aboutsummaryrefslogtreecommitdiff
path: root/src/codegen
diff options
context:
space:
mode:
authorAndrew Kelley <andrew@ziglang.org>2021-05-17 21:25:02 -0400
committerGitHub <noreply@github.com>2021-05-17 21:25:02 -0400
commit0dd0c9620d66afcfabaf3dcb21b636530fd0ccba (patch)
treebcf759865377dd0c83ed4bc02160b51bc35fa9ab /src/codegen
parent65cee0b3fd5f9b3f83b79cc8fd1b64d13f4dd0c4 (diff)
parent880473dc3f08e2f8c0cef85777d50e25e4bcb062 (diff)
downloadzig-0dd0c9620d66afcfabaf3dcb21b636530fd0ccba.tar.gz
zig-0dd0c9620d66afcfabaf3dcb21b636530fd0ccba.zip
Merge pull request #8796 from Snektron/spirv
SPIR-V: Codegen basis
Diffstat (limited to 'src/codegen')
-rw-r--r--src/codegen/spirv.zig555
1 files changed, 515 insertions, 40 deletions
diff --git a/src/codegen/spirv.zig b/src/codegen/spirv.zig
index 077e71d4e1..7992a7a465 100644
--- a/src/codegen/spirv.zig
+++ b/src/codegen/spirv.zig
@@ -1,44 +1,50 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
+const Target = std.Target;
const log = std.log.scoped(.codegen);
const spec = @import("spirv/spec.zig");
+const Opcode = spec.Opcode;
+
const Module = @import("../Module.zig");
const Decl = Module.Decl;
const Type = @import("../type.zig").Type;
+const Value = @import("../value.zig").Value;
+const LazySrcLoc = Module.LazySrcLoc;
+const ir = @import("../ir.zig");
+const Inst = ir.Inst;
pub const TypeMap = std.HashMap(Type, u32, Type.hash, Type.eql, std.hash_map.default_max_load_percentage);
+pub const ValueMap = std.AutoHashMap(*Inst, u32);
+
+pub fn writeOpcode(code: *std.ArrayList(u32), opcode: Opcode, arg_count: u32) !void {
+ const word_count = arg_count + 1;
+ try code.append((word_count << 16) | @enumToInt(opcode));
+}
-pub fn writeInstruction(code: *std.ArrayList(u32), instr: spec.Opcode, args: []const u32) !void {
- const word_count = @intCast(u32, args.len + 1);
- try code.append((word_count << 16) | @enumToInt(instr));
+pub fn writeInstruction(code: *std.ArrayList(u32), opcode: Opcode, args: []const u32) !void {
+ try writeOpcode(code, opcode, @intCast(u32, args.len));
try code.appendSlice(args);
}
+/// This structure represents a SPIR-V binary module being compiled, and keeps track of relevant information
+/// such as code for the different logical sections, and the next result-id.
pub const SPIRVModule = struct {
- next_result_id: u32 = 0,
-
- target: std.Target,
-
- types: TypeMap,
-
- types_and_globals: std.ArrayList(u32),
+ next_result_id: u32,
+ types_globals_constants: std.ArrayList(u32),
fn_decls: std.ArrayList(u32),
- pub fn init(target: std.Target, allocator: *Allocator) SPIRVModule {
+ pub fn init(allocator: *Allocator) SPIRVModule {
return .{
- .target = target,
- .types = TypeMap.init(allocator),
- .types_and_globals = std.ArrayList(u32).init(allocator),
+ .next_result_id = 1, // 0 is an invalid SPIR-V result ID.
+ .types_globals_constants = std.ArrayList(u32).init(allocator),
.fn_decls = std.ArrayList(u32).init(allocator),
};
}
pub fn deinit(self: *SPIRVModule) void {
+ self.types_globals_constants.deinit();
self.fn_decls.deinit();
- self.types_and_globals.deinit();
- self.types.deinit();
- self.* = undefined;
}
pub fn allocResultId(self: *SPIRVModule) u32 {
@@ -49,31 +55,326 @@ pub const SPIRVModule = struct {
pub fn resultIdBound(self: *SPIRVModule) u32 {
return self.next_result_id;
}
+};
+
+/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
+pub const DeclGen = struct {
+ module: *Module,
+ spv: *SPIRVModule,
+
+ args: std.ArrayList(u32),
+ next_arg_index: u32,
+
+ types: TypeMap,
+ values: ValueMap,
+
+ decl: *Decl,
+ error_msg: ?*Module.ErrorMsg,
+
+ const Error = error{
+ AnalysisFail,
+ OutOfMemory
+ };
+
+ /// This structure is used to return information about a type typically used for arithmetic operations.
+ /// These types may either be integers, floats, or a vector of these. Most scalar operations also work on vectors,
+ /// so we can easily represent those as arithmetic types.
+ /// If the type is a scalar, 'inner type' refers to the scalar type. Otherwise, if its a vector, it refers
+ /// to the vector's element type.
+ const ArithmeticTypeInfo = struct {
+ /// A classification of the inner type.
+ const Class = enum {
+ /// A boolean.
+ bool,
- pub fn getOrGenType(self: *SPIRVModule, t: Type) !u32 {
+ /// A regular, **native**, integer.
+ /// This is only returned when the backend supports this int as a native type (when
+ /// the relevant capability is enabled).
+ integer,
+
+ /// A regular float. These are all required to be natively supported. Floating points for
+ /// which the relevant capability is not enabled are not emulated.
+ float,
+
+ /// An integer of a 'strange' size (which' bit size is not the same as its backing type. **Note**: this
+ /// may **also** include power-of-2 integers for which the relevant capability is not enabled), but still
+ /// within the limits of the largest natively supported integer type.
+ strange_integer,
+
+ /// An integer with more bits than the largest natively supported integer type.
+ composite_integer,
+ };
+
+ /// The number of bits in the inner type.
+ /// Note: this is the actual number of bits of the type, not the size of the backing integer.
+ bits: u16,
+
+ /// Whether the type is a vector.
+ is_vector: bool,
+
+ /// Whether the inner type is signed. Only relevant for integers.
+ signedness: std.builtin.Signedness,
+
+ /// A classification of the inner type. These scenarios
+ /// will all have to be handled slightly different.
+ class: Class,
+ };
+
+ fn fail(self: *DeclGen, src: LazySrcLoc, comptime format: []const u8, args: anytype) Error {
+ @setCold(true);
+ const src_loc = src.toSrcLocWithDecl(self.decl);
+ self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args);
+ return error.AnalysisFail;
+ }
+
+ fn resolve(self: *DeclGen, inst: *Inst) !u32 {
+ if (inst.value()) |val| {
+ return self.genConstant(inst.ty, val);
+ }
+
+ return self.values.get(inst).?; // Instruction does not dominate all uses!
+ }
+
+ /// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
+ /// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
+ /// included), the width of the underlying type which represents it, given the enabled features for the current target.
+ /// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
+ /// that size. In this case, multiple elements of the largest type should be used.
+ /// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
+ /// The result is valid to be used with OpTypeInt.
+ /// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
+ /// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
+ /// TODO: Should the result of this function be cached?
+ fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
+ const target = self.module.getTarget();
+
+ // TODO: Figure out what to do with u0/i0.
+ std.debug.assert(bits != 0);
+
+ // 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
+ // 32-bit integers are always supported (see spec, 2.16.1, Data rules).
+ const ints = [_]struct{ bits: u16, feature: ?Target.spirv.Feature } {
+ .{ .bits = 8, .feature = .Int8 },
+ .{ .bits = 16, .feature = .Int16 },
+ .{ .bits = 32, .feature = null },
+ .{ .bits = 64, .feature = .Int64 },
+ };
+
+ for (ints) |int| {
+ const has_feature = if (int.feature) |feature|
+ Target.spirv.featureSetHas(target.cpu.features, feature)
+ else
+ true;
+
+ if (bits <= int.bits and has_feature) {
+ return int.bits;
+ }
+ }
+
+ return null;
+ }
+
+ /// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
+ /// the Int64 capability is enabled).
+ /// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
+ /// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
+ /// is no way of knowing whether those are actually supported.
+ /// TODO: Maybe this should be cached?
+ fn largestSupportedIntBits(self: *DeclGen) u16 {
+ const target = self.module.getTarget();
+ return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
+ 64
+ else
+ 32;
+ }
+
+ /// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
+ /// arrays of largestSupportedIntBits().
+ /// Asserts `ty` is an integer.
+ fn isCompositeInt(self: *DeclGen, ty: Type) bool {
+ return self.backingIntBits(ty) == null;
+ }
+
+ fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
+ const target = self.module.getTarget();
+
+ return switch (ty.zigTypeTag()) {
+ .Bool => ArithmeticTypeInfo{
+ .bits = 1, // Doesn't matter for this class.
+ .is_vector = false,
+ .signedness = .unsigned, // Technically, but doesn't matter for this class.
+ .class = .bool,
+ },
+ .Float => ArithmeticTypeInfo{
+ .bits = ty.floatBits(target),
+ .is_vector = false,
+ .signedness = .signed, // Technically, but doesn't matter for this class.
+ .class = .float,
+ },
+ .Int => blk: {
+ const int_info = ty.intInfo(target);
+ // TODO: Maybe it's useful to also return this value.
+ const maybe_backing_bits = self.backingIntBits(int_info.bits);
+ break :blk ArithmeticTypeInfo{
+ .bits = int_info.bits,
+ .is_vector = false,
+ .signedness = int_info.signedness,
+ .class = if (maybe_backing_bits) |backing_bits|
+ if (backing_bits == int_info.bits)
+ ArithmeticTypeInfo.Class.integer
+ else
+ ArithmeticTypeInfo.Class.strange_integer
+ else
+ .composite_integer
+ };
+ },
+ // As of yet, there is no vector support in the self-hosted compiler.
+ .Vector => self.fail(.{.node_offset = 0}, "TODO: SPIR-V backend: implement arithmeticTypeInfo for Vector", .{}),
+ // TODO: For which types is this the case?
+ else => self.fail(.{.node_offset = 0}, "TODO: SPIR-V backend: implement arithmeticTypeInfo for {}", .{ty}),
+ };
+ }
+
+ /// Generate a constant representing `val`.
+ /// TODO: Deduplication?
+ fn genConstant(self: *DeclGen, ty: Type, val: Value) Error!u32 {
+ const code = &self.spv.types_globals_constants;
+ const result_id = self.spv.allocResultId();
+ const result_type_id = try self.getOrGenType(ty);
+
+ if (val.isUndef()) {
+ try writeInstruction(code, .OpUndef, &[_]u32{ result_type_id, result_id });
+ return result_id;
+ }
+
+ switch (ty.zigTypeTag()) {
+ .Bool => {
+ const opcode: Opcode = if (val.toBool()) .OpConstantTrue else .OpConstantFalse;
+ try writeInstruction(code, opcode, &[_]u32{ result_type_id, result_id });
+ },
+ .Float => {
+ // At this point we are guaranteed that the target floating point type is supported, otherwise the function
+ // would have exited at getOrGenType(ty).
+
+ // f16 and f32 require one word of storage. f64 requires 2, low-order first.
+
+ switch (val.tag()) {
+ .float_16 => try writeInstruction(code, .OpConstant, &[_]u32{
+ result_type_id,
+ result_id,
+ @bitCast(u16, val.castTag(.float_16).?.data)
+ }),
+ .float_32 => try writeInstruction(code, .OpConstant, &[_]u32{
+ result_type_id,
+ result_id,
+ @bitCast(u32, val.castTag(.float_32).?.data)
+ }),
+ .float_64 => {
+ const float_bits = @bitCast(u64, val.castTag(.float_64).?.data);
+ try writeInstruction(code, .OpConstant, &[_]u32{
+ result_type_id,
+ result_id,
+ @truncate(u32, float_bits),
+ @truncate(u32, float_bits >> 32),
+ });
+ },
+ .float_128 => unreachable, // Filtered out in the call to getOrGenType.
+ // TODO: What tags do we need to handle here anyway?
+ else => return self.fail(.{.node_offset = 0}, "TODO: SPIR-V backend: float constant generation of value {s}\n", .{ val.tag() }),
+ }
+ },
+ else => return self.fail(.{.node_offset = 0}, "TODO: SPIR-V backend: constant generation of type {s}\n", .{ ty.zigTypeTag() }),
+ }
+
+ return result_id;
+ }
+
+ fn getOrGenType(self: *DeclGen, ty: Type) Error!u32 {
// We can't use getOrPut here so we can recursively generate types.
- if (self.types.get(t)) |already_generated| {
+ if (self.types.get(ty)) |already_generated| {
return already_generated;
}
- const result = self.allocResultId();
+ const target = self.module.getTarget();
+ const code = &self.spv.types_globals_constants;
+ const result_id = self.spv.allocResultId();
- switch (t.zigTypeTag()) {
- .Void => try writeInstruction(&self.types_and_globals, .OpTypeVoid, &[_]u32{ result }),
- .Bool => try writeInstruction(&self.types_and_globals, .OpTypeBool, &[_]u32{ result }),
+ switch (ty.zigTypeTag()) {
+ .Void => try writeInstruction(code, .OpTypeVoid, &[_]u32{ result_id }),
+ .Bool => try writeInstruction(code, .OpTypeBool, &[_]u32{ result_id }),
.Int => {
- const int_info = t.intInfo(self.target);
- try writeInstruction(&self.types_and_globals, .OpTypeInt, &[_]u32{
- result,
- int_info.bits,
+ const int_info = ty.intInfo(target);
+ const backing_bits = self.backingIntBits(int_info.bits) orelse {
+ // Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
+ return self.fail(.{.node_offset = 0}, "TODO: SPIR-V backend: implement composite ints {}", .{ ty });
+ };
+
+ // TODO: If backing_bits != int_info.bits, a duplicate type might be generated here.
+ try writeInstruction(code, .OpTypeInt, &[_]u32{
+ result_id,
+ backing_bits,
switch (int_info.signedness) {
.unsigned => 0,
.signed => 1,
},
});
},
- // TODO: Verify that floatBits() will be correct.
- .Float => try writeInstruction(&self.types_and_globals, .OpTypeFloat, &[_]u32{ result, t.floatBits(self.target) }),
+ .Float => {
+ // We can (and want) not really emulate floating points with other floating point types like with the integer types,
+ // so if the float is not supported, just return an error.
+ const bits = ty.floatBits(target);
+ const supported = switch (bits) {
+ 16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
+ // 32-bit floats are always supported (see spec, 2.16.1, Data rules).
+ 32 => true,
+ 64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
+ else => false,
+ };
+
+ if (!supported) {
+ return self.fail(.{.node_offset = 0}, "Floating point width of {} bits is not supported for the current SPIR-V feature set", .{ bits });
+ }
+
+ try writeInstruction(code, .OpTypeFloat, &[_]u32{ result_id, bits });
+ },
+ .Fn => {
+ // We only support zig-calling-convention functions, no varargs.
+ if (ty.fnCallingConvention() != .Unspecified)
+ return self.fail(.{.node_offset = 0}, "Unsupported calling convention for SPIR-V", .{});
+ if (ty.fnIsVarArgs())
+ return self.fail(.{.node_offset = 0}, "VarArgs unsupported for SPIR-V", .{});
+
+ // In order to avoid a temporary here, first generate all the required types and then simply look them up
+ // when generating the function type.
+ const params = ty.fnParamLen();
+ var i: usize = 0;
+ while (i < params) : (i += 1) {
+ _ = try self.getOrGenType(ty.fnParamType(i));
+ }
+
+ const return_type_id = try self.getOrGenType(ty.fnReturnType());
+
+ // result id + result type id + parameter type ids.
+ try writeOpcode(code, .OpTypeFunction, 2 + @intCast(u32, ty.fnParamLen()) );
+ try code.appendSlice(&.{ result_id, return_type_id });
+
+ i = 0;
+ while (i < params) : (i += 1) {
+ const param_type_id = self.types.get(ty.fnParamType(i)).?;
+ try code.append(param_type_id);
+ }
+ },
+ .Vector => {
+ // Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations
+ // which work on them), so simply use those.
+ // Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way.
+ // "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors.
+ // TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector
+ // is adequate at all for this.
+
+ // TODO: Vectors are not yet supported by the self-hosted compiler itself it seems.
+ return self.fail(.{.node_offset = 0}, "TODO: SPIR-V backend: implement type Vector", .{});
+ },
.Null,
.Undefined,
.EnumLiteral,
@@ -84,23 +385,197 @@ pub const SPIRVModule = struct {
.BoundFn => unreachable, // this type will be deleted from the language.
- else => return error.TODO,
+ else => |tag| return self.fail(.{.node_offset = 0}, "TODO: SPIR-V backend: implement type {}s", .{ tag }),
}
- try self.types.put(t, result);
- return result;
+ try self.types.putNoClobber(ty, result_id);
+ return result_id;
}
- pub fn gen(self: *SPIRVModule, decl: *Decl) !void {
- const typed_value = decl.typed_value.most_recent.typed_value;
+ pub fn gen(self: *DeclGen) !void {
+ const result_id = self.decl.fn_link.spirv.id;
+ const tv = self.decl.typed_value.most_recent.typed_value;
- switch (typed_value.ty.zigTypeTag()) {
- .Fn => {
- log.debug("Generating code for function '{s}'", .{ std.mem.spanZ(decl.name) });
+ if (tv.val.castTag(.function)) |func_payload| {
+ std.debug.assert(tv.ty.zigTypeTag() == .Fn);
+ const prototype_id = try self.getOrGenType(tv.ty);
+ try writeInstruction(&self.spv.fn_decls, .OpFunction, &[_]u32{
+ self.types.get(tv.ty.fnReturnType()).?, // This type should be generated along with the prototype.
+ result_id,
+ @bitCast(u32, spec.FunctionControl{}), // TODO: We can set inline here if the type requires it.
+ prototype_id,
+ });
- _ = try self.getOrGenType(typed_value.ty.fnReturnType());
- },
- else => return error.TODO,
+ const params = tv.ty.fnParamLen();
+ var i: usize = 0;
+
+ try self.args.ensureCapacity(params);
+ while (i < params) : (i += 1) {
+ const param_type_id = self.types.get(tv.ty.fnParamType(i)).?;
+ const arg_result_id = self.spv.allocResultId();
+ try writeInstruction(&self.spv.fn_decls, .OpFunctionParameter, &[_]u32{ param_type_id, arg_result_id });
+ self.args.appendAssumeCapacity(arg_result_id);
+ }
+
+ // TODO: This could probably be done in a better way...
+ const root_block_id = self.spv.allocResultId();
+ _ = try writeInstruction(&self.spv.fn_decls, .OpLabel, &[_]u32{root_block_id});
+ try self.genBody(func_payload.data.body);
+
+ try writeInstruction(&self.spv.fn_decls, .OpFunctionEnd, &[_]u32{});
+ } else {
+ return self.fail(.{.node_offset = 0}, "TODO: SPIR-V backend: generate decl type {}", .{ tv.ty.zigTypeTag() });
+ }
+ }
+
+ fn genBody(self: *DeclGen, body: ir.Body) !void {
+ for (body.instructions) |inst| {
+ const maybe_result_id = try self.genInst(inst);
+ if (maybe_result_id) |result_id|
+ try self.values.putNoClobber(inst, result_id);
}
}
+
+ fn genInst(self: *DeclGen, inst: *Inst) !?u32 {
+ return switch (inst.tag) {
+ .add, .addwrap => try self.genBinOp(inst.castTag(.add).?),
+ .sub, .subwrap => try self.genBinOp(inst.castTag(.sub).?),
+ .mul, .mulwrap => try self.genBinOp(inst.castTag(.mul).?),
+ .div => try self.genBinOp(inst.castTag(.div).?),
+ .bit_and => try self.genBinOp(inst.castTag(.bit_and).?),
+ .bit_or => try self.genBinOp(inst.castTag(.bit_or).?),
+ .xor => try self.genBinOp(inst.castTag(.xor).?),
+ .cmp_eq => try self.genBinOp(inst.castTag(.cmp_eq).?),
+ .cmp_neq => try self.genBinOp(inst.castTag(.cmp_neq).?),
+ .cmp_gt => try self.genBinOp(inst.castTag(.cmp_gt).?),
+ .cmp_gte => try self.genBinOp(inst.castTag(.cmp_gte).?),
+ .cmp_lt => try self.genBinOp(inst.castTag(.cmp_lt).?),
+ .cmp_lte => try self.genBinOp(inst.castTag(.cmp_lte).?),
+ .bool_and => try self.genBinOp(inst.castTag(.bool_and).?),
+ .bool_or => try self.genBinOp(inst.castTag(.bool_or).?),
+ .not => try self.genUnOp(inst.castTag(.not).?),
+ .arg => self.genArg(),
+ // TODO: Breakpoints won't be supported in SPIR-V, but the compiler seems to insert them
+ // throughout the IR.
+ .breakpoint => null,
+ .dbg_stmt => null,
+ .ret => self.genRet(inst.castTag(.ret).?),
+ .retvoid => self.genRetVoid(),
+ .unreach => self.genUnreach(),
+ else => self.fail(.{.node_offset = 0}, "TODO: SPIR-V backend: implement inst {}", .{inst.tag}),
+ };
+ }
+
+ fn genBinOp(self: *DeclGen, inst: *Inst.BinOp) !u32 {
+ // TODO: Will lhs and rhs have the same type?
+ const lhs_id = try self.resolve(inst.lhs);
+ const rhs_id = try self.resolve(inst.rhs);
+
+ const result_id = self.spv.allocResultId();
+ const result_type_id = try self.getOrGenType(inst.base.ty);
+
+ // TODO: Is the result the same as the argument types?
+ // This is supposed to be the case for SPIR-V.
+ std.debug.assert(inst.rhs.ty.eql(inst.lhs.ty));
+ std.debug.assert(inst.base.ty.tag() == .bool or inst.base.ty.eql(inst.lhs.ty));
+
+ // Binary operations are generally applicable to both scalar and vector operations in SPIR-V, but int and float
+ // versions of operations require different opcodes.
+ // For operations which produce bools, the information of inst.base.ty is not useful, so just pick either operand
+ // instead.
+ const info = try self.arithmeticTypeInfo(inst.lhs.ty);
+
+ if (info.class == .composite_integer)
+ return self.fail(.{.node_offset = 0}, "TODO: SPIR-V backend: binary operations for composite integers", .{});
+
+ const is_bool = info.class == .bool;
+ const is_float = info.class == .float;
+ const is_signed = info.signedness == .signed;
+ // **Note**: All these operations must be valid for vectors of floats, integers and bools as well!
+ // For floating points, we generally want ordered operations (which return false if either operand is nan).
+ const opcode = switch (inst.base.tag) {
+ // The regular integer operations are all defined for wrapping. Since theyre only relevant for integers,
+ // we can just switch on both cases here.
+ .add, .addwrap => if (is_float) Opcode.OpFAdd else Opcode.OpIAdd,
+ .sub, .subwrap => if (is_float) Opcode.OpFSub else Opcode.OpISub,
+ .mul, .mulwrap => if (is_float) Opcode.OpFMul else Opcode.OpIMul,
+ // TODO: Trap if divisor is 0?
+ // TODO: Figure out of OpSDiv for unsigned/OpUDiv for signed does anything useful.
+ // => Those are probably for divTrunc and divFloor, though the compiler does not yet generate those.
+ // => TODO: Figure out how those work on the SPIR-V side.
+ // => TODO: Test these.
+ .div => if (is_float) Opcode.OpFDiv else if (is_signed) Opcode.OpSDiv else Opcode.OpUDiv,
+ // Only integer versions for these.
+ .bit_and => Opcode.OpBitwiseAnd,
+ .bit_or => Opcode.OpBitwiseOr,
+ .xor => Opcode.OpBitwiseXor,
+ // Int/bool/float -> bool operations.
+ .cmp_eq => if (is_float) Opcode.OpFOrdEqual else if (is_bool) Opcode.OpLogicalEqual else Opcode.OpIEqual,
+ .cmp_neq => if (is_float) Opcode.OpFOrdNotEqual else if (is_bool) Opcode.OpLogicalNotEqual else Opcode.OpINotEqual,
+ // Int/float -> bool operations.
+ // TODO: Verify that these OpFOrd type operations produce the right value.
+ // TODO: Is there a more fundamental difference between OpU and OpS operations here than just the type?
+ .cmp_gt => if (is_float) Opcode.OpFOrdGreaterThan else if (is_signed) Opcode.OpSGreaterThan else Opcode.OpUGreaterThan,
+ .cmp_gte => if (is_float) Opcode.OpFOrdGreaterThanEqual else if (is_signed) Opcode.OpSGreaterThanEqual else Opcode.OpUGreaterThanEqual,
+ .cmp_lt => if (is_float) Opcode.OpFOrdLessThan else if (is_signed) Opcode.OpSLessThan else Opcode.OpULessThan,
+ .cmp_lte => if (is_float) Opcode.OpFOrdLessThanEqual else if (is_signed) Opcode.OpSLessThanEqual else Opcode.OpULessThanEqual,
+ // Bool -> bool operations.
+ .bool_and => Opcode.OpLogicalAnd,
+ .bool_or => Opcode.OpLogicalOr,
+ else => unreachable,
+ };
+
+ try writeInstruction(&self.spv.fn_decls, opcode, &[_]u32{ result_type_id, result_id, lhs_id, rhs_id });
+
+ // TODO: Trap on overflow? Probably going to be annoying.
+ // TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.
+
+ if (info.class != .strange_integer)
+ return result_id;
+
+ return self.fail(.{.node_offset = 0}, "TODO: SPIR-V backend: strange integer operation mask", .{});
+ }
+
+ fn genUnOp(self: *DeclGen, inst: *Inst.UnOp) !u32 {
+ const operand_id = try self.resolve(inst.operand);
+
+ const result_id = self.spv.allocResultId();
+ const result_type_id = try self.getOrGenType(inst.base.ty);
+
+ const info = try self.arithmeticTypeInfo(inst.operand.ty);
+
+ const opcode = switch (inst.base.tag) {
+ // Bool -> bool
+ .not => Opcode.OpLogicalNot,
+ else => unreachable,
+ };
+
+ try writeInstruction(&self.spv.fn_decls, opcode, &[_]u32{ result_type_id, result_id, operand_id });
+
+ return result_id;
+ }
+
+ fn genArg(self: *DeclGen) u32 {
+ defer self.next_arg_index += 1;
+ return self.args.items[self.next_arg_index];
+ }
+
+ fn genRet(self: *DeclGen, inst: *Inst.UnOp) !?u32 {
+ const operand_id = try self.resolve(inst.operand);
+ // TODO: This instruction needs to be the last in a block. Is that guaranteed?
+ try writeInstruction(&self.spv.fn_decls, .OpReturnValue, &[_]u32{ operand_id });
+ return null;
+ }
+
+ fn genRetVoid(self: *DeclGen) !?u32 {
+ // TODO: This instruction needs to be the last in a block. Is that guaranteed?
+ try writeInstruction(&self.spv.fn_decls, .OpReturn, &[_]u32{});
+ return null;
+ }
+
+ fn genUnreach(self: *DeclGen) !?u32 {
+ // TODO: This instruction needs to be the last in a block. Is that guaranteed?
+ try writeInstruction(&self.spv.fn_decls, .OpUnreachable, &[_]u32{});
+ return null;
+ }
};