint_as_u32(const BigInt *bigint) {
- uint64_t value64 = bigint_as_unsigned(bigint);
- uint32_t value32 = (uint32_t)value64;
- assert (value64 == value32);
- return value32;
-}
-
-uint8_t bigint_as_u8(const BigInt *bigint) {
- uint64_t value64 = bigint_as_unsigned(bigint);
- uint8_t value8 = (uint8_t)value64;
- assert (value64 == value8);
- return value8;
-}
-
-size_t bigint_as_usize(const BigInt *bigint) {
- uint64_t value64 = bigint_as_unsigned(bigint);
- size_t valueUsize = (size_t)value64;
- assert (value64 == valueUsize);
- return valueUsize;
-}
-
-int64_t bigint_as_signed(const BigInt *bigint) {
- if (bigint->digit_count == 0) {
- return 0;
- } else if (bigint->digit_count == 1) {
- if (bigint->is_negative) {
- if (bigint->data.digit <= 9223372036854775808ULL) {
- return (-((int64_t)(bigint->data.digit - 1))) - 1;
- } else {
- zig_unreachable();
- }
- } else {
- return bigint->data.digit;
- }
- } else {
- zig_unreachable();
- }
-}
-
-Cmp bigint_cmp_zero(const BigInt *op) {
- if (op->digit_count == 0) {
- return CmpEQ;
- }
- return op->is_negative ? CmpLT : CmpGT;
-}
-
-uint32_t bigint_hash(BigInt const *x) {
- if (x->digit_count == 0) {
- return 0;
- } else {
- return bigint_ptr(x)[0];
- }
-}
-
-bool bigint_eql(BigInt const *a, BigInt const *b) {
- return bigint_cmp(a, b) == CmpEQ;
-}
-
-void bigint_incr(BigInt *x) {
- if (x->digit_count == 0) {
- bigint_init_unsigned(x, 1);
- return;
- }
-
- if (x->digit_count == 1) {
- if (x->is_negative && x->data.digit != 0) {
- x->data.digit -= 1;
- return;
- } else if (!x->is_negative && x->data.digit != UINT64_MAX) {
- x->data.digit += 1;
- return;
- }
- }
-
- BigInt copy;
- bigint_init_bigint(&copy, x);
-
- BigInt one;
- bigint_init_unsigned(&one, 1);
-
- bigint_add(x, &copy, &one);
-}
-
-void bigint_decr(BigInt *x) {
- if (x->digit_count == 0) {
- bigint_init_signed(x, -1);
- return;
- }
-
- if (x->digit_count == 1) {
- if (x->is_negative && x->data.digit != UINT64_MAX) {
- x->data.digit += 1;
- return;
- } else if (!x->is_negative && x->data.digit != 0) {
- x->data.digit -= 1;
- return;
- }
- }
-
- BigInt copy;
- bigint_init_bigint(&copy, x);
-
- BigInt neg_one;
- bigint_init_signed(&neg_one, -1);
-
- bigint_add(x, &copy, &neg_one);
-}