aboutsummaryrefslogtreecommitdiff
path: root/src/stage1/bigint.cpp
diff options
context:
space:
mode:
authorAndrew Kelley <andrew@ziglang.org>2020-09-30 02:55:41 -0700
committerAndrew Kelley <andrew@ziglang.org>2020-09-30 02:55:41 -0700
commit7067764ed3f85eca17be7310b848ad97bd8af52e (patch)
treee61901ce753c541d3c3778c544bd98826691efb8 /src/stage1/bigint.cpp
parente2d1f9874df2a9221aaa9ec55bd2974b70601f64 (diff)
parentfe117d9961c3622fda5c359733d01de686509af0 (diff)
downloadzig-7067764ed3f85eca17be7310b848ad97bd8af52e.tar.gz
zig-7067764ed3f85eca17be7310b848ad97bd8af52e.zip
Merge remote-tracking branch 'origin/master' into llvm11
The changes to install_files.h needed to put into src/libcxx.zig
Diffstat (limited to 'src/stage1/bigint.cpp')
-rw-r--r--src/stage1/bigint.cpp1786
1 files changed, 1786 insertions, 0 deletions
diff --git a/src/stage1/bigint.cpp b/src/stage1/bigint.cpp
new file mode 100644
index 0000000000..79a05e95a5
--- /dev/null
+++ b/src/stage1/bigint.cpp
@@ -0,0 +1,1786 @@
+/*
+ * Copyright (c) 2017 Andrew Kelley
+ *
+ * This file is part of zig, which is MIT licensed.
+ * See http://opensource.org/licenses/MIT
+ */
+
+#include "bigfloat.hpp"
+#include "bigint.hpp"
+#include "buffer.hpp"
+#include "list.hpp"
+#include "os.hpp"
+#include "softfloat.hpp"
+
+#include <limits>
+#include <algorithm>
+
+static uint64_t bigint_as_unsigned(const BigInt *bigint);
+
+static void bigint_normalize(BigInt *dest) {
+ const uint64_t *digits = bigint_ptr(dest);
+
+ size_t last_nonzero_digit = SIZE_MAX;
+ for (size_t i = 0; i < dest->digit_count; i += 1) {
+ uint64_t digit = digits[i];
+ if (digit != 0) {
+ last_nonzero_digit = i;
+ }
+ }
+ if (last_nonzero_digit == SIZE_MAX) {
+ dest->is_negative = false;
+ dest->digit_count = 0;
+ } else {
+ dest->digit_count = last_nonzero_digit + 1;
+ if (last_nonzero_digit == 0) {
+ dest->data.digit = digits[0];
+ }
+ }
+}
+
+static uint8_t digit_to_char(uint8_t digit, bool uppercase) {
+ if (digit <= 9) {
+ return digit + '0';
+ } else if (digit <= 35) {
+ return (digit - 10) + (uppercase ? 'A' : 'a');
+ } else {
+ zig_unreachable();
+ }
+}
+
+size_t bigint_bits_needed(const BigInt *op) {
+ size_t full_bits = op->digit_count * 64;
+ size_t leading_zero_count = bigint_clz(op, full_bits);
+ size_t bits_needed = full_bits - leading_zero_count;
+ return bits_needed + op->is_negative;
+}
+
+static void to_twos_complement(BigInt *dest, const BigInt *op, size_t bit_count) {
+ if (bit_count == 0 || op->digit_count == 0) {
+ bigint_init_unsigned(dest, 0);
+ return;
+ }
+ if (op->is_negative) {
+ BigInt negated = {0};
+ bigint_negate(&negated, op);
+
+ BigInt inverted = {0};
+ bigint_not(&inverted, &negated, bit_count, false);
+
+ BigInt one = {0};
+ bigint_init_unsigned(&one, 1);
+
+ bigint_add(dest, &inverted, &one);
+ return;
+ }
+
+ dest->is_negative = false;
+ const uint64_t *op_digits = bigint_ptr(op);
+ if (op->digit_count == 1) {
+ dest->data.digit = op_digits[0];
+ if (bit_count < 64) {
+ dest->data.digit &= (1ULL << bit_count) - 1;
+ }
+ dest->digit_count = 1;
+ bigint_normalize(dest);
+ return;
+ }
+ size_t digits_to_copy = bit_count / 64;
+ size_t leftover_bits = bit_count % 64;
+ dest->digit_count = digits_to_copy + ((leftover_bits == 0) ? 0 : 1);
+ if (dest->digit_count == 1 && leftover_bits == 0) {
+ dest->data.digit = op_digits[0];
+ if (dest->data.digit == 0) dest->digit_count = 0;
+ return;
+ }
+ dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
+ for (size_t i = 0; i < digits_to_copy; i += 1) {
+ uint64_t digit = (i < op->digit_count) ? op_digits[i] : 0;
+ dest->data.digits[i] = digit;
+ }
+ if (leftover_bits != 0) {
+ uint64_t digit = (digits_to_copy < op->digit_count) ? op_digits[digits_to_copy] : 0;
+ dest->data.digits[digits_to_copy] = digit & ((1ULL << leftover_bits) - 1);
+ }
+ bigint_normalize(dest);
+}
+
+static bool bit_at_index(const BigInt *bi, size_t index) {
+ size_t digit_index = index / 64;
+ if (digit_index >= bi->digit_count)
+ return false;
+ size_t digit_bit_index = index % 64;
+ const uint64_t *digits = bigint_ptr(bi);
+ uint64_t digit = digits[digit_index];
+ return ((digit >> digit_bit_index) & 0x1) == 0x1;
+}
+
+static void from_twos_complement(BigInt *dest, const BigInt *src, size_t bit_count, bool is_signed) {
+ assert(!src->is_negative);
+
+ if (bit_count == 0 || src->digit_count == 0) {
+ bigint_init_unsigned(dest, 0);
+ return;
+ }
+
+ if (is_signed && bit_at_index(src, bit_count - 1)) {
+ BigInt negative_one = {0};
+ bigint_init_signed(&negative_one, -1);
+
+ BigInt minus_one = {0};
+ bigint_add(&minus_one, src, &negative_one);
+
+ BigInt inverted = {0};
+ bigint_not(&inverted, &minus_one, bit_count, false);
+
+ bigint_negate(dest, &inverted);
+ return;
+
+ }
+
+ bigint_init_bigint(dest, src);
+}
+
+void bigint_init_unsigned(BigInt *dest, uint64_t x) {
+ if (x == 0) {
+ dest->digit_count = 0;
+ dest->is_negative = false;
+ return;
+ }
+ dest->digit_count = 1;
+ dest->data.digit = x;
+ dest->is_negative = false;
+}
+
+void bigint_init_signed(BigInt *dest, int64_t x) {
+ if (x >= 0) {
+ return bigint_init_unsigned(dest, x);
+ }
+ dest->is_negative = true;
+ dest->digit_count = 1;
+ dest->data.digit = ((uint64_t)(-(x + 1))) + 1;
+}
+
+void bigint_init_data(BigInt *dest, const uint64_t *digits, size_t digit_count, bool is_negative) {
+ if (digit_count == 0) {
+ return bigint_init_unsigned(dest, 0);
+ } else if (digit_count == 1) {
+ dest->digit_count = 1;
+ dest->data.digit = digits[0];
+ dest->is_negative = is_negative;
+ bigint_normalize(dest);
+ return;
+ }
+
+ dest->digit_count = digit_count;
+ dest->is_negative = is_negative;
+ dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(digit_count);
+ memcpy(dest->data.digits, digits, sizeof(uint64_t) * digit_count);
+
+ bigint_normalize(dest);
+}
+
+void bigint_init_bigint(BigInt *dest, const BigInt *src) {
+ if (src->digit_count == 0) {
+ return bigint_init_unsigned(dest, 0);
+ } else if (src->digit_count == 1) {
+ dest->digit_count = 1;
+ dest->data.digit = src->data.digit;
+ dest->is_negative = src->is_negative;
+ return;
+ }
+ dest->is_negative = src->is_negative;
+ dest->digit_count = src->digit_count;
+ dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
+ memcpy(dest->data.digits, src->data.digits, sizeof(uint64_t) * dest->digit_count);
+}
+
+void bigint_deinit(BigInt *bi) {
+ if (bi->digit_count > 1)
+ heap::c_allocator.deallocate(bi->data.digits, bi->digit_count);
+}
+
+void bigint_init_bigfloat(BigInt *dest, const BigFloat *op) {
+ float128_t zero;
+ ui32_to_f128M(0, &zero);
+
+ dest->is_negative = f128M_lt(&op->value, &zero);
+ float128_t abs_val;
+ if (dest->is_negative) {
+ f128M_sub(&zero, &op->value, &abs_val);
+ } else {
+ memcpy(&abs_val, &op->value, sizeof(float128_t));
+ }
+
+ float128_t max_u64;
+ ui64_to_f128M(UINT64_MAX, &max_u64);
+ if (f128M_le(&abs_val, &max_u64)) {
+ dest->digit_count = 1;
+ dest->data.digit = f128M_to_ui64(&op->value, softfloat_round_minMag, false);
+ bigint_normalize(dest);
+ return;
+ }
+
+ float128_t amt;
+ f128M_div(&abs_val, &max_u64, &amt);
+ float128_t remainder;
+ f128M_rem(&abs_val, &max_u64, &remainder);
+
+ dest->digit_count = 2;
+ dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
+ dest->data.digits[0] = f128M_to_ui64(&remainder, softfloat_round_minMag, false);
+ dest->data.digits[1] = f128M_to_ui64(&amt, softfloat_round_minMag, false);
+ bigint_normalize(dest);
+}
+
+bool bigint_fits_in_bits(const BigInt *bn, size_t bit_count, bool is_signed) {
+ assert(bn->digit_count != 1 || bn->data.digit != 0);
+ if (bit_count == 0) {
+ return bigint_cmp_zero(bn) == CmpEQ;
+ }
+ if (bn->digit_count == 0) {
+ return true;
+ }
+
+ if (!is_signed) {
+ if(bn->is_negative) return false;
+ size_t full_bits = bn->digit_count * 64;
+ size_t leading_zero_count = bigint_clz(bn, full_bits);
+ return bit_count >= full_bits - leading_zero_count;
+ }
+
+ BigInt one = {0};
+ bigint_init_unsigned(&one, 1);
+
+ BigInt shl_amt = {0};
+ bigint_init_unsigned(&shl_amt, bit_count - 1);
+
+ BigInt max_value_plus_one = {0};
+ bigint_shl(&max_value_plus_one, &one, &shl_amt);
+
+ BigInt max_value = {0};
+ bigint_sub(&max_value, &max_value_plus_one, &one);
+
+ BigInt min_value = {0};
+ bigint_negate(&min_value, &max_value_plus_one);
+
+ Cmp min_cmp = bigint_cmp(bn, &min_value);
+ Cmp max_cmp = bigint_cmp(bn, &max_value);
+
+ return (min_cmp == CmpGT || min_cmp == CmpEQ) && (max_cmp == CmpLT || max_cmp == CmpEQ);
+}
+
+void bigint_write_twos_complement(const BigInt *big_int, uint8_t *buf, size_t bit_count, bool is_big_endian) {
+ if (bit_count == 0)
+ return;
+
+ BigInt twos_comp = {0};
+ to_twos_complement(&twos_comp, big_int, bit_count);
+
+ const uint64_t *twos_comp_digits = bigint_ptr(&twos_comp);
+
+ size_t bits_in_last_digit = bit_count % 64;
+ if (bits_in_last_digit == 0) bits_in_last_digit = 64;
+ size_t bytes_in_last_digit = (bits_in_last_digit + 7) / 8;
+ size_t unwritten_byte_count = 8 - bytes_in_last_digit;
+
+ if (is_big_endian) {
+ size_t last_digit_index = (bit_count - 1) / 64;
+ size_t digit_index = last_digit_index;
+ size_t buf_index = 0;
+ for (;;) {
+ uint64_t x = (digit_index < twos_comp.digit_count) ? twos_comp_digits[digit_index] : 0;
+
+ for (size_t byte_index = 7;;) {
+ uint8_t byte = x & 0xff;
+ if (digit_index == last_digit_index) {
+ buf[buf_index + byte_index - unwritten_byte_count] = byte;
+ if (byte_index == unwritten_byte_count) break;
+ } else {
+ buf[buf_index + byte_index] = byte;
+ }
+
+ if (byte_index == 0) break;
+ byte_index -= 1;
+ x >>= 8;
+ }
+
+ if (digit_index == 0) break;
+ digit_index -= 1;
+ if (digit_index == last_digit_index) {
+ buf_index += bytes_in_last_digit;
+ } else {
+ buf_index += 8;
+ }
+ }
+ } else {
+ size_t digit_count = (bit_count + 63) / 64;
+ size_t buf_index = 0;
+ for (size_t digit_index = 0; digit_index < digit_count; digit_index += 1) {
+ uint64_t x = (digit_index < twos_comp.digit_count) ? twos_comp_digits[digit_index] : 0;
+
+ for (size_t byte_index = 0;
+ byte_index < 8 && (digit_index + 1 < digit_count || byte_index < bytes_in_last_digit);
+ byte_index += 1)
+ {
+ uint8_t byte = x & 0xff;
+ buf[buf_index] = byte;
+ buf_index += 1;
+ x >>= 8;
+ }
+ }
+ }
+}
+
+
+void bigint_read_twos_complement(BigInt *dest, const uint8_t *buf, size_t bit_count, bool is_big_endian,
+ bool is_signed)
+{
+ if (bit_count == 0) {
+ bigint_init_unsigned(dest, 0);
+ return;
+ }
+
+ dest->digit_count = (bit_count + 63) / 64;
+ uint64_t *digits;
+ if (dest->digit_count == 1) {
+ digits = &dest->data.digit;
+ } else {
+ digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
+ dest->data.digits = digits;
+ }
+
+ size_t bits_in_last_digit = bit_count % 64;
+ if (bits_in_last_digit == 0) {
+ bits_in_last_digit = 64;
+ }
+ size_t bytes_in_last_digit = (bits_in_last_digit + 7) / 8;
+ size_t unread_byte_count = 8 - bytes_in_last_digit;
+
+ if (is_big_endian) {
+ size_t buf_index = 0;
+ uint64_t digit = 0;
+ for (size_t byte_index = unread_byte_count; byte_index < 8; byte_index += 1) {
+ uint8_t byte = buf[buf_index];
+ buf_index += 1;
+ digit <<= 8;
+ digit |= byte;
+ }
+ digits[dest->digit_count - 1] = digit;
+ for (size_t digit_index = 1; digit_index < dest->digit_count; digit_index += 1) {
+ digit = 0;
+ for (size_t byte_index = 0; byte_index < 8; byte_index += 1) {
+ uint8_t byte = buf[buf_index];
+ buf_index += 1;
+ digit <<= 8;
+ digit |= byte;
+ }
+ digits[dest->digit_count - 1 - digit_index] = digit;
+ }
+ } else {
+ size_t buf_index = 0;
+ for (size_t digit_index = 0; digit_index < dest->digit_count; digit_index += 1) {
+ uint64_t digit = 0;
+ size_t end_byte_index = (digit_index == dest->digit_count - 1) ? bytes_in_last_digit : 8;
+ for (size_t byte_index = 0; byte_index < end_byte_index; byte_index += 1) {
+ uint64_t byte = buf[buf_index];
+ buf_index += 1;
+
+ digit |= byte << (8 * byte_index);
+ }
+ digits[digit_index] = digit;
+ }
+ }
+
+ if (is_signed) {
+ bigint_normalize(dest);
+ BigInt tmp = {0};
+ bigint_init_bigint(&tmp, dest);
+ from_twos_complement(dest, &tmp, bit_count, true);
+ } else {
+ dest->is_negative = false;
+ bigint_normalize(dest);
+ }
+}
+
+#if defined(_MSC_VER)
+static bool add_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
+ *result = op1 + op2;
+ return *result < op1 || *result < op2;
+}
+
+static bool sub_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
+ *result = op1 - op2;
+ return *result > op1;
+}
+
+bool mul_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
+ *result = op1 * op2;
+
+ if (op1 == 0 || op2 == 0)
+ return false;
+
+ if (op1 > UINT64_MAX / op2)
+ return true;
+
+ if (op2 > UINT64_MAX / op1)
+ return true;
+
+ return false;
+}
+#else
+static bool add_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
+ return __builtin_uaddll_overflow((unsigned long long)op1, (unsigned long long)op2,
+ (unsigned long long *)result);
+}
+
+static bool sub_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
+ return __builtin_usubll_overflow((unsigned long long)op1, (unsigned long long)op2,
+ (unsigned long long *)result);
+}
+
+bool mul_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
+ return __builtin_umulll_overflow((unsigned long long)op1, (unsigned long long)op2,
+ (unsigned long long *)result);
+}
+#endif
+
+void bigint_add(BigInt *dest, const BigInt *op1, const BigInt *op2) {
+ if (op1->digit_count == 0) {
+ return bigint_init_bigint(dest, op2);
+ }
+ if (op2->digit_count == 0) {
+ return bigint_init_bigint(dest, op1);
+ }
+ if (op1->is_negative == op2->is_negative) {
+ dest->is_negative = op1->is_negative;
+
+ const uint64_t *op1_digits = bigint_ptr(op1);
+ const uint64_t *op2_digits = bigint_ptr(op2);
+ bool overflow = add_u64_overflow(op1_digits[0], op2_digits[0], &dest->data.digit);
+ if (overflow == 0 && op1->digit_count == 1 && op2->digit_count == 1) {
+ dest->digit_count = 1;
+ bigint_normalize(dest);
+ return;
+ }
+ size_t i = 1;
+ uint64_t first_digit = dest->data.digit;
+ dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(max(op1->digit_count, op2->digit_count) + 1);
+ dest->data.digits[0] = first_digit;
+
+ for (;;) {
+ bool found_digit = false;
+ uint64_t x = overflow;
+ overflow = 0;
+
+ if (i < op1->digit_count) {
+ found_digit = true;
+ uint64_t digit = op1_digits[i];
+ overflow += add_u64_overflow(x, digit, &x);
+ }
+
+ if (i < op2->digit_count) {
+ found_digit = true;
+ uint64_t digit = op2_digits[i];
+ overflow += add_u64_overflow(x, digit, &x);
+ }
+
+ dest->data.digits[i] = x;
+ i += 1;
+
+ if (!found_digit) {
+ dest->digit_count = i;
+ bigint_normalize(dest);
+ return;
+ }
+ }
+ }
+ const BigInt *op_pos;
+ const BigInt *op_neg;
+ if (op1->is_negative) {
+ op_neg = op1;
+ op_pos = op2;
+ } else {
+ op_pos = op1;
+ op_neg = op2;
+ }
+
+ BigInt op_neg_abs = {0};
+ bigint_negate(&op_neg_abs, op_neg);
+ const BigInt *bigger_op;
+ const BigInt *smaller_op;
+ switch (bigint_cmp(op_pos, &op_neg_abs)) {
+ case CmpEQ:
+ bigint_init_unsigned(dest, 0);
+ return;
+ case CmpLT:
+ bigger_op = &op_neg_abs;
+ smaller_op = op_pos;
+ dest->is_negative = true;
+ break;
+ case CmpGT:
+ bigger_op = op_pos;
+ smaller_op = &op_neg_abs;
+ dest->is_negative = false;
+ break;
+ }
+ const uint64_t *bigger_op_digits = bigint_ptr(bigger_op);
+ const uint64_t *smaller_op_digits = bigint_ptr(smaller_op);
+ uint64_t overflow = sub_u64_overflow(bigger_op_digits[0], smaller_op_digits[0], &dest->data.digit);
+ if (overflow == 0 && bigger_op->digit_count == 1 && smaller_op->digit_count == 1) {
+ dest->digit_count = 1;
+ bigint_normalize(dest);
+ return;
+ }
+ uint64_t first_digit = dest->data.digit;
+ dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(bigger_op->digit_count);
+ dest->data.digits[0] = first_digit;
+ size_t i = 1;
+
+ for (;;) {
+ bool found_digit = false;
+ uint64_t x = bigger_op_digits[i];
+ uint64_t prev_overflow = overflow;
+ overflow = 0;
+
+ if (i < smaller_op->digit_count) {
+ found_digit = true;
+ uint64_t digit = smaller_op_digits[i];
+ overflow += sub_u64_overflow(x, digit, &x);
+ }
+ if (sub_u64_overflow(x, prev_overflow, &x)) {
+ found_digit = true;
+ overflow += 1;
+ }
+ dest->data.digits[i] = x;
+ i += 1;
+
+ if (!found_digit || i >= bigger_op->digit_count)
+ break;
+ }
+ assert(overflow == 0);
+ dest->digit_count = i;
+ bigint_normalize(dest);
+}
+
+void bigint_add_wrap(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
+ BigInt unwrapped = {0};
+ bigint_add(&unwrapped, op1, op2);
+ bigint_truncate(dest, &unwrapped, bit_count, is_signed);
+}
+
+void bigint_sub(BigInt *dest, const BigInt *op1, const BigInt *op2) {
+ BigInt op2_negated = {0};
+ bigint_negate(&op2_negated, op2);
+ return bigint_add(dest, op1, &op2_negated);
+}
+
+void bigint_sub_wrap(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
+ BigInt op2_negated = {0};
+ bigint_negate(&op2_negated, op2);
+ return bigint_add_wrap(dest, op1, &op2_negated, bit_count, is_signed);
+}
+
+static void mul_overflow(uint64_t op1, uint64_t op2, uint64_t *lo, uint64_t *hi) {
+ uint64_t u1 = (op1 & 0xffffffff);
+ uint64_t v1 = (op2 & 0xffffffff);
+ uint64_t t = (u1 * v1);
+ uint64_t w3 = (t & 0xffffffff);
+ uint64_t k = (t >> 32);
+
+ op1 >>= 32;
+ t = (op1 * v1) + k;
+ k = (t & 0xffffffff);
+ uint64_t w1 = (t >> 32);
+
+ op2 >>= 32;
+ t = (u1 * op2) + k;
+ k = (t >> 32);
+
+ *hi = (op1 * op2) + w1 + k;
+ *lo = (t << 32) + w3;
+}
+
+static void mul_scalar(BigInt *dest, const BigInt *op, uint64_t scalar) {
+ bigint_init_unsigned(dest, 0);
+
+ BigInt bi_64;
+ bigint_init_unsigned(&bi_64, 64);
+
+ const uint64_t *op_digits = bigint_ptr(op);
+ size_t i = op->digit_count - 1;
+
+ for (;;) {
+ BigInt shifted;
+ bigint_shl(&shifted, dest, &bi_64);
+
+ uint64_t result_scalar;
+ uint64_t carry_scalar;
+ mul_overflow(scalar, op_digits[i], &result_scalar, &carry_scalar);
+
+ BigInt result;
+ bigint_init_unsigned(&result, result_scalar);
+
+ BigInt carry;
+ bigint_init_unsigned(&carry, carry_scalar);
+
+ BigInt carry_shifted;
+ bigint_shl(&carry_shifted, &carry, &bi_64);
+
+ BigInt tmp;
+ bigint_add(&tmp, &shifted, &carry_shifted);
+
+ bigint_add(dest, &tmp, &result);
+
+ if (i == 0) {
+ break;
+ }
+ i -= 1;
+ }
+}
+
+void bigint_mul(BigInt *dest, const BigInt *op1, const BigInt *op2) {
+ if (op1->digit_count == 0 || op2->digit_count == 0) {
+ return bigint_init_unsigned(dest, 0);
+ }
+ const uint64_t *op1_digits = bigint_ptr(op1);
+ const uint64_t *op2_digits = bigint_ptr(op2);
+
+ uint64_t carry;
+ mul_overflow(op1_digits[0], op2_digits[0], &dest->data.digit, &carry);
+ if (carry == 0 && op1->digit_count == 1 && op2->digit_count == 1) {
+ dest->is_negative = (op1->is_negative != op2->is_negative);
+ dest->digit_count = 1;
+ bigint_normalize(dest);
+ return;
+ }
+
+ bigint_init_unsigned(dest, 0);
+
+ BigInt bi_64;
+ bigint_init_unsigned(&bi_64, 64);
+
+ size_t i = op2->digit_count - 1;
+ for (;;) {
+ BigInt shifted;
+ bigint_shl(&shifted, dest, &bi_64);
+
+ BigInt scalar_result;
+ mul_scalar(&scalar_result, op1, op2_digits[i]);
+
+ bigint_add(dest, &scalar_result, &shifted);
+
+ if (i == 0) {
+ break;
+ }
+ i -= 1;
+ }
+
+ dest->is_negative = (op1->is_negative != op2->is_negative);
+ bigint_normalize(dest);
+}
+
+void bigint_mul_wrap(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
+ BigInt unwrapped = {0};
+ bigint_mul(&unwrapped, op1, op2);
+ bigint_truncate(dest, &unwrapped, bit_count, is_signed);
+}
+
+enum ZeroBehavior {
+ /// \brief The returned value is undefined.
+ ZB_Undefined,
+ /// \brief The returned value is numeric_limits<T>::max()
+ ZB_Max,
+ /// \brief The returned value is numeric_limits<T>::digits
+ ZB_Width
+};
+
+template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
+ static std::size_t count(T Val, ZeroBehavior) {
+ if (!Val)
+ return std::numeric_limits<T>::digits;
+
+ // Bisection method.
+ std::size_t ZeroBits = 0;
+ for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
+ T Tmp = Val >> Shift;
+ if (Tmp)
+ Val = Tmp;
+ else
+ ZeroBits |= Shift;
+ }
+ return ZeroBits;
+ }
+};
+
+#if __GNUC__ >= 4 || defined(_MSC_VER)
+template <typename T> struct LeadingZerosCounter<T, 4> {
+ static std::size_t count(T Val, ZeroBehavior ZB) {
+ if (ZB != ZB_Undefined && Val == 0)
+ return 32;
+
+#if defined(_MSC_VER)
+ unsigned long Index;
+ _BitScanReverse(&Index, Val);
+ return Index ^ 31;
+#else
+ return __builtin_clz(Val);
+#endif
+ }
+};
+
+#if !defined(_MSC_VER) || defined(_M_X64)
+template <typename T> struct LeadingZerosCounter<T, 8> {
+ static std::size_t count(T Val, ZeroBehavior ZB) {
+ if (ZB != ZB_Undefined && Val == 0)
+ return 64;
+
+#if defined(_MSC_VER)
+ unsigned long Index;
+ _BitScanReverse64(&Index, Val);
+ return Index ^ 63;
+#else
+ return __builtin_clzll(Val);
+#endif
+ }
+};
+#endif
+#endif
+
+/// \brief Count number of 0's from the most significant bit to the least
+/// stopping at the first 1.
+///
+/// Only unsigned integral types are allowed.
+///
+/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
+/// valid arguments.
+template <typename T>
+std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
+ static_assert(std::numeric_limits<T>::is_integer &&
+ !std::numeric_limits<T>::is_signed,
+ "Only unsigned integral types are allowed.");
+ return LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
+}
+
+/// Make a 64-bit integer from a high / low pair of 32-bit integers.
+constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
+ return ((uint64_t)High << 32) | (uint64_t)Low;
+}
+
+/// Return the high 32 bits of a 64 bit value.
+constexpr inline uint32_t Hi_32(uint64_t Value) {
+ return static_cast<uint32_t>(Value >> 32);
+}
+
+/// Return the low 32 bits of a 64 bit value.
+constexpr inline uint32_t Lo_32(uint64_t Value) {
+ return static_cast<uint32_t>(Value);
+}
+
+/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
+/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
+/// variables here have the same names as in the algorithm. Comments explain
+/// the algorithm and any deviation from it.
+static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
+ unsigned m, unsigned n)
+{
+ assert(u && "Must provide dividend");
+ assert(v && "Must provide divisor");
+ assert(q && "Must provide quotient");
+ assert(u != v && u != q && v != q && "Must use different memory");
+ assert(n>1 && "n must be > 1");
+
+ // b denotes the base of the number system. In our case b is 2^32.
+ const uint64_t b = uint64_t(1) << 32;
+
+ // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
+ // u and v by d. Note that we have taken Knuth's advice here to use a power
+ // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
+ // 2 allows us to shift instead of multiply and it is easy to determine the
+ // shift amount from the leading zeros. We are basically normalizing the u
+ // and v so that its high bits are shifted to the top of v's range without
+ // overflow. Note that this can require an extra word in u so that u must
+ // be of length m+n+1.
+ unsigned shift = countLeadingZeros(v[n-1]);
+ uint32_t v_carry = 0;
+ uint32_t u_carry = 0;
+ if (shift) {
+ for (unsigned i = 0; i < m+n; ++i) {
+ uint32_t u_tmp = u[i] >> (32 - shift);
+ u[i] = (u[i] << shift) | u_carry;
+ u_carry = u_tmp;
+ }
+ for (unsigned i = 0; i < n; ++i) {
+ uint32_t v_tmp = v[i] >> (32 - shift);
+ v[i] = (v[i] << shift) | v_carry;
+ v_carry = v_tmp;
+ }
+ }
+ u[m+n] = u_carry;
+
+ // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
+ int j = m;
+ do {
+ // D3. [Calculate q'.].
+ // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
+ // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
+ // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
+ // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
+ // on v[n-2] determines at high speed most of the cases in which the trial
+ // value qp is one too large, and it eliminates all cases where qp is two
+ // too large.
+ uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
+ uint64_t qp = dividend / v[n-1];
+ uint64_t rp = dividend % v[n-1];
+ if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
+ qp--;
+ rp += v[n-1];
+ if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
+ qp--;
+ }
+
+ // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
+ // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
+ // consists of a simple multiplication by a one-place number, combined with
+ // a subtraction.
+ // The digits (u[j+n]...u[j]) should be kept positive; if the result of
+ // this step is actually negative, (u[j+n]...u[j]) should be left as the
+ // true value plus b**(n+1), namely as the b's complement of
+ // the true value, and a "borrow" to the left should be remembered.
+ int64_t borrow = 0;
+ for (unsigned i = 0; i < n; ++i) {
+ uint64_t p = uint64_t(qp) * uint64_t(v[i]);
+ int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
+ u[j+i] = Lo_32(subres);
+ borrow = Hi_32(p) - Hi_32(subres);
+ }
+ bool isNeg = u[j+n] < borrow;
+ u[j+n] -= Lo_32(borrow);
+
+ // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
+ // negative, go to step D6; otherwise go on to step D7.
+ q[j] = Lo_32(qp);
+ if (isNeg) {
+ // D6. [Add back]. The probability that this step is necessary is very
+ // small, on the order of only 2/b. Make sure that test data accounts for
+ // this possibility. Decrease q[j] by 1
+ q[j]--;
+ // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
+ // A carry will occur to the left of u[j+n], and it should be ignored
+ // since it cancels with the borrow that occurred in D4.
+ bool carry = false;
+ for (unsigned i = 0; i < n; i++) {
+ uint32_t limit = std::min(u[j+i],v[i]);
+ u[j+i] += v[i] + carry;
+ carry = u[j+i] < limit || (carry && u[j+i] == limit);
+ }
+ u[j+n] += carry;
+ }
+
+ // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
+ } while (--j >= 0);
+
+ // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
+ // remainder may be obtained by dividing u[...] by d. If r is non-null we
+ // compute the remainder (urem uses this).
+ if (r) {
+ // The value d is expressed by the "shift" value above since we avoided
+ // multiplication by d by using a shift left. So, all we have to do is
+ // shift right here.
+ if (shift) {
+ uint32_t carry = 0;
+ for (int i = n-1; i >= 0; i--) {
+ r[i] = (u[i] >> shift) | carry;
+ carry = u[i] << (32 - shift);
+ }
+ } else {
+ for (int i = n-1; i >= 0; i--) {
+ r[i] = u[i];
+ }
+ }
+ }
+}
+
+// Implementation ported from LLVM/lib/Support/APInt.cpp
+static void bigint_unsigned_division(const BigInt *op1, const BigInt *op2, BigInt *Quotient, BigInt *Remainder) {
+ Cmp cmp = bigint_cmp(op1, op2);
+ if (cmp == CmpLT) {
+ if (Quotient != nullptr) {
+ bigint_init_unsigned(Quotient, 0);
+ }
+ if (Remainder != nullptr) {
+ bigint_init_bigint(Remainder, op1);
+ }
+ return;
+ }
+ if (cmp == CmpEQ) {
+ if (Quotient != nullptr) {
+ bigint_init_unsigned(Quotient, 1);
+ }
+ if (Remainder != nullptr) {
+ bigint_init_unsigned(Remainder, 0);
+ }
+ return;
+ }
+
+ const uint64_t *LHS = bigint_ptr(op1);
+ const uint64_t *RHS = bigint_ptr(op2);
+ unsigned lhsWords = op1->digit_count;
+ unsigned rhsWords = op2->digit_count;
+
+ // First, compose the values into an array of 32-bit words instead of
+ // 64-bit words. This is a necessity of both the "short division" algorithm
+ // and the Knuth "classical algorithm" which requires there to be native
+ // operations for +, -, and * on an m bit value with an m*2 bit result. We
+ // can't use 64-bit operands here because we don't have native results of
+ // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
+ // work on large-endian machines.
+ unsigned n = rhsWords * 2;
+ unsigned m = (lhsWords * 2) - n;
+
+ // Allocate space for the temporary values we need either on the stack, if
+ // it will fit, or on the heap if it won't.
+ uint32_t SPACE[128];
+ uint32_t *U = nullptr;
+ uint32_t *V = nullptr;
+ uint32_t *Q = nullptr;
+ uint32_t *R = nullptr;
+ if ((Remainder?4:3)*n+2*m+1 <= 128) {
+ U = &SPACE[0];
+ V = &SPACE[m+n+1];
+ Q = &SPACE[(m+n+1) + n];
+ if (Remainder)
+ R = &SPACE[(m+n+1) + n + (m+n)];
+ } else {
+ U = new uint32_t[m + n + 1];
+ V = new uint32_t[n];
+ Q = new uint32_t[m+n];
+ if (Remainder)
+ R = new uint32_t[n];
+ }
+
+ // Initialize the dividend
+ memset(U, 0, (m+n+1)*sizeof(uint32_t));
+ for (unsigned i = 0; i < lhsWords; ++i) {
+ uint64_t tmp = LHS[i];
+ U[i * 2] = Lo_32(tmp);
+ U[i * 2 + 1] = Hi_32(tmp);
+ }
+ U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
+
+ // Initialize the divisor
+ memset(V, 0, (n)*sizeof(uint32_t));
+ for (unsigned i = 0; i < rhsWords; ++i) {
+ uint64_t tmp = RHS[i];
+ V[i * 2] = Lo_32(tmp);
+ V[i * 2 + 1] = Hi_32(tmp);
+ }
+
+ // initialize the quotient and remainder
+ memset(Q, 0, (m+n) * sizeof(uint32_t));
+ if (Remainder)
+ memset(R, 0, n * sizeof(uint32_t));
+
+ // Now, adjust m and n for the Knuth division. n is the number of words in
+ // the divisor. m is the number of words by which the dividend exceeds the
+ // divisor (i.e. m+n is the length of the dividend). These sizes must not
+ // contain any zero words or the Knuth algorithm fails.
+ for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
+ n--;
+ m++;
+ }
+ for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
+ m--;
+
+ // If we're left with only a single word for the divisor, Knuth doesn't work
+ // so we implement the short division algorithm here. This is much simpler
+ // and faster because we are certain that we can divide a 64-bit quantity
+ // by a 32-bit quantity at hardware speed and short division is simply a
+ // series of such operations. This is just like doing short division but we
+ // are using base 2^32 instead of base 10.
+ assert(n != 0 && "Divide by zero?");
+ if (n == 1) {
+ uint32_t divisor = V[0];
+ uint32_t remainder = 0;
+ for (int i = m; i >= 0; i--) {
+ uint64_t partial_dividend = Make_64(remainder, U[i]);
+ if (partial_dividend == 0) {
+ Q[i] = 0;
+ remainder = 0;
+ } else if (partial_dividend < divisor) {
+ Q[i] = 0;
+ remainder = Lo_32(partial_dividend);
+ } else if (partial_dividend == divisor) {
+ Q[i] = 1;
+ remainder = 0;
+ } else {
+ Q[i] = Lo_32(partial_dividend / divisor);
+ remainder = Lo_32(partial_dividend - (Q[i] * divisor));
+ }
+ }
+ if (R)
+ R[0] = remainder;
+ } else {
+ // Now we're ready to invoke the Knuth classical divide algorithm. In this
+ // case n > 1.
+ KnuthDiv(U, V, Q, R, m, n);
+ }
+
+ // If the caller wants the quotient
+ if (Quotient) {
+ Quotient->is_negative = false;
+ Quotient->digit_count = lhsWords;
+ if (lhsWords == 1) {
+ Quotient->data.digit = Make_64(Q[1], Q[0]);
+ } else {
+ Quotient->data.digits = heap::c_allocator.allocate<uint64_t>(lhsWords);
+ for (size_t i = 0; i < lhsWords; i += 1) {
+ Quotient->data.digits[i] = Make_64(Q[i*2+1], Q[i*2]);
+ }
+ }
+ }
+
+ // If the caller wants the remainder
+ if (Remainder) {
+ Remainder->is_negative = false;
+ Remainder->digit_count = rhsWords;
+ if (rhsWords == 1) {
+ Remainder->data.digit = Make_64(R[1], R[0]);
+ } else {
+ Remainder->data.digits = heap::c_allocator.allocate<uint64_t>(rhsWords);
+ for (size_t i = 0; i < rhsWords; i += 1) {
+ Remainder->data.digits[i] = Make_64(R[i*2+1], R[i*2]);
+ }
+ }
+ }
+}
+
+void bigint_div_trunc(BigInt *dest, const BigInt *op1, const BigInt *op2) {
+ assert(op2->digit_count != 0); // division by zero
+ if (op1->digit_count == 0) {
+ bigint_init_unsigned(dest, 0);
+ return;
+ }
+ const uint64_t *op1_digits = bigint_ptr(op1);
+ const uint64_t *op2_digits = bigint_ptr(op2);
+ if (op1->digit_count == 1 && op2->digit_count == 1) {
+ dest->data.digit = op1_digits[0] / op2_digits[0];
+ dest->digit_count = 1;
+ dest->is_negative = op1->is_negative != op2->is_negative;
+ bigint_normalize(dest);
+ return;
+ }
+ if (op2->digit_count == 1 && op2_digits[0] == 1) {
+ // X / 1 == X
+ bigint_init_bigint(dest, op1);
+ dest->is_negative = op1->is_negative != op2->is_negative;
+ bigint_normalize(dest);
+ return;
+ }
+
+ const BigInt *op1_positive;
+ BigInt op1_positive_data;
+ if (op1->is_negative) {
+ bigint_negate(&op1_positive_data, op1);
+ op1_positive = &op1_positive_data;
+ } else {
+ op1_positive = op1;
+ }
+
+ const BigInt *op2_positive;
+ BigInt op2_positive_data;
+ if (op2->is_negative) {
+ bigint_negate(&op2_positive_data, op2);
+ op2_positive = &op2_positive_data;
+ } else {
+ op2_positive = op2;
+ }
+
+ bigint_unsigned_division(op1_positive, op2_positive, dest, nullptr);
+ dest->is_negative = op1->is_negative != op2->is_negative;
+ bigint_normalize(dest);
+}
+
+void bigint_div_floor(BigInt *dest, const BigInt *op1, const BigInt *op2) {
+ if (op1->is_negative != op2->is_negative) {
+ bigint_div_trunc(dest, op1, op2);
+ BigInt mult_again = {0};
+ bigint_mul(&mult_again, dest, op2);
+ mult_again.is_negative = op1->is_negative;
+ if (bigint_cmp(&mult_again, op1) != CmpEQ) {
+ BigInt tmp = {0};
+ bigint_init_bigint(&tmp, dest);
+ BigInt neg_one = {0};
+ bigint_init_signed(&neg_one, -1);
+ bigint_add(dest, &tmp, &neg_one);
+ }
+ bigint_normalize(dest);
+ } else {
+ bigint_div_trunc(dest, op1, op2);
+ }
+}
+
+void bigint_rem(BigInt *dest, const BigInt *op1, const BigInt *op2) {
+ assert(op2->digit_count != 0); // division by zero
+ if (op1->digit_count == 0) {
+ bigint_init_unsigned(dest, 0);
+ return;
+ }
+ const uint64_t *op1_digits = bigint_ptr(op1);
+ const uint64_t *op2_digits = bigint_ptr(op2);
+
+ if (op1->digit_count == 1 && op2->digit_count == 1) {
+ dest->data.digit = op1_digits[0] % op2_digits[0];
+ dest->digit_count = 1;
+ dest->is_negative = op1->is_negative;
+ bigint_normalize(dest);
+ return;
+ }
+ if (op2->digit_count == 2 && op2_digits[0] == 0 && op2_digits[1] == 1) {
+ // special case this divisor
+ bigint_init_unsigned(dest, op1_digits[0]);
+ dest->is_negative = op1->is_negative;
+ bigint_normalize(dest);
+ return;
+ }
+
+ if (op2->digit_count == 1 && op2_digits[0] == 1) {
+ // X % 1 == 0
+ bigint_init_unsigned(dest, 0);
+ return;
+ }
+
+ const BigInt *op1_positive;
+ BigInt op1_positive_data;
+ if (op1->is_negative) {
+ bigint_negate(&op1_positive_data, op1);
+ op1_positive = &op1_positive_data;
+ } else {
+ op1_positive = op1;
+ }
+
+ const BigInt *op2_positive;
+ BigInt op2_positive_data;
+ if (op2->is_negative) {
+ bigint_negate(&op2_positive_data, op2);
+ op2_positive = &op2_positive_data;
+ } else {
+ op2_positive = op2;
+ }
+
+ bigint_unsigned_division(op1_positive, op2_positive, nullptr, dest);
+ dest->is_negative = op1->is_negative;
+ bigint_normalize(dest);
+}
+
+void bigint_mod(BigInt *dest, const BigInt *op1, const BigInt *op2) {
+ if (op1->is_negative) {
+ BigInt first_rem;
+ bigint_rem(&first_rem, op1, op2);
+ first_rem.is_negative = !op2->is_negative;
+ BigInt op2_minus_rem;
+ bigint_add(&op2_minus_rem, op2, &first_rem);
+ bigint_rem(dest, &op2_minus_rem, op2);
+ dest->is_negative = false;
+ } else {
+ bigint_rem(dest, op1, op2);
+ dest->is_negative = false;
+ }
+}
+
+void bigint_or(BigInt *dest, const BigInt *op1, const BigInt *op2) {
+ if (op1->digit_count == 0) {
+ return bigint_init_bigint(dest, op2);
+ }
+ if (op2->digit_count == 0) {
+ return bigint_init_bigint(dest, op1);
+ }
+ if (op1->is_negative || op2->is_negative) {
+ size_t big_bit_count = max(bigint_bits_needed(op1), bigint_bits_needed(op2));
+
+ BigInt twos_comp_op1 = {0};
+ to_twos_complement(&twos_comp_op1, op1, big_bit_count);
+
+ BigInt twos_comp_op2 = {0};
+ to_twos_complement(&twos_comp_op2, op2, big_bit_count);
+
+ BigInt twos_comp_dest = {0};
+ bigint_or(&twos_comp_dest, &twos_comp_op1, &twos_comp_op2);
+
+ from_twos_complement(dest, &twos_comp_dest, big_bit_count, true);
+ } else {
+ dest->is_negative = false;
+ const uint64_t *op1_digits = bigint_ptr(op1);
+ const uint64_t *op2_digits = bigint_ptr(op2);
+ if (op1->digit_count == 1 && op2->digit_count == 1) {
+ dest->digit_count = 1;
+ dest->data.digit = op1_digits[0] | op2_digits[0];
+ bigint_normalize(dest);
+ return;
+ }
+ dest->digit_count = max(op1->digit_count, op2->digit_count);
+ dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
+ for (size_t i = 0; i < dest->digit_count; i += 1) {
+ uint64_t digit = 0;
+ if (i < op1->digit_count) {
+ digit |= op1_digits[i];
+ }
+ if (i < op2->digit_count) {
+ digit |= op2_digits[i];
+ }
+ dest->data.digits[i] = digit;
+ }
+ bigint_normalize(dest);
+ }
+}
+
+void bigint_and(BigInt *dest, const BigInt *op1, const BigInt *op2) {
+ if (op1->digit_count == 0 || op2->digit_count == 0) {
+ return bigint_init_unsigned(dest, 0);
+ }
+ if (op1->is_negative || op2->is_negative) {
+ size_t big_bit_count = max(bigint_bits_needed(op1), bigint_bits_needed(op2));
+
+ BigInt twos_comp_op1 = {0};
+ to_twos_complement(&twos_comp_op1, op1, big_bit_count);
+
+ BigInt twos_comp_op2 = {0};
+ to_twos_complement(&twos_comp_op2, op2, big_bit_count);
+
+ BigInt twos_comp_dest = {0};
+ bigint_and(&twos_comp_dest, &twos_comp_op1, &twos_comp_op2);
+
+ from_twos_complement(dest, &twos_comp_dest, big_bit_count, true);
+ } else {
+ dest->is_negative = false;
+ const uint64_t *op1_digits = bigint_ptr(op1);
+ const uint64_t *op2_digits = bigint_ptr(op2);
+ if (op1->digit_count == 1 && op2->digit_count == 1) {
+ dest->digit_count = 1;
+ dest->data.digit = op1_digits[0] & op2_digits[0];
+ bigint_normalize(dest);
+ return;
+ }
+
+ dest->digit_count = max(op1->digit_count, op2->digit_count);
+ dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
+
+ size_t i = 0;
+ for (; i < op1->digit_count && i < op2->digit_count; i += 1) {
+ dest->data.digits[i] = op1_digits[i] & op2_digits[i];
+ }
+ for (; i < dest->digit_count; i += 1) {
+ dest->data.digits[i] = 0;
+ }
+ bigint_normalize(dest);
+ }
+}
+
+void bigint_xor(BigInt *dest, const BigInt *op1, const BigInt *op2) {
+ if (op1->digit_count == 0) {
+ return bigint_init_bigint(dest, op2);
+ }
+ if (op2->digit_count == 0) {
+ return bigint_init_bigint(dest, op1);
+ }
+ if (op1->is_negative || op2->is_negative) {
+ size_t big_bit_count = max(bigint_bits_needed(op1), bigint_bits_needed(op2));
+
+ BigInt twos_comp_op1 = {0};
+ to_twos_complement(&twos_comp_op1, op1, big_bit_count);
+
+ BigInt twos_comp_op2 = {0};
+ to_twos_complement(&twos_comp_op2, op2, big_bit_count);
+
+ BigInt twos_comp_dest = {0};
+ bigint_xor(&twos_comp_dest, &twos_comp_op1, &twos_comp_op2);
+
+ from_twos_complement(dest, &twos_comp_dest, big_bit_count, true);
+ } else {
+ dest->is_negative = false;
+ const uint64_t *op1_digits = bigint_ptr(op1);
+ const uint64_t *op2_digits = bigint_ptr(op2);
+
+ assert(op1->digit_count > 0 && op2->digit_count > 0);
+ if (op1->digit_count == 1 && op2->digit_count == 1) {
+ dest->digit_count = 1;
+ dest->data.digit = op1_digits[0] ^ op2_digits[0];
+ bigint_normalize(dest);
+ return;
+ }
+ dest->digit_count = max(op1->digit_count, op2->digit_count);
+ dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
+ size_t i = 0;
+ for (; i < op1->digit_count && i < op2->digit_count; i += 1) {
+ dest->data.digits[i] = op1_digits[i] ^ op2_digits[i];
+ }
+ for (; i < dest->digit_count; i += 1) {
+ if (i < op1->digit_count) {
+ dest->data.digits[i] = op1_digits[i];
+ } else if (i < op2->digit_count) {
+ dest->data.digits[i] = op2_digits[i];
+ } else {
+ zig_unreachable();
+ }
+ }
+ bigint_normalize(dest);
+ }
+}
+
+void bigint_shl(BigInt *dest, const BigInt *op1, const BigInt *op2) {
+ assert(!op2->is_negative);
+
+ if (op2->digit_count == 0) {
+ bigint_init_bigint(dest, op1);
+ return;
+ }
+
+ if (op1->digit_count == 0) {
+ bigint_init_unsigned(dest, 0);
+ return;
+ }
+
+ if (op2->digit_count != 1) {
+ zig_panic("TODO shift left by amount greater than 64 bit integer");
+ }
+
+ const uint64_t *op1_digits = bigint_ptr(op1);
+ uint64_t shift_amt = bigint_as_unsigned(op2);
+
+ if (op1->digit_count == 1 && shift_amt < 64) {
+ dest->data.digit = op1_digits[0] << shift_amt;
+ if (dest->data.digit > op1_digits[0]) {
+ dest->digit_count = 1;
+ dest->is_negative = op1->is_negative;
+ return;
+ }
+ }
+
+ uint64_t digit_shift_count = shift_amt / 64;
+ uint64_t leftover_shift_count = shift_amt % 64;
+
+ dest->data.digits = heap::c_allocator.allocate<uint64_t>(op1->digit_count + digit_shift_count + 1);
+ dest->digit_count = digit_shift_count;
+ uint64_t carry = 0;
+ for (size_t i = 0; i < op1->digit_count; i += 1) {
+ uint64_t digit = op1_digits[i];
+ dest->data.digits[dest->digit_count] = carry | (digit << leftover_shift_count);
+ dest->digit_count += 1;
+ if (leftover_shift_count > 0) {
+ carry = digit >> (64 - leftover_shift_count);
+ } else {
+ carry = 0;
+ }
+ }
+ dest->data.digits[dest->digit_count] = carry;
+ dest->digit_count += 1;
+ dest->is_negative = op1->is_negative;
+ bigint_normalize(dest);
+}
+
+void bigint_shl_trunc(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
+ BigInt unwrapped = {0};
+ bigint_shl(&unwrapped, op1, op2);
+ bigint_truncate(dest, &unwrapped, bit_count, is_signed);
+}
+
+void bigint_shr(BigInt *dest, const BigInt *op1, const BigInt *op2) {
+ assert(!op2->is_negative);
+
+ if (op1->digit_count == 0) {
+ return bigint_init_unsigned(dest, 0);
+ }
+
+ if (op2->digit_count == 0) {
+ return bigint_init_bigint(dest, op1);
+ }
+
+ if (op2->digit_count != 1) {
+ zig_panic("TODO shift right by amount greater than 64 bit integer");
+ }
+
+ const uint64_t *op1_digits = bigint_ptr(op1);
+ uint64_t shift_amt = bigint_as_unsigned(op2);
+
+ if (op1->digit_count == 1) {
+ dest->data.digit = (shift_amt < 64) ? op1_digits[0] >> shift_amt : 0;
+ dest->digit_count = 1;
+ dest->is_negative = op1->is_negative;
+ bigint_normalize(dest);
+ return;
+ }
+
+ size_t digit_shift_count = shift_amt / 64;
+ size_t leftover_shift_count = shift_amt % 64;
+
+ if (digit_shift_count >= op1->digit_count) {
+ return bigint_init_unsigned(dest, 0);
+ }
+
+ dest->digit_count = op1->digit_count - digit_shift_count;
+ uint64_t *digits;
+ if (dest->digit_count == 1) {
+ digits = &dest->data.digit;
+ } else {
+ digits = heap::c_allocator.allocate<uint64_t>(dest->digit_count);
+ dest->data.digits = digits;
+ }
+
+ uint64_t carry = 0;
+ for (size_t op_digit_index = op1->digit_count - 1;;) {
+ uint64_t digit = op1_digits[op_digit_index];
+ size_t dest_digit_index = op_digit_index - digit_shift_count;
+ digits[dest_digit_index] = carry | (digit >> leftover_shift_count);
+ carry = (leftover_shift_count != 0) ? (digit << (64 - leftover_shift_count)) : 0;
+
+ if (dest_digit_index == 0) { break; }
+ op_digit_index -= 1;
+ }
+ dest->is_negative = op1->is_negative;
+ bigint_normalize(dest);
+}
+
+void bigint_negate(BigInt *dest, const BigInt *op) {
+ bigint_init_bigint(dest, op);
+ dest->is_negative = !dest->is_negative;
+ bigint_normalize(dest);
+}
+
+void bigint_negate_wrap(BigInt *dest, const BigInt *op, size_t bit_count) {
+ BigInt zero;
+ bigint_init_unsigned(&zero, 0);
+ bigint_sub_wrap(dest, &zero, op, bit_count, true);
+}
+
+void bigint_not(BigInt *dest, const BigInt *op, size_t bit_count, bool is_signed) {
+ if (bit_count == 0) {
+ bigint_init_unsigned(dest, 0);
+ return;
+ }
+
+ if (is_signed) {
+ BigInt twos_comp = {0};
+ to_twos_complement(&twos_comp, op, bit_count);
+
+ BigInt inverted = {0};
+ bigint_not(&inverted, &twos_comp, bit_count, false);
+
+ from_twos_complement(dest, &inverted, bit_count, true);
+ return;
+ }
+
+ assert(!op->is_negative);
+
+ dest->is_negative = false;
+ const uint64_t *op_digits = bigint_ptr(op);
+ if (bit_count <= 64) {
+ dest->digit_count = 1;
+ if (op->digit_count == 0) {
+ if (bit_count == 64) {
+ dest->data.digit = UINT64_MAX;
+ } else {
+ dest->data.digit = (1ULL << bit_count) - 1;
+ }
+ } else if (op->digit_count == 1) {
+ dest->data.digit = ~op_digits[0];
+ if (bit_count != 64) {
+ uint64_t mask = (1ULL << bit_count) - 1;
+ dest->data.digit &= mask;
+ }
+ }
+ bigint_normalize(dest);
+ return;
+ }
+ dest->digit_count = (bit_count + 63) / 64;
+ assert(dest->digit_count >= op->digit_count);
+ dest->data.digits = heap::c_allocator.allocate_nonzero<uint64_t>(dest->digit_count);
+ size_t i = 0;
+ for (; i < op->digit_count; i += 1) {
+ dest->data.digits[i] = ~op_digits[i];
+ }
+ for (; i < dest->digit_count; i += 1) {
+ dest->data.digits[i] = 0xffffffffffffffffULL;
+ }
+ size_t digit_index = dest->digit_count - 1;
+ size_t digit_bit_index = bit_count % 64;
+ if (digit_bit_index != 0) {
+ uint64_t mask = (1ULL << digit_bit_index) - 1;
+ dest->data.digits[digit_index] &= mask;
+ }
+ bigint_normalize(dest);
+}
+
+void bigint_truncate(BigInt *dest, const BigInt *op, size_t bit_count, bool is_signed) {
+ BigInt twos_comp;
+ to_twos_complement(&twos_comp, op, bit_count);
+ from_twos_complement(dest, &twos_comp, bit_count, is_signed);
+}
+
+Cmp bigint_cmp(const BigInt *op1, const BigInt *op2) {
+ if (op1->is_negative && !op2->is_negative) {
+ return CmpLT;
+ } else if (!op1->is_negative && op2->is_negative) {
+ return CmpGT;
+ } else if (op1->digit_count > op2->digit_count) {
+ return op1->is_negative ? CmpLT : CmpGT;
+ } else if (op2->digit_count > op1->digit_count) {
+ return op1->is_negative ? CmpGT : CmpLT;
+ } else if (op1->digit_count == 0) {
+ return CmpEQ;
+ }
+ const uint64_t *op1_digits = bigint_ptr(op1);
+ const uint64_t *op2_digits = bigint_ptr(op2);
+ for (size_t i = op1->digit_count - 1; ;) {
+ uint64_t op1_digit = op1_digits[i];
+ uint64_t op2_digit = op2_digits[i];
+
+ if (op1_digit > op2_digit) {
+ return op1->is_negative ? CmpLT : CmpGT;
+ }
+ if (op1_digit < op2_digit) {
+ return op1->is_negative ? CmpGT : CmpLT;
+ }
+
+ if (i == 0) {
+ return CmpEQ;
+ }
+ i -= 1;
+ }
+}
+
+void bigint_append_buf(Buf *buf, const BigInt *op, uint64_t base) {
+ if (op->digit_count == 0) {
+ buf_append_char(buf, '0');
+ return;
+ }
+ if (op->is_negative) {
+ buf_append_char(buf, '-');
+ }
+ if (op->digit_count == 1 && base == 10) {
+ buf_appendf(buf, "%" ZIG_PRI_u64, op->data.digit);
+ return;
+ }
+ if (op->digit_count == 1 && base == 16) {
+ buf_appendf(buf, "%" ZIG_PRI_x64, op->data.digit);
+ return;
+ }
+ size_t first_digit_index = buf_len(buf);
+
+ BigInt digit_bi = {0};
+ BigInt a1 = {0};
+ BigInt a2 = {0};
+
+ BigInt *a = &a1;
+ BigInt *other_a = &a2;
+ bigint_init_bigint(a, op);
+
+ BigInt base_bi = {0};
+ bigint_init_unsigned(&base_bi, base);
+
+ for (;;) {
+ bigint_rem(&digit_bi, a, &base_bi);
+ uint8_t digit = bigint_as_unsigned(&digit_bi);
+ buf_append_char(buf, digit_to_char(digit, false));
+ bigint_div_trunc(other_a, a, &base_bi);
+ {
+ BigInt *tmp = a;
+ a = other_a;
+ other_a = tmp;
+ }
+ if (bigint_cmp_zero(a) == CmpEQ) {
+ break;
+ }
+ }
+
+ // reverse
+ for (size_t i = first_digit_index; i < buf_len(buf) / 2; i += 1) {
+ size_t other_i = buf_len(buf) + first_digit_index - i - 1;
+ uint8_t tmp = buf_ptr(buf)[i];
+ buf_ptr(buf)[i] = buf_ptr(buf)[other_i];
+ buf_ptr(buf)[other_i] = tmp;
+ }
+}
+
+size_t bigint_popcount_unsigned(const BigInt *bi) {
+ assert(!bi->is_negative);
+ if (bi->digit_count == 0)
+ return 0;
+
+ size_t count = 0;
+ size_t bit_count = bi->digit_count * 64;
+ for (size_t i = 0; i < bit_count; i += 1) {
+ if (bit_at_index(bi, i))
+ count += 1;
+ }
+ return count;
+}
+
+size_t bigint_popcount_signed(const BigInt *bi, size_t bit_count) {
+ if (bit_count == 0)
+ return 0;
+ if (bi->digit_count == 0)
+ return 0;
+
+ BigInt twos_comp = {0};
+ to_twos_complement(&twos_comp, bi, bit_count);
+
+ size_t count = 0;
+ for (size_t i = 0; i < bit_count; i += 1) {
+ if (bit_at_index(&twos_comp, i))
+ count += 1;
+ }
+ return count;
+}
+
+size_t bigint_ctz(const BigInt *bi, size_t bit_count) {
+ if (bit_count == 0)
+ return 0;
+ if (bi->digit_count == 0)
+ return bit_count;
+
+ BigInt twos_comp = {0};
+ to_twos_complement(&twos_comp, bi, bit_count);
+
+ size_t count = 0;
+ for (size_t i = 0; i < bit_count; i += 1) {
+ if (bit_at_index(&twos_comp, i))
+ return count;
+ count += 1;
+ }
+ return count;
+}
+
+size_t bigint_clz(const BigInt *bi, size_t bit_count) {
+ if (bi->is_negative || bit_count == 0)
+ return 0;
+ if (bi->digit_count == 0)
+ return bit_count;
+
+ size_t count = 0;
+ for (size_t i = bit_count - 1;;) {
+ if (bit_at_index(bi, i))
+ return count;
+ count += 1;
+
+ if (i == 0) break;
+ i -= 1;
+ }
+ return count;
+}
+
+static uint64_t bigint_as_unsigned(const BigInt *bigint) {
+ assert(!bigint->is_negative);
+ if (bigint->digit_count == 0) {
+ return 0;
+ } else if (bigint->digit_count == 1) {
+ return bigint->data.digit;
+ } else {
+ zig_unreachable();
+ }
+}
+
+uint64_t bigint_as_u64(const BigInt *bigint)
+{
+ return bigint_as_unsigned(bigint);
+}
+
+uint32_t bigint_as_u32(const BigInt *bigint) {
+ uint64_t value64 = bigint_as_unsigned(bigint);
+ uint32_t value32 = (uint32_t)value64;
+ assert (value64 == value32);
+ return value32;
+}
+
+size_t bigint_as_usize(const BigInt *bigint) {
+ uint64_t value64 = bigint_as_unsigned(bigint);
+ size_t valueUsize = (size_t)value64;
+ assert (value64 == valueUsize);
+ return valueUsize;
+}
+
+int64_t bigint_as_signed(const BigInt *bigint) {
+ if (bigint->digit_count == 0) {
+ return 0;
+ } else if (bigint->digit_count == 1) {
+ if (bigint->is_negative) {
+ if (bigint->data.digit <= 9223372036854775808ULL) {
+ return (-((int64_t)(bigint->data.digit - 1))) - 1;
+ } else {
+ zig_unreachable();
+ }
+ } else {
+ return bigint->data.digit;
+ }
+ } else {
+ zig_unreachable();
+ }
+}
+
+Cmp bigint_cmp_zero(const BigInt *op) {
+ if (op->digit_count == 0) {
+ return CmpEQ;
+ }
+ return op->is_negative ? CmpLT : CmpGT;
+}
+
+uint32_t bigint_hash(BigInt x) {
+ if (x.digit_count == 0) {
+ return 0;
+ } else {
+ return bigint_ptr(&x)[0];
+ }
+}
+
+bool bigint_eql(BigInt a, BigInt b) {
+ return bigint_cmp(&a, &b) == CmpEQ;
+}
+
+void bigint_incr(BigInt *x) {
+ if (x->digit_count == 0) {
+ bigint_init_unsigned(x, 1);
+ return;
+ }
+
+ if (x->digit_count == 1) {
+ if (x->is_negative && x->data.digit != 0) {
+ x->data.digit -= 1;
+ return;
+ } else if (!x->is_negative && x->data.digit != UINT64_MAX) {
+ x->data.digit += 1;
+ return;
+ }
+ }
+
+ BigInt copy;
+ bigint_init_bigint(&copy, x);
+
+ BigInt one;
+ bigint_init_unsigned(&one, 1);
+
+ bigint_add(x, &copy, &one);
+}
+
+void bigint_decr(BigInt *x) {
+ if (x->digit_count == 0) {
+ bigint_init_signed(x, -1);
+ return;
+ }
+
+ if (x->digit_count == 1) {
+ if (x->is_negative && x->data.digit != UINT64_MAX) {
+ x->data.digit += 1;
+ return;
+ } else if (!x->is_negative && x->data.digit != 0) {
+ x->data.digit -= 1;
+ return;
+ }
+ }
+
+ BigInt copy;
+ bigint_init_bigint(&copy, x);
+
+ BigInt neg_one;
+ bigint_init_signed(&neg_one, -1);
+
+ bigint_add(x, &copy, &neg_one);
+}