aboutsummaryrefslogtreecommitdiff
path: root/src/Sema.zig
diff options
context:
space:
mode:
authorAndrew Kelley <andrew@ziglang.org>2021-04-02 12:09:38 -0700
committerAndrew Kelley <andrew@ziglang.org>2021-04-02 12:09:38 -0700
commita0e89c9b46fc91d9b1dfebd02eaae233802e3cbc (patch)
tree6a1ee37f130b4cb69204158ff915ecc2c6bb002b /src/Sema.zig
parent94383d14df77fa638dac14f4b2bda5a2e3f21c5c (diff)
parent228a1ce3e8d112a7710fa47c6b9486cf320b5d6f (diff)
downloadzig-a0e89c9b46fc91d9b1dfebd02eaae233802e3cbc.tar.gz
zig-a0e89c9b46fc91d9b1dfebd02eaae233802e3cbc.zip
Merge remote-tracking branch 'origin/master' into llvm12
Diffstat (limited to 'src/Sema.zig')
-rw-r--r--src/Sema.zig5091
1 files changed, 5091 insertions, 0 deletions
diff --git a/src/Sema.zig b/src/Sema.zig
new file mode 100644
index 0000000000..06ff3e445b
--- /dev/null
+++ b/src/Sema.zig
@@ -0,0 +1,5091 @@
+//! Semantic analysis of ZIR instructions.
+//! Shared to every Block. Stored on the stack.
+//! State used for compiling a `zir.Code` into TZIR.
+//! Transforms untyped ZIR instructions into semantically-analyzed TZIR instructions.
+//! Does type checking, comptime control flow, and safety-check generation.
+//! This is the the heart of the Zig compiler.
+
+mod: *Module,
+/// Alias to `mod.gpa`.
+gpa: *Allocator,
+/// Points to the arena allocator of the Decl.
+arena: *Allocator,
+code: zir.Code,
+/// Maps ZIR to TZIR.
+inst_map: []*Inst,
+/// When analyzing an inline function call, owner_decl is the Decl of the caller
+/// and `src_decl` of `Scope.Block` is the `Decl` of the callee.
+/// This `Decl` owns the arena memory of this `Sema`.
+owner_decl: *Decl,
+/// For an inline or comptime function call, this will be the root parent function
+/// which contains the callsite. Corresponds to `owner_decl`.
+owner_func: ?*Module.Fn,
+/// The function this ZIR code is the body of, according to the source code.
+/// This starts out the same as `owner_func` and then diverges in the case of
+/// an inline or comptime function call.
+func: ?*Module.Fn,
+/// For now, TZIR requires arg instructions to be the first N instructions in the
+/// TZIR code. We store references here for the purpose of `resolveInst`.
+/// This can get reworked with TZIR memory layout changes, into simply:
+/// > Denormalized data to make `resolveInst` faster. This is 0 if not inside a function,
+/// > otherwise it is the number of parameters of the function.
+/// > param_count: u32
+param_inst_list: []const *ir.Inst,
+branch_quota: u32 = 1000,
+branch_count: u32 = 0,
+/// This field is updated when a new source location becomes active, so that
+/// instructions which do not have explicitly mapped source locations still have
+/// access to the source location set by the previous instruction which did
+/// contain a mapped source location.
+src: LazySrcLoc = .{ .token_offset = 0 },
+
+const std = @import("std");
+const mem = std.mem;
+const Allocator = std.mem.Allocator;
+const assert = std.debug.assert;
+const log = std.log.scoped(.sema);
+
+const Sema = @This();
+const Value = @import("value.zig").Value;
+const Type = @import("type.zig").Type;
+const TypedValue = @import("TypedValue.zig");
+const ir = @import("ir.zig");
+const zir = @import("zir.zig");
+const Module = @import("Module.zig");
+const Inst = ir.Inst;
+const Body = ir.Body;
+const trace = @import("tracy.zig").trace;
+const Scope = Module.Scope;
+const InnerError = Module.InnerError;
+const Decl = Module.Decl;
+const LazySrcLoc = Module.LazySrcLoc;
+const RangeSet = @import("RangeSet.zig");
+const AstGen = @import("AstGen.zig");
+
+pub fn root(sema: *Sema, root_block: *Scope.Block) !zir.Inst.Index {
+ const inst_data = sema.code.instructions.items(.data)[0].pl_node;
+ const extra = sema.code.extraData(zir.Inst.Block, inst_data.payload_index);
+ const root_body = sema.code.extra[extra.end..][0..extra.data.body_len];
+ return sema.analyzeBody(root_block, root_body);
+}
+
+pub fn rootAsRef(sema: *Sema, root_block: *Scope.Block) !zir.Inst.Ref {
+ const break_inst = try sema.root(root_block);
+ return sema.code.instructions.items(.data)[break_inst].@"break".operand;
+}
+
+/// Assumes that `root_block` ends with `break_inline`.
+pub fn rootAsType(sema: *Sema, root_block: *Scope.Block) !Type {
+ assert(root_block.is_comptime);
+ const zir_inst_ref = try sema.rootAsRef(root_block);
+ // Source location is unneeded because resolveConstValue must have already
+ // been successfully called when coercing the value to a type, from the
+ // result location.
+ return sema.resolveType(root_block, .unneeded, zir_inst_ref);
+}
+
+/// Returns only the result from the body that is specified.
+/// Only appropriate to call when it is determined at comptime that this body
+/// has no peers.
+fn resolveBody(sema: *Sema, block: *Scope.Block, body: []const zir.Inst.Index) InnerError!*Inst {
+ const break_inst = try sema.analyzeBody(block, body);
+ const operand_ref = sema.code.instructions.items(.data)[break_inst].@"break".operand;
+ return sema.resolveInst(operand_ref);
+}
+
+/// ZIR instructions which are always `noreturn` return this. This matches the
+/// return type of `analyzeBody` so that we can tail call them.
+/// Only appropriate to return when the instruction is known to be NoReturn
+/// solely based on the ZIR tag.
+const always_noreturn: InnerError!zir.Inst.Index = @as(zir.Inst.Index, undefined);
+
+/// This function is the main loop of `Sema` and it can be used in two different ways:
+/// * The traditional way where there are N breaks out of the block and peer type
+/// resolution is done on the break operands. In this case, the `zir.Inst.Index`
+/// part of the return value will be `undefined`, and callsites should ignore it,
+/// finding the block result value via the block scope.
+/// * The "flat" way. There is only 1 break out of the block, and it is with a `break_inline`
+/// instruction. In this case, the `zir.Inst.Index` part of the return value will be
+/// the break instruction. This communicates both which block the break applies to, as
+/// well as the operand. No block scope needs to be created for this strategy.
+pub fn analyzeBody(
+ sema: *Sema,
+ block: *Scope.Block,
+ body: []const zir.Inst.Index,
+) InnerError!zir.Inst.Index {
+ // No tracy calls here, to avoid interfering with the tail call mechanism.
+
+ const map = block.sema.inst_map;
+ const tags = block.sema.code.instructions.items(.tag);
+ const datas = block.sema.code.instructions.items(.data);
+
+ // We use a while(true) loop here to avoid a redundant way of breaking out of
+ // the loop. The only way to break out of the loop is with a `noreturn`
+ // instruction.
+ // TODO: As an optimization, make sure the codegen for these switch prongs
+ // directly jump to the next one, rather than detouring through the loop
+ // continue expression. Related: https://github.com/ziglang/zig/issues/8220
+ var i: usize = 0;
+ while (true) : (i += 1) {
+ const inst = body[i];
+ map[inst] = switch (tags[inst]) {
+ .elided => continue,
+
+ .add => try sema.zirArithmetic(block, inst),
+ .addwrap => try sema.zirArithmetic(block, inst),
+ .alloc => try sema.zirAlloc(block, inst),
+ .alloc_inferred => try sema.zirAllocInferred(block, inst, Type.initTag(.inferred_alloc_const)),
+ .alloc_inferred_mut => try sema.zirAllocInferred(block, inst, Type.initTag(.inferred_alloc_mut)),
+ .alloc_mut => try sema.zirAllocMut(block, inst),
+ .array_cat => try sema.zirArrayCat(block, inst),
+ .array_mul => try sema.zirArrayMul(block, inst),
+ .array_type => try sema.zirArrayType(block, inst),
+ .array_type_sentinel => try sema.zirArrayTypeSentinel(block, inst),
+ .as => try sema.zirAs(block, inst),
+ .as_node => try sema.zirAsNode(block, inst),
+ .@"asm" => try sema.zirAsm(block, inst, false),
+ .asm_volatile => try sema.zirAsm(block, inst, true),
+ .bit_and => try sema.zirBitwise(block, inst, .bit_and),
+ .bit_not => try sema.zirBitNot(block, inst),
+ .bit_or => try sema.zirBitwise(block, inst, .bit_or),
+ .bitcast => try sema.zirBitcast(block, inst),
+ .bitcast_result_ptr => try sema.zirBitcastResultPtr(block, inst),
+ .block => try sema.zirBlock(block, inst),
+ .bool_not => try sema.zirBoolNot(block, inst),
+ .bool_and => try sema.zirBoolOp(block, inst, false),
+ .bool_or => try sema.zirBoolOp(block, inst, true),
+ .bool_br_and => try sema.zirBoolBr(block, inst, false),
+ .bool_br_or => try sema.zirBoolBr(block, inst, true),
+ .call => try sema.zirCall(block, inst, .auto, false),
+ .call_chkused => try sema.zirCall(block, inst, .auto, true),
+ .call_compile_time => try sema.zirCall(block, inst, .compile_time, false),
+ .call_none => try sema.zirCallNone(block, inst, false),
+ .call_none_chkused => try sema.zirCallNone(block, inst, true),
+ .cmp_eq => try sema.zirCmp(block, inst, .eq),
+ .cmp_gt => try sema.zirCmp(block, inst, .gt),
+ .cmp_gte => try sema.zirCmp(block, inst, .gte),
+ .cmp_lt => try sema.zirCmp(block, inst, .lt),
+ .cmp_lte => try sema.zirCmp(block, inst, .lte),
+ .cmp_neq => try sema.zirCmp(block, inst, .neq),
+ .coerce_result_ptr => try sema.zirCoerceResultPtr(block, inst),
+ .@"const" => try sema.zirConst(block, inst),
+ .decl_ref => try sema.zirDeclRef(block, inst),
+ .decl_val => try sema.zirDeclVal(block, inst),
+ .load => try sema.zirLoad(block, inst),
+ .div => try sema.zirArithmetic(block, inst),
+ .elem_ptr => try sema.zirElemPtr(block, inst),
+ .elem_ptr_node => try sema.zirElemPtrNode(block, inst),
+ .elem_val => try sema.zirElemVal(block, inst),
+ .elem_val_node => try sema.zirElemValNode(block, inst),
+ .enum_literal => try sema.zirEnumLiteral(block, inst),
+ .enum_literal_small => try sema.zirEnumLiteralSmall(block, inst),
+ .err_union_code => try sema.zirErrUnionCode(block, inst),
+ .err_union_code_ptr => try sema.zirErrUnionCodePtr(block, inst),
+ .err_union_payload_safe => try sema.zirErrUnionPayload(block, inst, true),
+ .err_union_payload_safe_ptr => try sema.zirErrUnionPayloadPtr(block, inst, true),
+ .err_union_payload_unsafe => try sema.zirErrUnionPayload(block, inst, false),
+ .err_union_payload_unsafe_ptr => try sema.zirErrUnionPayloadPtr(block, inst, false),
+ .error_union_type => try sema.zirErrorUnionType(block, inst),
+ .error_value => try sema.zirErrorValue(block, inst),
+ .error_to_int => try sema.zirErrorToInt(block, inst),
+ .int_to_error => try sema.zirIntToError(block, inst),
+ .field_ptr => try sema.zirFieldPtr(block, inst),
+ .field_ptr_named => try sema.zirFieldPtrNamed(block, inst),
+ .field_val => try sema.zirFieldVal(block, inst),
+ .field_val_named => try sema.zirFieldValNamed(block, inst),
+ .floatcast => try sema.zirFloatcast(block, inst),
+ .fn_type => try sema.zirFnType(block, inst, false),
+ .fn_type_cc => try sema.zirFnTypeCc(block, inst, false),
+ .fn_type_cc_var_args => try sema.zirFnTypeCc(block, inst, true),
+ .fn_type_var_args => try sema.zirFnType(block, inst, true),
+ .import => try sema.zirImport(block, inst),
+ .indexable_ptr_len => try sema.zirIndexablePtrLen(block, inst),
+ .int => try sema.zirInt(block, inst),
+ .int_type => try sema.zirIntType(block, inst),
+ .intcast => try sema.zirIntcast(block, inst),
+ .is_err => try sema.zirIsErr(block, inst),
+ .is_err_ptr => try sema.zirIsErrPtr(block, inst),
+ .is_non_null => try sema.zirIsNull(block, inst, true),
+ .is_non_null_ptr => try sema.zirIsNullPtr(block, inst, true),
+ .is_null => try sema.zirIsNull(block, inst, false),
+ .is_null_ptr => try sema.zirIsNullPtr(block, inst, false),
+ .loop => try sema.zirLoop(block, inst),
+ .merge_error_sets => try sema.zirMergeErrorSets(block, inst),
+ .mod_rem => try sema.zirArithmetic(block, inst),
+ .mul => try sema.zirArithmetic(block, inst),
+ .mulwrap => try sema.zirArithmetic(block, inst),
+ .negate => try sema.zirNegate(block, inst, .sub),
+ .negate_wrap => try sema.zirNegate(block, inst, .subwrap),
+ .optional_payload_safe => try sema.zirOptionalPayload(block, inst, true),
+ .optional_payload_safe_ptr => try sema.zirOptionalPayloadPtr(block, inst, true),
+ .optional_payload_unsafe => try sema.zirOptionalPayload(block, inst, false),
+ .optional_payload_unsafe_ptr => try sema.zirOptionalPayloadPtr(block, inst, false),
+ .optional_type => try sema.zirOptionalType(block, inst),
+ .optional_type_from_ptr_elem => try sema.zirOptionalTypeFromPtrElem(block, inst),
+ .param_type => try sema.zirParamType(block, inst),
+ .ptr_type => try sema.zirPtrType(block, inst),
+ .ptr_type_simple => try sema.zirPtrTypeSimple(block, inst),
+ .ptrtoint => try sema.zirPtrtoint(block, inst),
+ .ref => try sema.zirRef(block, inst),
+ .ret_ptr => try sema.zirRetPtr(block, inst),
+ .ret_type => try sema.zirRetType(block, inst),
+ .shl => try sema.zirShl(block, inst),
+ .shr => try sema.zirShr(block, inst),
+ .slice_end => try sema.zirSliceEnd(block, inst),
+ .slice_sentinel => try sema.zirSliceSentinel(block, inst),
+ .slice_start => try sema.zirSliceStart(block, inst),
+ .str => try sema.zirStr(block, inst),
+ .sub => try sema.zirArithmetic(block, inst),
+ .subwrap => try sema.zirArithmetic(block, inst),
+ .switch_block => try sema.zirSwitchBlock(block, inst, false, .none),
+ .switch_block_multi => try sema.zirSwitchBlockMulti(block, inst, false, .none),
+ .switch_block_else => try sema.zirSwitchBlock(block, inst, false, .@"else"),
+ .switch_block_else_multi => try sema.zirSwitchBlockMulti(block, inst, false, .@"else"),
+ .switch_block_under => try sema.zirSwitchBlock(block, inst, false, .under),
+ .switch_block_under_multi => try sema.zirSwitchBlockMulti(block, inst, false, .under),
+ .switch_block_ref => try sema.zirSwitchBlock(block, inst, true, .none),
+ .switch_block_ref_multi => try sema.zirSwitchBlockMulti(block, inst, true, .none),
+ .switch_block_ref_else => try sema.zirSwitchBlock(block, inst, true, .@"else"),
+ .switch_block_ref_else_multi => try sema.zirSwitchBlockMulti(block, inst, true, .@"else"),
+ .switch_block_ref_under => try sema.zirSwitchBlock(block, inst, true, .under),
+ .switch_block_ref_under_multi => try sema.zirSwitchBlockMulti(block, inst, true, .under),
+ .switch_capture => try sema.zirSwitchCapture(block, inst, false, false),
+ .switch_capture_ref => try sema.zirSwitchCapture(block, inst, false, true),
+ .switch_capture_multi => try sema.zirSwitchCapture(block, inst, true, false),
+ .switch_capture_multi_ref => try sema.zirSwitchCapture(block, inst, true, true),
+ .switch_capture_else => try sema.zirSwitchCaptureElse(block, inst, false),
+ .switch_capture_else_ref => try sema.zirSwitchCaptureElse(block, inst, true),
+ .typeof => try sema.zirTypeof(block, inst),
+ .typeof_elem => try sema.zirTypeofElem(block, inst),
+ .typeof_peer => try sema.zirTypeofPeer(block, inst),
+ .xor => try sema.zirBitwise(block, inst, .xor),
+ .struct_init_empty => try sema.zirStructInitEmpty(block, inst),
+
+ .struct_decl => try sema.zirStructDecl(block, inst, .Auto),
+ .struct_decl_packed => try sema.zirStructDecl(block, inst, .Packed),
+ .struct_decl_extern => try sema.zirStructDecl(block, inst, .Extern),
+ .enum_decl => try sema.zirEnumDecl(block, inst),
+ .union_decl => try sema.zirUnionDecl(block, inst),
+ .opaque_decl => try sema.zirOpaqueDecl(block, inst),
+
+ // Instructions that we know to *always* be noreturn based solely on their tag.
+ // These functions match the return type of analyzeBody so that we can
+ // tail call them here.
+ .condbr => return sema.zirCondbr(block, inst),
+ .@"break" => return sema.zirBreak(block, inst),
+ .break_inline => return inst,
+ .compile_error => return sema.zirCompileError(block, inst),
+ .ret_coerce => return sema.zirRetTok(block, inst, true),
+ .ret_node => return sema.zirRetNode(block, inst),
+ .ret_tok => return sema.zirRetTok(block, inst, false),
+ .@"unreachable" => return sema.zirUnreachable(block, inst),
+ .repeat => return sema.zirRepeat(block, inst),
+
+ // Instructions that we know can *never* be noreturn based solely on
+ // their tag. We avoid needlessly checking if they are noreturn and
+ // continue the loop.
+ // We also know that they cannot be referenced later, so we avoid
+ // putting them into the map.
+ .breakpoint => {
+ try sema.zirBreakpoint(block, inst);
+ continue;
+ },
+ .dbg_stmt_node => {
+ try sema.zirDbgStmtNode(block, inst);
+ continue;
+ },
+ .ensure_err_payload_void => {
+ try sema.zirEnsureErrPayloadVoid(block, inst);
+ continue;
+ },
+ .ensure_result_non_error => {
+ try sema.zirEnsureResultNonError(block, inst);
+ continue;
+ },
+ .ensure_result_used => {
+ try sema.zirEnsureResultUsed(block, inst);
+ continue;
+ },
+ .compile_log => {
+ try sema.zirCompileLog(block, inst);
+ continue;
+ },
+ .set_eval_branch_quota => {
+ try sema.zirSetEvalBranchQuota(block, inst);
+ continue;
+ },
+ .store => {
+ try sema.zirStore(block, inst);
+ continue;
+ },
+ .store_node => {
+ try sema.zirStoreNode(block, inst);
+ continue;
+ },
+ .store_to_block_ptr => {
+ try sema.zirStoreToBlockPtr(block, inst);
+ continue;
+ },
+ .store_to_inferred_ptr => {
+ try sema.zirStoreToInferredPtr(block, inst);
+ continue;
+ },
+ .resolve_inferred_alloc => {
+ try sema.zirResolveInferredAlloc(block, inst);
+ continue;
+ },
+ .validate_struct_init_ptr => {
+ try sema.zirValidateStructInitPtr(block, inst);
+ continue;
+ },
+
+ // Special case instructions to handle comptime control flow.
+ .repeat_inline => {
+ // Send comptime control flow back to the beginning of this block.
+ const src: LazySrcLoc = .{ .node_offset = datas[inst].node };
+ try sema.emitBackwardBranch(block, src);
+ i = 0;
+ continue;
+ },
+ .block_inline => blk: {
+ // Directly analyze the block body without introducing a new block.
+ const inst_data = datas[inst].pl_node;
+ const extra = sema.code.extraData(zir.Inst.Block, inst_data.payload_index);
+ const inline_body = sema.code.extra[extra.end..][0..extra.data.body_len];
+ const break_inst = try sema.analyzeBody(block, inline_body);
+ const break_data = datas[break_inst].@"break";
+ if (inst == break_data.block_inst) {
+ break :blk try sema.resolveInst(break_data.operand);
+ } else {
+ return break_inst;
+ }
+ },
+ .condbr_inline => blk: {
+ const inst_data = datas[inst].pl_node;
+ const cond_src: LazySrcLoc = .{ .node_offset_if_cond = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.CondBr, inst_data.payload_index);
+ const then_body = sema.code.extra[extra.end..][0..extra.data.then_body_len];
+ const else_body = sema.code.extra[extra.end + then_body.len ..][0..extra.data.else_body_len];
+ const cond = try sema.resolveInstConst(block, cond_src, extra.data.condition);
+ const inline_body = if (cond.val.toBool()) then_body else else_body;
+ const break_inst = try sema.analyzeBody(block, inline_body);
+ const break_data = datas[break_inst].@"break";
+ if (inst == break_data.block_inst) {
+ break :blk try sema.resolveInst(break_data.operand);
+ } else {
+ return break_inst;
+ }
+ },
+ };
+ if (map[inst].ty.isNoReturn())
+ return always_noreturn;
+ }
+}
+
+/// TODO when we rework TZIR memory layout, this function will no longer have a possible error.
+pub fn resolveInst(sema: *Sema, zir_ref: zir.Inst.Ref) error{OutOfMemory}!*ir.Inst {
+ var i: usize = @enumToInt(zir_ref);
+
+ // First section of indexes correspond to a set number of constant values.
+ if (i < zir.Inst.Ref.typed_value_map.len) {
+ // TODO when we rework TZIR memory layout, this function can be as simple as:
+ // if (zir_ref < zir.const_inst_list.len + sema.param_count)
+ // return zir_ref;
+ // Until then we allocate memory for a new, mutable `ir.Inst` to match what
+ // TZIR expects.
+ return sema.mod.constInst(sema.arena, .unneeded, zir.Inst.Ref.typed_value_map[i]);
+ }
+ i -= zir.Inst.Ref.typed_value_map.len;
+
+ // Next section of indexes correspond to function parameters, if any.
+ if (i < sema.param_inst_list.len) {
+ return sema.param_inst_list[i];
+ }
+ i -= sema.param_inst_list.len;
+
+ // Finally, the last section of indexes refers to the map of ZIR=>TZIR.
+ return sema.inst_map[i];
+}
+
+fn resolveConstString(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ zir_ref: zir.Inst.Ref,
+) ![]u8 {
+ const tzir_inst = try sema.resolveInst(zir_ref);
+ const wanted_type = Type.initTag(.const_slice_u8);
+ const coerced_inst = try sema.coerce(block, wanted_type, tzir_inst, src);
+ const val = try sema.resolveConstValue(block, src, coerced_inst);
+ return val.toAllocatedBytes(sema.arena);
+}
+
+fn resolveType(sema: *Sema, block: *Scope.Block, src: LazySrcLoc, zir_ref: zir.Inst.Ref) !Type {
+ const tzir_inst = try sema.resolveInst(zir_ref);
+ const wanted_type = Type.initTag(.@"type");
+ const coerced_inst = try sema.coerce(block, wanted_type, tzir_inst, src);
+ const val = try sema.resolveConstValue(block, src, coerced_inst);
+ return val.toType(sema.arena);
+}
+
+fn resolveConstValue(sema: *Sema, block: *Scope.Block, src: LazySrcLoc, base: *ir.Inst) !Value {
+ return (try sema.resolveDefinedValue(block, src, base)) orelse
+ return sema.failWithNeededComptime(block, src);
+}
+
+fn resolveDefinedValue(sema: *Sema, block: *Scope.Block, src: LazySrcLoc, base: *ir.Inst) !?Value {
+ if (base.value()) |val| {
+ if (val.isUndef()) {
+ return sema.failWithUseOfUndef(block, src);
+ }
+ return val;
+ }
+ return null;
+}
+
+fn failWithNeededComptime(sema: *Sema, block: *Scope.Block, src: LazySrcLoc) InnerError {
+ return sema.mod.fail(&block.base, src, "unable to resolve comptime value", .{});
+}
+
+fn failWithUseOfUndef(sema: *Sema, block: *Scope.Block, src: LazySrcLoc) InnerError {
+ return sema.mod.fail(&block.base, src, "use of undefined value here causes undefined behavior", .{});
+}
+
+/// Appropriate to call when the coercion has already been done by result
+/// location semantics. Asserts the value fits in the provided `Int` type.
+/// Only supports `Int` types 64 bits or less.
+fn resolveAlreadyCoercedInt(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ zir_ref: zir.Inst.Ref,
+ comptime Int: type,
+) !Int {
+ comptime assert(@typeInfo(Int).Int.bits <= 64);
+ const tzir_inst = try sema.resolveInst(zir_ref);
+ const val = try sema.resolveConstValue(block, src, tzir_inst);
+ switch (@typeInfo(Int).Int.signedness) {
+ .signed => return @intCast(Int, val.toSignedInt()),
+ .unsigned => return @intCast(Int, val.toUnsignedInt()),
+ }
+}
+
+fn resolveInt(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ zir_ref: zir.Inst.Ref,
+ dest_type: Type,
+) !u64 {
+ const tzir_inst = try sema.resolveInst(zir_ref);
+ const coerced = try sema.coerce(block, dest_type, tzir_inst, src);
+ const val = try sema.resolveConstValue(block, src, coerced);
+
+ return val.toUnsignedInt();
+}
+
+fn resolveInstConst(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ zir_ref: zir.Inst.Ref,
+) InnerError!TypedValue {
+ const tzir_inst = try sema.resolveInst(zir_ref);
+ const val = try sema.resolveConstValue(block, src, tzir_inst);
+ return TypedValue{
+ .ty = tzir_inst.ty,
+ .val = val,
+ };
+}
+
+fn zirConst(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const tv_ptr = sema.code.instructions.items(.data)[inst].@"const";
+ // Move the TypedValue from old memory to new memory. This allows freeing the ZIR instructions
+ // after analysis. This happens, for example, with variable declaration initialization
+ // expressions.
+ const typed_value_copy = try tv_ptr.copy(sema.arena);
+ return sema.mod.constInst(sema.arena, .unneeded, typed_value_copy);
+}
+
+fn zirBitcastResultPtr(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+ return sema.mod.fail(&block.base, sema.src, "TODO implement zir_sema.zirBitcastResultPtr", .{});
+}
+
+fn zirCoerceResultPtr(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+ return sema.mod.fail(&block.base, sema.src, "TODO implement zirCoerceResultPtr", .{});
+}
+
+fn zirStructDecl(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ layout: std.builtin.TypeInfo.ContainerLayout,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const gpa = sema.gpa;
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.StructDecl, inst_data.payload_index);
+ const fields_len = extra.data.fields_len;
+ const bit_bags_count = std.math.divCeil(usize, fields_len, 16) catch unreachable;
+
+ var new_decl_arena = std.heap.ArenaAllocator.init(sema.gpa);
+ errdefer new_decl_arena.deinit();
+
+ var fields_map: std.StringArrayHashMapUnmanaged(Module.Struct.Field) = .{};
+ try fields_map.ensureCapacity(&new_decl_arena.allocator, fields_len);
+
+ {
+ var field_index: usize = extra.end + bit_bags_count;
+ var bit_bag_index: usize = extra.end;
+ var cur_bit_bag: u32 = undefined;
+ var field_i: u32 = 0;
+ while (field_i < fields_len) : (field_i += 1) {
+ if (field_i % 16 == 0) {
+ cur_bit_bag = sema.code.extra[bit_bag_index];
+ bit_bag_index += 1;
+ }
+ const has_align = @truncate(u1, cur_bit_bag) != 0;
+ cur_bit_bag >>= 1;
+ const has_default = @truncate(u1, cur_bit_bag) != 0;
+ cur_bit_bag >>= 1;
+
+ const field_name_zir = sema.code.nullTerminatedString(sema.code.extra[field_index]);
+ field_index += 1;
+ const field_type_ref = @intToEnum(zir.Inst.Ref, sema.code.extra[field_index]);
+ field_index += 1;
+
+ // This string needs to outlive the ZIR code.
+ const field_name = try new_decl_arena.allocator.dupe(u8, field_name_zir);
+ // TODO: if we need to report an error here, use a source location
+ // that points to this type expression rather than the struct.
+ // But only resolve the source location if we need to emit a compile error.
+ const field_ty = try sema.resolveType(block, src, field_type_ref);
+
+ const gop = fields_map.getOrPutAssumeCapacity(field_name);
+ assert(!gop.found_existing);
+ gop.entry.value = .{
+ .ty = field_ty,
+ .abi_align = Value.initTag(.abi_align_default),
+ .default_val = Value.initTag(.unreachable_value),
+ };
+
+ if (has_align) {
+ const align_ref = @intToEnum(zir.Inst.Ref, sema.code.extra[field_index]);
+ field_index += 1;
+ // TODO: if we need to report an error here, use a source location
+ // that points to this alignment expression rather than the struct.
+ // But only resolve the source location if we need to emit a compile error.
+ gop.entry.value.abi_align = (try sema.resolveInstConst(block, src, align_ref)).val;
+ }
+ if (has_default) {
+ const default_ref = @intToEnum(zir.Inst.Ref, sema.code.extra[field_index]);
+ field_index += 1;
+ // TODO: if we need to report an error here, use a source location
+ // that points to this default value expression rather than the struct.
+ // But only resolve the source location if we need to emit a compile error.
+ gop.entry.value.default_val = (try sema.resolveInstConst(block, src, default_ref)).val;
+ }
+ }
+ }
+
+ const struct_obj = try new_decl_arena.allocator.create(Module.Struct);
+ const struct_ty = try Type.Tag.@"struct".create(&new_decl_arena.allocator, struct_obj);
+ struct_obj.* = .{
+ .owner_decl = sema.owner_decl,
+ .fields = fields_map,
+ .node_offset = inst_data.src_node,
+ .container = .{
+ .ty = struct_ty,
+ .file_scope = block.getFileScope(),
+ },
+ };
+ const new_decl = try sema.mod.createAnonymousDecl(&block.base, &new_decl_arena, .{
+ .ty = Type.initTag(.type),
+ .val = try Value.Tag.ty.create(gpa, struct_ty),
+ });
+ return sema.analyzeDeclVal(block, src, new_decl);
+}
+
+fn zirEnumDecl(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.Block, inst_data.payload_index);
+
+ return sema.mod.fail(&block.base, sema.src, "TODO implement zirEnumDecl", .{});
+}
+
+fn zirUnionDecl(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.Block, inst_data.payload_index);
+
+ return sema.mod.fail(&block.base, sema.src, "TODO implement zirUnionDecl", .{});
+}
+
+fn zirOpaqueDecl(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.Block, inst_data.payload_index);
+
+ return sema.mod.fail(&block.base, sema.src, "TODO implement zirOpaqueDecl", .{});
+}
+
+fn zirRetPtr(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const src: LazySrcLoc = .unneeded;
+ try sema.requireFunctionBlock(block, src);
+ const fn_ty = sema.func.?.owner_decl.typed_value.most_recent.typed_value.ty;
+ const ret_type = fn_ty.fnReturnType();
+ const ptr_type = try sema.mod.simplePtrType(sema.arena, ret_type, true, .One);
+ return block.addNoOp(src, ptr_type, .alloc);
+}
+
+fn zirRef(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_tok;
+ const operand = try sema.resolveInst(inst_data.operand);
+ return sema.analyzeRef(block, inst_data.src(), operand);
+}
+
+fn zirRetType(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const src: LazySrcLoc = .unneeded;
+ try sema.requireFunctionBlock(block, src);
+ const fn_ty = sema.func.?.owner_decl.typed_value.most_recent.typed_value.ty;
+ const ret_type = fn_ty.fnReturnType();
+ return sema.mod.constType(sema.arena, src, ret_type);
+}
+
+fn zirEnsureResultUsed(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!void {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const operand = try sema.resolveInst(inst_data.operand);
+ const src = inst_data.src();
+
+ return sema.ensureResultUsed(block, operand, src);
+}
+
+fn ensureResultUsed(
+ sema: *Sema,
+ block: *Scope.Block,
+ operand: *Inst,
+ src: LazySrcLoc,
+) InnerError!void {
+ switch (operand.ty.zigTypeTag()) {
+ .Void, .NoReturn => return,
+ else => return sema.mod.fail(&block.base, src, "expression value is ignored", .{}),
+ }
+}
+
+fn zirEnsureResultNonError(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!void {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const operand = try sema.resolveInst(inst_data.operand);
+ const src = inst_data.src();
+ switch (operand.ty.zigTypeTag()) {
+ .ErrorSet, .ErrorUnion => return sema.mod.fail(&block.base, src, "error is discarded", .{}),
+ else => return,
+ }
+}
+
+fn zirIndexablePtrLen(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const array_ptr = try sema.resolveInst(inst_data.operand);
+
+ const elem_ty = array_ptr.ty.elemType();
+ if (!elem_ty.isIndexable()) {
+ const cond_src: LazySrcLoc = .{ .node_offset_for_cond = inst_data.src_node };
+ const msg = msg: {
+ const msg = try sema.mod.errMsg(
+ &block.base,
+ cond_src,
+ "type '{}' does not support indexing",
+ .{elem_ty},
+ );
+ errdefer msg.destroy(sema.gpa);
+ try sema.mod.errNote(
+ &block.base,
+ cond_src,
+ msg,
+ "for loop operand must be an array, slice, tuple, or vector",
+ .{},
+ );
+ break :msg msg;
+ };
+ return sema.mod.failWithOwnedErrorMsg(&block.base, msg);
+ }
+ const result_ptr = try sema.namedFieldPtr(block, src, array_ptr, "len", src);
+ return sema.analyzeLoad(block, src, result_ptr, result_ptr.src);
+}
+
+fn zirAlloc(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = inst_data.src_node };
+ const var_decl_src = inst_data.src();
+ const var_type = try sema.resolveType(block, ty_src, inst_data.operand);
+ const ptr_type = try sema.mod.simplePtrType(sema.arena, var_type, true, .One);
+ try sema.requireRuntimeBlock(block, var_decl_src);
+ return block.addNoOp(var_decl_src, ptr_type, .alloc);
+}
+
+fn zirAllocMut(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const var_decl_src = inst_data.src();
+ const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = inst_data.src_node };
+ const var_type = try sema.resolveType(block, ty_src, inst_data.operand);
+ try sema.validateVarType(block, ty_src, var_type);
+ const ptr_type = try sema.mod.simplePtrType(sema.arena, var_type, true, .One);
+ try sema.requireRuntimeBlock(block, var_decl_src);
+ return block.addNoOp(var_decl_src, ptr_type, .alloc);
+}
+
+fn zirAllocInferred(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ inferred_alloc_ty: Type,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+
+ const val_payload = try sema.arena.create(Value.Payload.InferredAlloc);
+ val_payload.* = .{
+ .data = .{},
+ };
+ // `Module.constInst` does not add the instruction to the block because it is
+ // not needed in the case of constant values. However here, we plan to "downgrade"
+ // to a normal instruction when we hit `resolve_inferred_alloc`. So we append
+ // to the block even though it is currently a `.constant`.
+ const result = try sema.mod.constInst(sema.arena, src, .{
+ .ty = inferred_alloc_ty,
+ .val = Value.initPayload(&val_payload.base),
+ });
+ try sema.requireFunctionBlock(block, src);
+ try block.instructions.append(sema.gpa, result);
+ return result;
+}
+
+fn zirResolveInferredAlloc(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!void {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = inst_data.src_node };
+ const ptr = try sema.resolveInst(inst_data.operand);
+ const ptr_val = ptr.castTag(.constant).?.val;
+ const inferred_alloc = ptr_val.castTag(.inferred_alloc).?;
+ const peer_inst_list = inferred_alloc.data.stored_inst_list.items;
+ const final_elem_ty = try sema.resolvePeerTypes(block, ty_src, peer_inst_list);
+ const var_is_mut = switch (ptr.ty.tag()) {
+ .inferred_alloc_const => false,
+ .inferred_alloc_mut => true,
+ else => unreachable,
+ };
+ if (var_is_mut) {
+ try sema.validateVarType(block, ty_src, final_elem_ty);
+ }
+ const final_ptr_ty = try sema.mod.simplePtrType(sema.arena, final_elem_ty, true, .One);
+
+ // Change it to a normal alloc.
+ ptr.ty = final_ptr_ty;
+ ptr.tag = .alloc;
+}
+
+fn zirValidateStructInitPtr(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!void {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.Block, inst_data.payload_index);
+ const instrs = sema.code.extra[extra.end..][0..extra.data.body_len];
+
+ log.warn("TODO implement zirValidateStructInitPtr (compile errors for missing/dupe fields)", .{});
+}
+
+fn zirStoreToBlockPtr(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!void {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const bin_inst = sema.code.instructions.items(.data)[inst].bin;
+ const ptr = try sema.resolveInst(bin_inst.lhs);
+ const value = try sema.resolveInst(bin_inst.rhs);
+ const ptr_ty = try sema.mod.simplePtrType(sema.arena, value.ty, true, .One);
+ // TODO detect when this store should be done at compile-time. For example,
+ // if expressions should force it when the condition is compile-time known.
+ const src: LazySrcLoc = .unneeded;
+ try sema.requireRuntimeBlock(block, src);
+ const bitcasted_ptr = try block.addUnOp(src, ptr_ty, .bitcast, ptr);
+ return sema.storePtr(block, src, bitcasted_ptr, value);
+}
+
+fn zirStoreToInferredPtr(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!void {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const src: LazySrcLoc = .unneeded;
+ const bin_inst = sema.code.instructions.items(.data)[inst].bin;
+ const ptr = try sema.resolveInst(bin_inst.lhs);
+ const value = try sema.resolveInst(bin_inst.rhs);
+ const inferred_alloc = ptr.castTag(.constant).?.val.castTag(.inferred_alloc).?;
+ // Add the stored instruction to the set we will use to resolve peer types
+ // for the inferred allocation.
+ try inferred_alloc.data.stored_inst_list.append(sema.arena, value);
+ // Create a runtime bitcast instruction with exactly the type the pointer wants.
+ const ptr_ty = try sema.mod.simplePtrType(sema.arena, value.ty, true, .One);
+ try sema.requireRuntimeBlock(block, src);
+ const bitcasted_ptr = try block.addUnOp(src, ptr_ty, .bitcast, ptr);
+ return sema.storePtr(block, src, bitcasted_ptr, value);
+}
+
+fn zirSetEvalBranchQuota(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!void {
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ try sema.requireFunctionBlock(block, src);
+ const quota = try sema.resolveAlreadyCoercedInt(block, src, inst_data.operand, u32);
+ if (sema.branch_quota < quota)
+ sema.branch_quota = quota;
+}
+
+fn zirStore(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!void {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const bin_inst = sema.code.instructions.items(.data)[inst].bin;
+ const ptr = try sema.resolveInst(bin_inst.lhs);
+ const value = try sema.resolveInst(bin_inst.rhs);
+ return sema.storePtr(block, sema.src, ptr, value);
+}
+
+fn zirStoreNode(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!void {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.Bin, inst_data.payload_index).data;
+ const ptr = try sema.resolveInst(extra.lhs);
+ const value = try sema.resolveInst(extra.rhs);
+ return sema.storePtr(block, src, ptr, value);
+}
+
+fn zirParamType(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const src: LazySrcLoc = .unneeded;
+ const inst_data = sema.code.instructions.items(.data)[inst].param_type;
+ const fn_inst = try sema.resolveInst(inst_data.callee);
+ const param_index = inst_data.param_index;
+
+ const fn_ty: Type = switch (fn_inst.ty.zigTypeTag()) {
+ .Fn => fn_inst.ty,
+ .BoundFn => {
+ return sema.mod.fail(&block.base, fn_inst.src, "TODO implement zirParamType for method call syntax", .{});
+ },
+ else => {
+ return sema.mod.fail(&block.base, fn_inst.src, "expected function, found '{}'", .{fn_inst.ty});
+ },
+ };
+
+ const param_count = fn_ty.fnParamLen();
+ if (param_index >= param_count) {
+ if (fn_ty.fnIsVarArgs()) {
+ return sema.mod.constType(sema.arena, src, Type.initTag(.var_args_param));
+ }
+ return sema.mod.fail(&block.base, src, "arg index {d} out of bounds; '{}' has {d} argument(s)", .{
+ param_index,
+ fn_ty,
+ param_count,
+ });
+ }
+
+ // TODO support generic functions
+ const param_type = fn_ty.fnParamType(param_index);
+ return sema.mod.constType(sema.arena, src, param_type);
+}
+
+fn zirStr(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const zir_bytes = sema.code.instructions.items(.data)[inst].str.get(sema.code);
+
+ // `zir_bytes` references memory inside the ZIR module, which can get deallocated
+ // after semantic analysis is complete, for example in the case of the initialization
+ // expression of a variable declaration. We need the memory to be in the new
+ // anonymous Decl's arena.
+
+ var new_decl_arena = std.heap.ArenaAllocator.init(sema.gpa);
+ errdefer new_decl_arena.deinit();
+
+ const bytes = try new_decl_arena.allocator.dupe(u8, zir_bytes);
+
+ const decl_ty = try Type.Tag.array_u8_sentinel_0.create(&new_decl_arena.allocator, bytes.len);
+ const decl_val = try Value.Tag.bytes.create(&new_decl_arena.allocator, bytes);
+
+ const new_decl = try sema.mod.createAnonymousDecl(&block.base, &new_decl_arena, .{
+ .ty = decl_ty,
+ .val = decl_val,
+ });
+ return sema.analyzeDeclRef(block, .unneeded, new_decl);
+}
+
+fn zirInt(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const int = sema.code.instructions.items(.data)[inst].int;
+ return sema.mod.constIntUnsigned(sema.arena, .unneeded, Type.initTag(.comptime_int), int);
+}
+
+fn zirCompileError(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!zir.Inst.Index {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
+ const msg = try sema.resolveConstString(block, operand_src, inst_data.operand);
+ return sema.mod.fail(&block.base, src, "{s}", .{msg});
+}
+
+fn zirCompileLog(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!void {
+ var managed = sema.mod.compile_log_text.toManaged(sema.gpa);
+ defer sema.mod.compile_log_text = managed.moveToUnmanaged();
+ const writer = managed.writer();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const extra = sema.code.extraData(zir.Inst.MultiOp, inst_data.payload_index);
+ const args = sema.code.refSlice(extra.end, extra.data.operands_len);
+
+ for (args) |arg_ref, i| {
+ if (i != 0) try writer.print(", ", .{});
+
+ const arg = try sema.resolveInst(arg_ref);
+ if (arg.value()) |val| {
+ try writer.print("@as({}, {})", .{ arg.ty, val });
+ } else {
+ try writer.print("@as({}, [runtime value])", .{arg.ty});
+ }
+ }
+ try writer.print("\n", .{});
+
+ const gop = try sema.mod.compile_log_decls.getOrPut(sema.gpa, sema.owner_decl);
+ if (!gop.found_existing) {
+ gop.entry.value = inst_data.src().toSrcLoc(&block.base);
+ }
+}
+
+fn zirRepeat(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!zir.Inst.Index {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const src_node = sema.code.instructions.items(.data)[inst].node;
+ const src: LazySrcLoc = .{ .node_offset = src_node };
+ try sema.requireRuntimeBlock(block, src);
+ return always_noreturn;
+}
+
+fn zirLoop(sema: *Sema, parent_block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.Block, inst_data.payload_index);
+ const body = sema.code.extra[extra.end..][0..extra.data.body_len];
+
+ // TZIR expects a block outside the loop block too.
+ const block_inst = try sema.arena.create(Inst.Block);
+ block_inst.* = .{
+ .base = .{
+ .tag = Inst.Block.base_tag,
+ .ty = undefined,
+ .src = src,
+ },
+ .body = undefined,
+ };
+
+ var child_block = parent_block.makeSubBlock();
+ child_block.label = Scope.Block.Label{
+ .zir_block = inst,
+ .merges = .{
+ .results = .{},
+ .br_list = .{},
+ .block_inst = block_inst,
+ },
+ };
+ const merges = &child_block.label.?.merges;
+
+ defer child_block.instructions.deinit(sema.gpa);
+ defer merges.results.deinit(sema.gpa);
+ defer merges.br_list.deinit(sema.gpa);
+
+ // Reserve space for a Loop instruction so that generated Break instructions can
+ // point to it, even if it doesn't end up getting used because the code ends up being
+ // comptime evaluated.
+ const loop_inst = try sema.arena.create(Inst.Loop);
+ loop_inst.* = .{
+ .base = .{
+ .tag = Inst.Loop.base_tag,
+ .ty = Type.initTag(.noreturn),
+ .src = src,
+ },
+ .body = undefined,
+ };
+
+ var loop_block = child_block.makeSubBlock();
+ defer loop_block.instructions.deinit(sema.gpa);
+
+ _ = try sema.analyzeBody(&loop_block, body);
+
+ // Loop repetition is implied so the last instruction may or may not be a noreturn instruction.
+
+ try child_block.instructions.append(sema.gpa, &loop_inst.base);
+ loop_inst.body = .{ .instructions = try sema.arena.dupe(*Inst, loop_block.instructions.items) };
+
+ return sema.analyzeBlockBody(parent_block, src, &child_block, merges);
+}
+
+fn zirBlock(sema: *Sema, parent_block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.Block, inst_data.payload_index);
+ const body = sema.code.extra[extra.end..][0..extra.data.body_len];
+
+ // Reserve space for a Block instruction so that generated Break instructions can
+ // point to it, even if it doesn't end up getting used because the code ends up being
+ // comptime evaluated.
+ const block_inst = try sema.arena.create(Inst.Block);
+ block_inst.* = .{
+ .base = .{
+ .tag = Inst.Block.base_tag,
+ .ty = undefined, // Set after analysis.
+ .src = src,
+ },
+ .body = undefined,
+ };
+
+ var child_block: Scope.Block = .{
+ .parent = parent_block,
+ .sema = sema,
+ .src_decl = parent_block.src_decl,
+ .instructions = .{},
+ // TODO @as here is working around a stage1 miscompilation bug :(
+ .label = @as(?Scope.Block.Label, Scope.Block.Label{
+ .zir_block = inst,
+ .merges = .{
+ .results = .{},
+ .br_list = .{},
+ .block_inst = block_inst,
+ },
+ }),
+ .inlining = parent_block.inlining,
+ .is_comptime = parent_block.is_comptime,
+ };
+ const merges = &child_block.label.?.merges;
+
+ defer child_block.instructions.deinit(sema.gpa);
+ defer merges.results.deinit(sema.gpa);
+ defer merges.br_list.deinit(sema.gpa);
+
+ _ = try sema.analyzeBody(&child_block, body);
+
+ return sema.analyzeBlockBody(parent_block, src, &child_block, merges);
+}
+
+fn analyzeBlockBody(
+ sema: *Sema,
+ parent_block: *Scope.Block,
+ src: LazySrcLoc,
+ child_block: *Scope.Block,
+ merges: *Scope.Block.Merges,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ // Blocks must terminate with noreturn instruction.
+ assert(child_block.instructions.items.len != 0);
+ assert(child_block.instructions.items[child_block.instructions.items.len - 1].ty.isNoReturn());
+
+ if (merges.results.items.len == 0) {
+ // No need for a block instruction. We can put the new instructions
+ // directly into the parent block.
+ const copied_instructions = try sema.arena.dupe(*Inst, child_block.instructions.items);
+ try parent_block.instructions.appendSlice(sema.gpa, copied_instructions);
+ return copied_instructions[copied_instructions.len - 1];
+ }
+ if (merges.results.items.len == 1) {
+ const last_inst_index = child_block.instructions.items.len - 1;
+ const last_inst = child_block.instructions.items[last_inst_index];
+ if (last_inst.breakBlock()) |br_block| {
+ if (br_block == merges.block_inst) {
+ // No need for a block instruction. We can put the new instructions directly
+ // into the parent block. Here we omit the break instruction.
+ const copied_instructions = try sema.arena.dupe(*Inst, child_block.instructions.items[0..last_inst_index]);
+ try parent_block.instructions.appendSlice(sema.gpa, copied_instructions);
+ return merges.results.items[0];
+ }
+ }
+ }
+ // It is impossible to have the number of results be > 1 in a comptime scope.
+ assert(!child_block.is_comptime); // Should already got a compile error in the condbr condition.
+
+ // Need to set the type and emit the Block instruction. This allows machine code generation
+ // to emit a jump instruction to after the block when it encounters the break.
+ try parent_block.instructions.append(sema.gpa, &merges.block_inst.base);
+ const resolved_ty = try sema.resolvePeerTypes(parent_block, src, merges.results.items);
+ merges.block_inst.base.ty = resolved_ty;
+ merges.block_inst.body = .{
+ .instructions = try sema.arena.dupe(*Inst, child_block.instructions.items),
+ };
+ // Now that the block has its type resolved, we need to go back into all the break
+ // instructions, and insert type coercion on the operands.
+ for (merges.br_list.items) |br| {
+ if (br.operand.ty.eql(resolved_ty)) {
+ // No type coercion needed.
+ continue;
+ }
+ var coerce_block = parent_block.makeSubBlock();
+ defer coerce_block.instructions.deinit(sema.gpa);
+ const coerced_operand = try sema.coerce(&coerce_block, resolved_ty, br.operand, br.operand.src);
+ // If no instructions were produced, such as in the case of a coercion of a
+ // constant value to a new type, we can simply point the br operand to it.
+ if (coerce_block.instructions.items.len == 0) {
+ br.operand = coerced_operand;
+ continue;
+ }
+ assert(coerce_block.instructions.items[coerce_block.instructions.items.len - 1] == coerced_operand);
+ // Here we depend on the br instruction having been over-allocated (if necessary)
+ // inside zirBreak so that it can be converted into a br_block_flat instruction.
+ const br_src = br.base.src;
+ const br_ty = br.base.ty;
+ const br_block_flat = @ptrCast(*Inst.BrBlockFlat, br);
+ br_block_flat.* = .{
+ .base = .{
+ .src = br_src,
+ .ty = br_ty,
+ .tag = .br_block_flat,
+ },
+ .block = merges.block_inst,
+ .body = .{
+ .instructions = try sema.arena.dupe(*Inst, coerce_block.instructions.items),
+ },
+ };
+ }
+ return &merges.block_inst.base;
+}
+
+fn zirBreakpoint(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!void {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const src_node = sema.code.instructions.items(.data)[inst].node;
+ const src: LazySrcLoc = .{ .node_offset = src_node };
+ try sema.requireRuntimeBlock(block, src);
+ _ = try block.addNoOp(src, Type.initTag(.void), .breakpoint);
+}
+
+fn zirBreak(sema: *Sema, start_block: *Scope.Block, inst: zir.Inst.Index) InnerError!zir.Inst.Index {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].@"break";
+ const src = sema.src;
+ const operand = try sema.resolveInst(inst_data.operand);
+ const zir_block = inst_data.block_inst;
+
+ var block = start_block;
+ while (true) {
+ if (block.label) |*label| {
+ if (label.zir_block == zir_block) {
+ // Here we add a br instruction, but we over-allocate a little bit
+ // (if necessary) to make it possible to convert the instruction into
+ // a br_block_flat instruction later.
+ const br = @ptrCast(*Inst.Br, try sema.arena.alignedAlloc(
+ u8,
+ Inst.convertable_br_align,
+ Inst.convertable_br_size,
+ ));
+ br.* = .{
+ .base = .{
+ .tag = .br,
+ .ty = Type.initTag(.noreturn),
+ .src = src,
+ },
+ .operand = operand,
+ .block = label.merges.block_inst,
+ };
+ try start_block.instructions.append(sema.gpa, &br.base);
+ try label.merges.results.append(sema.gpa, operand);
+ try label.merges.br_list.append(sema.gpa, br);
+ return inst;
+ }
+ }
+ block = block.parent.?;
+ }
+}
+
+fn zirDbgStmtNode(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!void {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ // We do not set sema.src here because dbg_stmt instructions are only emitted for
+ // ZIR code that possibly will need to generate runtime code. So error messages
+ // and other source locations must not rely on sema.src being set from dbg_stmt
+ // instructions.
+ if (block.is_comptime) return;
+
+ const src_node = sema.code.instructions.items(.data)[inst].node;
+ const src: LazySrcLoc = .{ .node_offset = src_node };
+
+ const src_loc = src.toSrcLoc(&block.base);
+ const abs_byte_off = try src_loc.byteOffset();
+ _ = try block.addDbgStmt(src, abs_byte_off);
+}
+
+fn zirDeclRef(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const decl = sema.code.decls[inst_data.payload_index];
+ return sema.analyzeDeclRef(block, src, decl);
+}
+
+fn zirDeclVal(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const decl = sema.code.decls[inst_data.payload_index];
+ return sema.analyzeDeclVal(block, src, decl);
+}
+
+fn zirCallNone(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ ensure_result_used: bool,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const func_src: LazySrcLoc = .{ .node_offset_call_func = inst_data.src_node };
+
+ return sema.analyzeCall(block, inst_data.operand, func_src, inst_data.src(), .auto, ensure_result_used, &.{});
+}
+
+fn zirCall(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ modifier: std.builtin.CallOptions.Modifier,
+ ensure_result_used: bool,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const func_src: LazySrcLoc = .{ .node_offset_call_func = inst_data.src_node };
+ const call_src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.Call, inst_data.payload_index);
+ const args = sema.code.refSlice(extra.end, extra.data.args_len);
+
+ return sema.analyzeCall(block, extra.data.callee, func_src, call_src, modifier, ensure_result_used, args);
+}
+
+fn analyzeCall(
+ sema: *Sema,
+ block: *Scope.Block,
+ zir_func: zir.Inst.Ref,
+ func_src: LazySrcLoc,
+ call_src: LazySrcLoc,
+ modifier: std.builtin.CallOptions.Modifier,
+ ensure_result_used: bool,
+ zir_args: []const zir.Inst.Ref,
+) InnerError!*ir.Inst {
+ const func = try sema.resolveInst(zir_func);
+
+ if (func.ty.zigTypeTag() != .Fn)
+ return sema.mod.fail(&block.base, func_src, "type '{}' not a function", .{func.ty});
+
+ const cc = func.ty.fnCallingConvention();
+ if (cc == .Naked) {
+ // TODO add error note: declared here
+ return sema.mod.fail(
+ &block.base,
+ func_src,
+ "unable to call function with naked calling convention",
+ .{},
+ );
+ }
+ const fn_params_len = func.ty.fnParamLen();
+ if (func.ty.fnIsVarArgs()) {
+ assert(cc == .C);
+ if (zir_args.len < fn_params_len) {
+ // TODO add error note: declared here
+ return sema.mod.fail(
+ &block.base,
+ func_src,
+ "expected at least {d} argument(s), found {d}",
+ .{ fn_params_len, zir_args.len },
+ );
+ }
+ } else if (fn_params_len != zir_args.len) {
+ // TODO add error note: declared here
+ return sema.mod.fail(
+ &block.base,
+ func_src,
+ "expected {d} argument(s), found {d}",
+ .{ fn_params_len, zir_args.len },
+ );
+ }
+
+ if (modifier == .compile_time) {
+ return sema.mod.fail(&block.base, call_src, "TODO implement comptime function calls", .{});
+ }
+ if (modifier != .auto) {
+ return sema.mod.fail(&block.base, call_src, "TODO implement call with modifier {}", .{modifier});
+ }
+
+ // TODO handle function calls of generic functions
+ const casted_args = try sema.arena.alloc(*Inst, zir_args.len);
+ for (zir_args) |zir_arg, i| {
+ // the args are already casted to the result of a param type instruction.
+ casted_args[i] = try sema.resolveInst(zir_arg);
+ }
+
+ const ret_type = func.ty.fnReturnType();
+
+ const is_comptime_call = block.is_comptime or modifier == .compile_time;
+ const is_inline_call = is_comptime_call or modifier == .always_inline or
+ func.ty.fnCallingConvention() == .Inline;
+ const result: *Inst = if (is_inline_call) res: {
+ const func_val = try sema.resolveConstValue(block, func_src, func);
+ const module_fn = switch (func_val.tag()) {
+ .function => func_val.castTag(.function).?.data,
+ .extern_fn => return sema.mod.fail(&block.base, call_src, "{s} call of extern function", .{
+ @as([]const u8, if (is_comptime_call) "comptime" else "inline"),
+ }),
+ else => unreachable,
+ };
+
+ // Analyze the ZIR. The same ZIR gets analyzed into a runtime function
+ // or an inlined call depending on what union tag the `label` field is
+ // set to in the `Scope.Block`.
+ // This block instruction will be used to capture the return value from the
+ // inlined function.
+ const block_inst = try sema.arena.create(Inst.Block);
+ block_inst.* = .{
+ .base = .{
+ .tag = Inst.Block.base_tag,
+ .ty = ret_type,
+ .src = call_src,
+ },
+ .body = undefined,
+ };
+ // This one is shared among sub-blocks within the same callee, but not
+ // shared among the entire inline/comptime call stack.
+ var inlining: Scope.Block.Inlining = .{
+ .merges = .{
+ .results = .{},
+ .br_list = .{},
+ .block_inst = block_inst,
+ },
+ };
+ var inline_sema: Sema = .{
+ .mod = sema.mod,
+ .gpa = sema.mod.gpa,
+ .arena = sema.arena,
+ .code = module_fn.zir,
+ .inst_map = try sema.gpa.alloc(*ir.Inst, module_fn.zir.instructions.len),
+ .owner_decl = sema.owner_decl,
+ .owner_func = sema.owner_func,
+ .func = module_fn,
+ .param_inst_list = casted_args,
+ .branch_quota = sema.branch_quota,
+ .branch_count = sema.branch_count,
+ };
+ defer sema.gpa.free(inline_sema.inst_map);
+
+ var child_block: Scope.Block = .{
+ .parent = null,
+ .sema = &inline_sema,
+ .src_decl = module_fn.owner_decl,
+ .instructions = .{},
+ .label = null,
+ .inlining = &inlining,
+ .is_comptime = is_comptime_call,
+ };
+
+ const merges = &child_block.inlining.?.merges;
+
+ defer child_block.instructions.deinit(sema.gpa);
+ defer merges.results.deinit(sema.gpa);
+ defer merges.br_list.deinit(sema.gpa);
+
+ try inline_sema.emitBackwardBranch(&child_block, call_src);
+
+ // This will have return instructions analyzed as break instructions to
+ // the block_inst above.
+ _ = try inline_sema.root(&child_block);
+
+ const result = try inline_sema.analyzeBlockBody(block, call_src, &child_block, merges);
+
+ sema.branch_quota = inline_sema.branch_quota;
+ sema.branch_count = inline_sema.branch_count;
+
+ break :res result;
+ } else res: {
+ try sema.requireRuntimeBlock(block, call_src);
+ break :res try block.addCall(call_src, ret_type, func, casted_args);
+ };
+
+ if (ensure_result_used) {
+ try sema.ensureResultUsed(block, result, call_src);
+ }
+ return result;
+}
+
+fn zirIntType(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const int_type = sema.code.instructions.items(.data)[inst].int_type;
+ const src = int_type.src();
+ const ty = try Module.makeIntType(sema.arena, int_type.signedness, int_type.bit_count);
+
+ return sema.mod.constType(sema.arena, src, ty);
+}
+
+fn zirOptionalType(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const child_type = try sema.resolveType(block, src, inst_data.operand);
+ const opt_type = try sema.mod.optionalType(sema.arena, child_type);
+
+ return sema.mod.constType(sema.arena, src, opt_type);
+}
+
+fn zirOptionalTypeFromPtrElem(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const ptr = try sema.resolveInst(inst_data.operand);
+ const elem_ty = ptr.ty.elemType();
+ const opt_ty = try sema.mod.optionalType(sema.arena, elem_ty);
+
+ return sema.mod.constType(sema.arena, inst_data.src(), opt_ty);
+}
+
+fn zirArrayType(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ // TODO these should be lazily evaluated
+ const bin_inst = sema.code.instructions.items(.data)[inst].bin;
+ const len = try sema.resolveInstConst(block, .unneeded, bin_inst.lhs);
+ const elem_type = try sema.resolveType(block, .unneeded, bin_inst.rhs);
+ const array_ty = try sema.mod.arrayType(sema.arena, len.val.toUnsignedInt(), null, elem_type);
+
+ return sema.mod.constType(sema.arena, .unneeded, array_ty);
+}
+
+fn zirArrayTypeSentinel(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ // TODO these should be lazily evaluated
+ const inst_data = sema.code.instructions.items(.data)[inst].array_type_sentinel;
+ const len = try sema.resolveInstConst(block, .unneeded, inst_data.len);
+ const extra = sema.code.extraData(zir.Inst.ArrayTypeSentinel, inst_data.payload_index).data;
+ const sentinel = try sema.resolveInstConst(block, .unneeded, extra.sentinel);
+ const elem_type = try sema.resolveType(block, .unneeded, extra.elem_type);
+ const array_ty = try sema.mod.arrayType(sema.arena, len.val.toUnsignedInt(), sentinel.val, elem_type);
+
+ return sema.mod.constType(sema.arena, .unneeded, array_ty);
+}
+
+fn zirErrorUnionType(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const extra = sema.code.extraData(zir.Inst.Bin, inst_data.payload_index).data;
+ const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
+ const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
+ const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
+ const error_union = try sema.resolveType(block, lhs_src, extra.lhs);
+ const payload = try sema.resolveType(block, rhs_src, extra.rhs);
+
+ if (error_union.zigTypeTag() != .ErrorSet) {
+ return sema.mod.fail(&block.base, lhs_src, "expected error set type, found {}", .{
+ error_union.elemType(),
+ });
+ }
+ const err_union_ty = try sema.mod.errorUnionType(sema.arena, error_union, payload);
+ return sema.mod.constType(sema.arena, src, err_union_ty);
+}
+
+fn zirErrorValue(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].str_tok;
+ const src = inst_data.src();
+
+ // Create an anonymous error set type with only this error value, and return the value.
+ const entry = try sema.mod.getErrorValue(inst_data.get(sema.code));
+ const result_type = try Type.Tag.error_set_single.create(sema.arena, entry.key);
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = result_type,
+ .val = try Value.Tag.@"error".create(sema.arena, .{
+ .name = entry.key,
+ }),
+ });
+}
+
+fn zirErrorToInt(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
+ const op = try sema.resolveInst(inst_data.operand);
+ const op_coerced = try sema.coerce(block, Type.initTag(.anyerror), op, operand_src);
+
+ if (op_coerced.value()) |val| {
+ const payload = try sema.arena.create(Value.Payload.U64);
+ payload.* = .{
+ .base = .{ .tag = .int_u64 },
+ .data = (try sema.mod.getErrorValue(val.castTag(.@"error").?.data.name)).value,
+ };
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = Type.initTag(.u16),
+ .val = Value.initPayload(&payload.base),
+ });
+ }
+
+ try sema.requireRuntimeBlock(block, src);
+ return block.addUnOp(src, Type.initTag(.u16), .error_to_int, op_coerced);
+}
+
+fn zirIntToError(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
+
+ const op = try sema.resolveInst(inst_data.operand);
+
+ if (try sema.resolveDefinedValue(block, operand_src, op)) |value| {
+ const int = value.toUnsignedInt();
+ if (int > sema.mod.global_error_set.count() or int == 0)
+ return sema.mod.fail(&block.base, operand_src, "integer value {d} represents no error", .{int});
+ const payload = try sema.arena.create(Value.Payload.Error);
+ payload.* = .{
+ .base = .{ .tag = .@"error" },
+ .data = .{ .name = sema.mod.error_name_list.items[int] },
+ };
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = Type.initTag(.anyerror),
+ .val = Value.initPayload(&payload.base),
+ });
+ }
+ try sema.requireRuntimeBlock(block, src);
+ if (block.wantSafety()) {
+ return sema.mod.fail(&block.base, src, "TODO: get max errors in compilation", .{});
+ // const is_gt_max = @panic("TODO get max errors in compilation");
+ // try sema.addSafetyCheck(block, is_gt_max, .invalid_error_code);
+ }
+ return block.addUnOp(src, Type.initTag(.anyerror), .int_to_error, op);
+}
+
+fn zirMergeErrorSets(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const extra = sema.code.extraData(zir.Inst.Bin, inst_data.payload_index).data;
+ const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
+ const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
+ const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
+ const lhs_ty = try sema.resolveType(block, lhs_src, extra.lhs);
+ const rhs_ty = try sema.resolveType(block, rhs_src, extra.rhs);
+ if (rhs_ty.zigTypeTag() != .ErrorSet)
+ return sema.mod.fail(&block.base, rhs_src, "expected error set type, found {}", .{rhs_ty});
+ if (lhs_ty.zigTypeTag() != .ErrorSet)
+ return sema.mod.fail(&block.base, lhs_src, "expected error set type, found {}", .{lhs_ty});
+
+ // Anything merged with anyerror is anyerror.
+ if (lhs_ty.tag() == .anyerror or rhs_ty.tag() == .anyerror) {
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = Type.initTag(.type),
+ .val = Value.initTag(.anyerror_type),
+ });
+ }
+ // When we support inferred error sets, we'll want to use a data structure that can
+ // represent a merged set of errors without forcing them to be resolved here. Until then
+ // we re-use the same data structure that is used for explicit error set declarations.
+ var set: std.StringHashMapUnmanaged(void) = .{};
+ defer set.deinit(sema.gpa);
+
+ switch (lhs_ty.tag()) {
+ .error_set_single => {
+ const name = lhs_ty.castTag(.error_set_single).?.data;
+ try set.put(sema.gpa, name, {});
+ },
+ .error_set => {
+ const lhs_set = lhs_ty.castTag(.error_set).?.data;
+ try set.ensureCapacity(sema.gpa, set.count() + lhs_set.names_len);
+ for (lhs_set.names_ptr[0..lhs_set.names_len]) |name| {
+ set.putAssumeCapacityNoClobber(name, {});
+ }
+ },
+ else => unreachable,
+ }
+ switch (rhs_ty.tag()) {
+ .error_set_single => {
+ const name = rhs_ty.castTag(.error_set_single).?.data;
+ try set.put(sema.gpa, name, {});
+ },
+ .error_set => {
+ const rhs_set = rhs_ty.castTag(.error_set).?.data;
+ try set.ensureCapacity(sema.gpa, set.count() + rhs_set.names_len);
+ for (rhs_set.names_ptr[0..rhs_set.names_len]) |name| {
+ set.putAssumeCapacity(name, {});
+ }
+ },
+ else => unreachable,
+ }
+
+ const new_names = try sema.arena.alloc([]const u8, set.count());
+ var it = set.iterator();
+ var i: usize = 0;
+ while (it.next()) |entry| : (i += 1) {
+ new_names[i] = entry.key;
+ }
+
+ const new_error_set = try sema.arena.create(Module.ErrorSet);
+ new_error_set.* = .{
+ .owner_decl = sema.owner_decl,
+ .node_offset = inst_data.src_node,
+ .names_ptr = new_names.ptr,
+ .names_len = @intCast(u32, new_names.len),
+ };
+ const error_set_ty = try Type.Tag.error_set.create(sema.arena, new_error_set);
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = Type.initTag(.type),
+ .val = try Value.Tag.ty.create(sema.arena, error_set_ty),
+ });
+}
+
+fn zirEnumLiteral(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].str_tok;
+ const src = inst_data.src();
+ const duped_name = try sema.arena.dupe(u8, inst_data.get(sema.code));
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = Type.initTag(.enum_literal),
+ .val = try Value.Tag.enum_literal.create(sema.arena, duped_name),
+ });
+}
+
+fn zirEnumLiteralSmall(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const name = sema.code.instructions.items(.data)[inst].small_str.get();
+ const src: LazySrcLoc = .unneeded;
+ const duped_name = try sema.arena.dupe(u8, name);
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = Type.initTag(.enum_literal),
+ .val = try Value.Tag.enum_literal.create(sema.arena, duped_name),
+ });
+}
+
+/// Pointer in, pointer out.
+fn zirOptionalPayloadPtr(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ safety_check: bool,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const optional_ptr = try sema.resolveInst(inst_data.operand);
+ assert(optional_ptr.ty.zigTypeTag() == .Pointer);
+ const src = inst_data.src();
+
+ const opt_type = optional_ptr.ty.elemType();
+ if (opt_type.zigTypeTag() != .Optional) {
+ return sema.mod.fail(&block.base, src, "expected optional type, found {}", .{opt_type});
+ }
+
+ const child_type = try opt_type.optionalChildAlloc(sema.arena);
+ const child_pointer = try sema.mod.simplePtrType(sema.arena, child_type, !optional_ptr.ty.isConstPtr(), .One);
+
+ if (optional_ptr.value()) |pointer_val| {
+ const val = try pointer_val.pointerDeref(sema.arena);
+ if (val.isNull()) {
+ return sema.mod.fail(&block.base, src, "unable to unwrap null", .{});
+ }
+ // The same Value represents the pointer to the optional and the payload.
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = child_pointer,
+ .val = pointer_val,
+ });
+ }
+
+ try sema.requireRuntimeBlock(block, src);
+ if (safety_check and block.wantSafety()) {
+ const is_non_null = try block.addUnOp(src, Type.initTag(.bool), .is_non_null_ptr, optional_ptr);
+ try sema.addSafetyCheck(block, is_non_null, .unwrap_null);
+ }
+ return block.addUnOp(src, child_pointer, .optional_payload_ptr, optional_ptr);
+}
+
+/// Value in, value out.
+fn zirOptionalPayload(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ safety_check: bool,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const operand = try sema.resolveInst(inst_data.operand);
+ const opt_type = operand.ty;
+ if (opt_type.zigTypeTag() != .Optional) {
+ return sema.mod.fail(&block.base, src, "expected optional type, found {}", .{opt_type});
+ }
+
+ const child_type = try opt_type.optionalChildAlloc(sema.arena);
+
+ if (operand.value()) |val| {
+ if (val.isNull()) {
+ return sema.mod.fail(&block.base, src, "unable to unwrap null", .{});
+ }
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = child_type,
+ .val = val,
+ });
+ }
+
+ try sema.requireRuntimeBlock(block, src);
+ if (safety_check and block.wantSafety()) {
+ const is_non_null = try block.addUnOp(src, Type.initTag(.bool), .is_non_null, operand);
+ try sema.addSafetyCheck(block, is_non_null, .unwrap_null);
+ }
+ return block.addUnOp(src, child_type, .optional_payload, operand);
+}
+
+/// Value in, value out
+fn zirErrUnionPayload(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ safety_check: bool,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const operand = try sema.resolveInst(inst_data.operand);
+ if (operand.ty.zigTypeTag() != .ErrorUnion)
+ return sema.mod.fail(&block.base, operand.src, "expected error union type, found '{}'", .{operand.ty});
+
+ if (operand.value()) |val| {
+ if (val.getError()) |name| {
+ return sema.mod.fail(&block.base, src, "caught unexpected error '{s}'", .{name});
+ }
+ const data = val.castTag(.error_union).?.data;
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = operand.ty.castTag(.error_union).?.data.payload,
+ .val = data,
+ });
+ }
+ try sema.requireRuntimeBlock(block, src);
+ if (safety_check and block.wantSafety()) {
+ const is_non_err = try block.addUnOp(src, Type.initTag(.bool), .is_err, operand);
+ try sema.addSafetyCheck(block, is_non_err, .unwrap_errunion);
+ }
+ return block.addUnOp(src, operand.ty.castTag(.error_union).?.data.payload, .unwrap_errunion_payload, operand);
+}
+
+/// Pointer in, pointer out.
+fn zirErrUnionPayloadPtr(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ safety_check: bool,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const operand = try sema.resolveInst(inst_data.operand);
+ assert(operand.ty.zigTypeTag() == .Pointer);
+
+ if (operand.ty.elemType().zigTypeTag() != .ErrorUnion)
+ return sema.mod.fail(&block.base, src, "expected error union type, found {}", .{operand.ty.elemType()});
+
+ const operand_pointer_ty = try sema.mod.simplePtrType(sema.arena, operand.ty.elemType().castTag(.error_union).?.data.payload, !operand.ty.isConstPtr(), .One);
+
+ if (operand.value()) |pointer_val| {
+ const val = try pointer_val.pointerDeref(sema.arena);
+ if (val.getError()) |name| {
+ return sema.mod.fail(&block.base, src, "caught unexpected error '{s}'", .{name});
+ }
+ const data = val.castTag(.error_union).?.data;
+ // The same Value represents the pointer to the error union and the payload.
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = operand_pointer_ty,
+ .val = try Value.Tag.ref_val.create(
+ sema.arena,
+ data,
+ ),
+ });
+ }
+
+ try sema.requireRuntimeBlock(block, src);
+ if (safety_check and block.wantSafety()) {
+ const is_non_err = try block.addUnOp(src, Type.initTag(.bool), .is_err, operand);
+ try sema.addSafetyCheck(block, is_non_err, .unwrap_errunion);
+ }
+ return block.addUnOp(src, operand_pointer_ty, .unwrap_errunion_payload_ptr, operand);
+}
+
+/// Value in, value out
+fn zirErrUnionCode(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const operand = try sema.resolveInst(inst_data.operand);
+ if (operand.ty.zigTypeTag() != .ErrorUnion)
+ return sema.mod.fail(&block.base, src, "expected error union type, found '{}'", .{operand.ty});
+
+ if (operand.value()) |val| {
+ assert(val.getError() != null);
+ const data = val.castTag(.error_union).?.data;
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = operand.ty.castTag(.error_union).?.data.error_set,
+ .val = data,
+ });
+ }
+
+ try sema.requireRuntimeBlock(block, src);
+ return block.addUnOp(src, operand.ty.castTag(.error_union).?.data.payload, .unwrap_errunion_err, operand);
+}
+
+/// Pointer in, value out
+fn zirErrUnionCodePtr(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const operand = try sema.resolveInst(inst_data.operand);
+ assert(operand.ty.zigTypeTag() == .Pointer);
+
+ if (operand.ty.elemType().zigTypeTag() != .ErrorUnion)
+ return sema.mod.fail(&block.base, src, "expected error union type, found {}", .{operand.ty.elemType()});
+
+ if (operand.value()) |pointer_val| {
+ const val = try pointer_val.pointerDeref(sema.arena);
+ assert(val.getError() != null);
+ const data = val.castTag(.error_union).?.data;
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = operand.ty.elemType().castTag(.error_union).?.data.error_set,
+ .val = data,
+ });
+ }
+
+ try sema.requireRuntimeBlock(block, src);
+ return block.addUnOp(src, operand.ty.castTag(.error_union).?.data.payload, .unwrap_errunion_err_ptr, operand);
+}
+
+fn zirEnsureErrPayloadVoid(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!void {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_tok;
+ const src = inst_data.src();
+ const operand = try sema.resolveInst(inst_data.operand);
+ if (operand.ty.zigTypeTag() != .ErrorUnion)
+ return sema.mod.fail(&block.base, src, "expected error union type, found '{}'", .{operand.ty});
+ if (operand.ty.castTag(.error_union).?.data.payload.zigTypeTag() != .Void) {
+ return sema.mod.fail(&block.base, src, "expression value is ignored", .{});
+ }
+}
+
+fn zirFnType(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index, var_args: bool) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.FnType, inst_data.payload_index);
+ const param_types = sema.code.refSlice(extra.end, extra.data.param_types_len);
+
+ return sema.fnTypeCommon(
+ block,
+ inst_data.src_node,
+ param_types,
+ extra.data.return_type,
+ .Unspecified,
+ var_args,
+ );
+}
+
+fn zirFnTypeCc(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index, var_args: bool) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const cc_src: LazySrcLoc = .{ .node_offset_fn_type_cc = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.FnTypeCc, inst_data.payload_index);
+ const param_types = sema.code.refSlice(extra.end, extra.data.param_types_len);
+
+ const cc_tv = try sema.resolveInstConst(block, cc_src, extra.data.cc);
+ // TODO once we're capable of importing and analyzing decls from
+ // std.builtin, this needs to change
+ const cc_str = cc_tv.val.castTag(.enum_literal).?.data;
+ const cc = std.meta.stringToEnum(std.builtin.CallingConvention, cc_str) orelse
+ return sema.mod.fail(&block.base, cc_src, "Unknown calling convention {s}", .{cc_str});
+ return sema.fnTypeCommon(
+ block,
+ inst_data.src_node,
+ param_types,
+ extra.data.return_type,
+ cc,
+ var_args,
+ );
+}
+
+fn fnTypeCommon(
+ sema: *Sema,
+ block: *Scope.Block,
+ src_node_offset: i32,
+ zir_param_types: []const zir.Inst.Ref,
+ zir_return_type: zir.Inst.Ref,
+ cc: std.builtin.CallingConvention,
+ var_args: bool,
+) InnerError!*Inst {
+ const src: LazySrcLoc = .{ .node_offset = src_node_offset };
+ const ret_ty_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = src_node_offset };
+ const return_type = try sema.resolveType(block, ret_ty_src, zir_return_type);
+
+ // Hot path for some common function types.
+ if (zir_param_types.len == 0 and !var_args) {
+ if (return_type.zigTypeTag() == .NoReturn and cc == .Unspecified) {
+ return sema.mod.constType(sema.arena, src, Type.initTag(.fn_noreturn_no_args));
+ }
+
+ if (return_type.zigTypeTag() == .Void and cc == .Unspecified) {
+ return sema.mod.constType(sema.arena, src, Type.initTag(.fn_void_no_args));
+ }
+
+ if (return_type.zigTypeTag() == .NoReturn and cc == .Naked) {
+ return sema.mod.constType(sema.arena, src, Type.initTag(.fn_naked_noreturn_no_args));
+ }
+
+ if (return_type.zigTypeTag() == .Void and cc == .C) {
+ return sema.mod.constType(sema.arena, src, Type.initTag(.fn_ccc_void_no_args));
+ }
+ }
+
+ const param_types = try sema.arena.alloc(Type, zir_param_types.len);
+ for (zir_param_types) |param_type, i| {
+ // TODO make a compile error from `resolveType` report the source location
+ // of the specific parameter. Will need to take a similar strategy as
+ // `resolveSwitchItemVal` to avoid resolving the source location unless
+ // we actually need to report an error.
+ param_types[i] = try sema.resolveType(block, src, param_type);
+ }
+
+ const fn_ty = try Type.Tag.function.create(sema.arena, .{
+ .param_types = param_types,
+ .return_type = return_type,
+ .cc = cc,
+ .is_var_args = var_args,
+ });
+ return sema.mod.constType(sema.arena, src, fn_ty);
+}
+
+fn zirAs(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const bin_inst = sema.code.instructions.items(.data)[inst].bin;
+ return sema.analyzeAs(block, .unneeded, bin_inst.lhs, bin_inst.rhs);
+}
+
+fn zirAsNode(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.As, inst_data.payload_index).data;
+ return sema.analyzeAs(block, src, extra.dest_type, extra.operand);
+}
+
+fn analyzeAs(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ zir_dest_type: zir.Inst.Ref,
+ zir_operand: zir.Inst.Ref,
+) InnerError!*Inst {
+ const dest_type = try sema.resolveType(block, src, zir_dest_type);
+ const operand = try sema.resolveInst(zir_operand);
+ return sema.coerce(block, dest_type, operand, src);
+}
+
+fn zirPtrtoint(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const ptr = try sema.resolveInst(inst_data.operand);
+ if (ptr.ty.zigTypeTag() != .Pointer) {
+ const ptr_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
+ return sema.mod.fail(&block.base, ptr_src, "expected pointer, found '{}'", .{ptr.ty});
+ }
+ // TODO handle known-pointer-address
+ const src = inst_data.src();
+ try sema.requireRuntimeBlock(block, src);
+ const ty = Type.initTag(.usize);
+ return block.addUnOp(src, ty, .ptrtoint, ptr);
+}
+
+fn zirFieldVal(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const field_name_src: LazySrcLoc = .{ .node_offset_field_name = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.Field, inst_data.payload_index).data;
+ const field_name = sema.code.nullTerminatedString(extra.field_name_start);
+ const object = try sema.resolveInst(extra.lhs);
+ const object_ptr = try sema.analyzeRef(block, src, object);
+ const result_ptr = try sema.namedFieldPtr(block, src, object_ptr, field_name, field_name_src);
+ return sema.analyzeLoad(block, src, result_ptr, result_ptr.src);
+}
+
+fn zirFieldPtr(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const field_name_src: LazySrcLoc = .{ .node_offset_field_name = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.Field, inst_data.payload_index).data;
+ const field_name = sema.code.nullTerminatedString(extra.field_name_start);
+ const object_ptr = try sema.resolveInst(extra.lhs);
+ return sema.namedFieldPtr(block, src, object_ptr, field_name, field_name_src);
+}
+
+fn zirFieldValNamed(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const field_name_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.FieldNamed, inst_data.payload_index).data;
+ const object = try sema.resolveInst(extra.lhs);
+ const field_name = try sema.resolveConstString(block, field_name_src, extra.field_name);
+ const object_ptr = try sema.analyzeRef(block, src, object);
+ const result_ptr = try sema.namedFieldPtr(block, src, object_ptr, field_name, field_name_src);
+ return sema.analyzeLoad(block, src, result_ptr, src);
+}
+
+fn zirFieldPtrNamed(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const field_name_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.FieldNamed, inst_data.payload_index).data;
+ const object_ptr = try sema.resolveInst(extra.lhs);
+ const field_name = try sema.resolveConstString(block, field_name_src, extra.field_name);
+ return sema.namedFieldPtr(block, src, object_ptr, field_name, field_name_src);
+}
+
+fn zirIntcast(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const dest_ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
+ const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.Bin, inst_data.payload_index).data;
+
+ const dest_type = try sema.resolveType(block, dest_ty_src, extra.lhs);
+ const operand = try sema.resolveInst(extra.rhs);
+
+ const dest_is_comptime_int = switch (dest_type.zigTypeTag()) {
+ .ComptimeInt => true,
+ .Int => false,
+ else => return sema.mod.fail(
+ &block.base,
+ dest_ty_src,
+ "expected integer type, found '{}'",
+ .{dest_type},
+ ),
+ };
+
+ switch (operand.ty.zigTypeTag()) {
+ .ComptimeInt, .Int => {},
+ else => return sema.mod.fail(
+ &block.base,
+ operand_src,
+ "expected integer type, found '{}'",
+ .{operand.ty},
+ ),
+ }
+
+ if (operand.value() != null) {
+ return sema.coerce(block, dest_type, operand, operand_src);
+ } else if (dest_is_comptime_int) {
+ return sema.mod.fail(&block.base, src, "unable to cast runtime value to 'comptime_int'", .{});
+ }
+
+ return sema.mod.fail(&block.base, src, "TODO implement analyze widen or shorten int", .{});
+}
+
+fn zirBitcast(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const dest_ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
+ const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.Bin, inst_data.payload_index).data;
+
+ const dest_type = try sema.resolveType(block, dest_ty_src, extra.lhs);
+ const operand = try sema.resolveInst(extra.rhs);
+ return sema.bitcast(block, dest_type, operand);
+}
+
+fn zirFloatcast(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const dest_ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
+ const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.Bin, inst_data.payload_index).data;
+
+ const dest_type = try sema.resolveType(block, dest_ty_src, extra.lhs);
+ const operand = try sema.resolveInst(extra.rhs);
+
+ const dest_is_comptime_float = switch (dest_type.zigTypeTag()) {
+ .ComptimeFloat => true,
+ .Float => false,
+ else => return sema.mod.fail(
+ &block.base,
+ dest_ty_src,
+ "expected float type, found '{}'",
+ .{dest_type},
+ ),
+ };
+
+ switch (operand.ty.zigTypeTag()) {
+ .ComptimeFloat, .Float, .ComptimeInt => {},
+ else => return sema.mod.fail(
+ &block.base,
+ operand_src,
+ "expected float type, found '{}'",
+ .{operand.ty},
+ ),
+ }
+
+ if (operand.value() != null) {
+ return sema.coerce(block, dest_type, operand, operand_src);
+ } else if (dest_is_comptime_float) {
+ return sema.mod.fail(&block.base, src, "unable to cast runtime value to 'comptime_float'", .{});
+ }
+
+ return sema.mod.fail(&block.base, src, "TODO implement analyze widen or shorten float", .{});
+}
+
+fn zirElemVal(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const bin_inst = sema.code.instructions.items(.data)[inst].bin;
+ const array = try sema.resolveInst(bin_inst.lhs);
+ const array_ptr = try sema.analyzeRef(block, sema.src, array);
+ const elem_index = try sema.resolveInst(bin_inst.rhs);
+ const result_ptr = try sema.elemPtr(block, sema.src, array_ptr, elem_index, sema.src);
+ return sema.analyzeLoad(block, sema.src, result_ptr, sema.src);
+}
+
+fn zirElemValNode(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const elem_index_src: LazySrcLoc = .{ .node_offset_array_access_index = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.Bin, inst_data.payload_index).data;
+ const array = try sema.resolveInst(extra.lhs);
+ const array_ptr = try sema.analyzeRef(block, src, array);
+ const elem_index = try sema.resolveInst(extra.rhs);
+ const result_ptr = try sema.elemPtr(block, src, array_ptr, elem_index, elem_index_src);
+ return sema.analyzeLoad(block, src, result_ptr, src);
+}
+
+fn zirElemPtr(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const bin_inst = sema.code.instructions.items(.data)[inst].bin;
+ const array_ptr = try sema.resolveInst(bin_inst.lhs);
+ const elem_index = try sema.resolveInst(bin_inst.rhs);
+ return sema.elemPtr(block, sema.src, array_ptr, elem_index, sema.src);
+}
+
+fn zirElemPtrNode(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const elem_index_src: LazySrcLoc = .{ .node_offset_array_access_index = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.Bin, inst_data.payload_index).data;
+ const array_ptr = try sema.resolveInst(extra.lhs);
+ const elem_index = try sema.resolveInst(extra.rhs);
+ return sema.elemPtr(block, src, array_ptr, elem_index, elem_index_src);
+}
+
+fn zirSliceStart(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.SliceStart, inst_data.payload_index).data;
+ const array_ptr = try sema.resolveInst(extra.lhs);
+ const start = try sema.resolveInst(extra.start);
+
+ return sema.analyzeSlice(block, src, array_ptr, start, null, null, .unneeded);
+}
+
+fn zirSliceEnd(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.SliceEnd, inst_data.payload_index).data;
+ const array_ptr = try sema.resolveInst(extra.lhs);
+ const start = try sema.resolveInst(extra.start);
+ const end = try sema.resolveInst(extra.end);
+
+ return sema.analyzeSlice(block, src, array_ptr, start, end, null, .unneeded);
+}
+
+fn zirSliceSentinel(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const sentinel_src: LazySrcLoc = .{ .node_offset_slice_sentinel = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.SliceSentinel, inst_data.payload_index).data;
+ const array_ptr = try sema.resolveInst(extra.lhs);
+ const start = try sema.resolveInst(extra.start);
+ const end = try sema.resolveInst(extra.end);
+ const sentinel = try sema.resolveInst(extra.sentinel);
+
+ return sema.analyzeSlice(block, src, array_ptr, start, end, sentinel, sentinel_src);
+}
+
+fn zirSwitchCapture(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ is_multi: bool,
+ is_ref: bool,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const zir_datas = sema.code.instructions.items(.data);
+ const capture_info = zir_datas[inst].switch_capture;
+ const switch_info = zir_datas[capture_info.switch_inst].pl_node;
+ const src = switch_info.src();
+
+ return sema.mod.fail(&block.base, src, "TODO implement Sema for zirSwitchCapture", .{});
+}
+
+fn zirSwitchCaptureElse(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ is_ref: bool,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const zir_datas = sema.code.instructions.items(.data);
+ const capture_info = zir_datas[inst].switch_capture;
+ const switch_info = zir_datas[capture_info.switch_inst].pl_node;
+ const src = switch_info.src();
+
+ return sema.mod.fail(&block.base, src, "TODO implement Sema for zirSwitchCaptureElse", .{});
+}
+
+fn zirSwitchBlock(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ is_ref: bool,
+ special_prong: zir.SpecialProng,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const operand_src: LazySrcLoc = .{ .node_offset_switch_operand = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.SwitchBlock, inst_data.payload_index);
+
+ const operand_ptr = try sema.resolveInst(extra.data.operand);
+ const operand = if (is_ref)
+ try sema.analyzeLoad(block, src, operand_ptr, operand_src)
+ else
+ operand_ptr;
+
+ return sema.analyzeSwitch(
+ block,
+ operand,
+ extra.end,
+ special_prong,
+ extra.data.cases_len,
+ 0,
+ inst,
+ inst_data.src_node,
+ );
+}
+
+fn zirSwitchBlockMulti(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ is_ref: bool,
+ special_prong: zir.SpecialProng,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const operand_src: LazySrcLoc = .{ .node_offset_switch_operand = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.SwitchBlockMulti, inst_data.payload_index);
+
+ const operand_ptr = try sema.resolveInst(extra.data.operand);
+ const operand = if (is_ref)
+ try sema.analyzeLoad(block, src, operand_ptr, operand_src)
+ else
+ operand_ptr;
+
+ return sema.analyzeSwitch(
+ block,
+ operand,
+ extra.end,
+ special_prong,
+ extra.data.scalar_cases_len,
+ extra.data.multi_cases_len,
+ inst,
+ inst_data.src_node,
+ );
+}
+
+fn analyzeSwitch(
+ sema: *Sema,
+ block: *Scope.Block,
+ operand: *Inst,
+ extra_end: usize,
+ special_prong: zir.SpecialProng,
+ scalar_cases_len: usize,
+ multi_cases_len: usize,
+ switch_inst: zir.Inst.Index,
+ src_node_offset: i32,
+) InnerError!*Inst {
+ const gpa = sema.gpa;
+ const special: struct { body: []const zir.Inst.Index, end: usize } = switch (special_prong) {
+ .none => .{ .body = &.{}, .end = extra_end },
+ .under, .@"else" => blk: {
+ const body_len = sema.code.extra[extra_end];
+ const extra_body_start = extra_end + 1;
+ break :blk .{
+ .body = sema.code.extra[extra_body_start..][0..body_len],
+ .end = extra_body_start + body_len,
+ };
+ },
+ };
+
+ const src: LazySrcLoc = .{ .node_offset = src_node_offset };
+ const special_prong_src: LazySrcLoc = .{ .node_offset_switch_special_prong = src_node_offset };
+ const operand_src: LazySrcLoc = .{ .node_offset_switch_operand = src_node_offset };
+
+ // Validate usage of '_' prongs.
+ if (special_prong == .under and !operand.ty.isExhaustiveEnum()) {
+ const msg = msg: {
+ const msg = try sema.mod.errMsg(
+ &block.base,
+ src,
+ "'_' prong only allowed when switching on non-exhaustive enums",
+ .{},
+ );
+ errdefer msg.destroy(gpa);
+ try sema.mod.errNote(
+ &block.base,
+ special_prong_src,
+ msg,
+ "'_' prong here",
+ .{},
+ );
+ break :msg msg;
+ };
+ return sema.mod.failWithOwnedErrorMsg(&block.base, msg);
+ }
+
+ // Validate for duplicate items, missing else prong, and invalid range.
+ switch (operand.ty.zigTypeTag()) {
+ .Enum => return sema.mod.fail(&block.base, src, "TODO validate switch .Enum", .{}),
+ .ErrorSet => return sema.mod.fail(&block.base, src, "TODO validate switch .ErrorSet", .{}),
+ .Union => return sema.mod.fail(&block.base, src, "TODO validate switch .Union", .{}),
+ .Int, .ComptimeInt => {
+ var range_set = RangeSet.init(gpa);
+ defer range_set.deinit();
+
+ var extra_index: usize = special.end;
+ {
+ var scalar_i: u32 = 0;
+ while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
+ const item_ref = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_index]);
+ extra_index += 1;
+ const body_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const body = sema.code.extra[extra_index..][0..body_len];
+ extra_index += body_len;
+
+ try sema.validateSwitchItem(
+ block,
+ &range_set,
+ item_ref,
+ src_node_offset,
+ .{ .scalar = scalar_i },
+ );
+ }
+ }
+ {
+ var multi_i: u32 = 0;
+ while (multi_i < multi_cases_len) : (multi_i += 1) {
+ const items_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const ranges_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const body_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const items = sema.code.refSlice(extra_index, items_len);
+ extra_index += items_len;
+
+ for (items) |item_ref, item_i| {
+ try sema.validateSwitchItem(
+ block,
+ &range_set,
+ item_ref,
+ src_node_offset,
+ .{ .multi = .{ .prong = multi_i, .item = @intCast(u32, item_i) } },
+ );
+ }
+
+ var range_i: u32 = 0;
+ while (range_i < ranges_len) : (range_i += 1) {
+ const item_first = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_index]);
+ extra_index += 1;
+ const item_last = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_index]);
+ extra_index += 1;
+
+ try sema.validateSwitchRange(
+ block,
+ &range_set,
+ item_first,
+ item_last,
+ src_node_offset,
+ .{ .range = .{ .prong = multi_i, .item = range_i } },
+ );
+ }
+
+ extra_index += body_len;
+ }
+ }
+
+ check_range: {
+ if (operand.ty.zigTypeTag() == .Int) {
+ var arena = std.heap.ArenaAllocator.init(gpa);
+ defer arena.deinit();
+
+ const min_int = try operand.ty.minInt(&arena, sema.mod.getTarget());
+ const max_int = try operand.ty.maxInt(&arena, sema.mod.getTarget());
+ if (try range_set.spans(min_int, max_int)) {
+ if (special_prong == .@"else") {
+ return sema.mod.fail(
+ &block.base,
+ special_prong_src,
+ "unreachable else prong; all cases already handled",
+ .{},
+ );
+ }
+ break :check_range;
+ }
+ }
+ if (special_prong != .@"else") {
+ return sema.mod.fail(
+ &block.base,
+ src,
+ "switch must handle all possibilities",
+ .{},
+ );
+ }
+ }
+ },
+ .Bool => {
+ var true_count: u8 = 0;
+ var false_count: u8 = 0;
+
+ var extra_index: usize = special.end;
+ {
+ var scalar_i: u32 = 0;
+ while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
+ const item_ref = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_index]);
+ extra_index += 1;
+ const body_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const body = sema.code.extra[extra_index..][0..body_len];
+ extra_index += body_len;
+
+ try sema.validateSwitchItemBool(
+ block,
+ &true_count,
+ &false_count,
+ item_ref,
+ src_node_offset,
+ .{ .scalar = scalar_i },
+ );
+ }
+ }
+ {
+ var multi_i: u32 = 0;
+ while (multi_i < multi_cases_len) : (multi_i += 1) {
+ const items_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const ranges_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const body_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const items = sema.code.refSlice(extra_index, items_len);
+ extra_index += items_len + body_len;
+
+ for (items) |item_ref, item_i| {
+ try sema.validateSwitchItemBool(
+ block,
+ &true_count,
+ &false_count,
+ item_ref,
+ src_node_offset,
+ .{ .multi = .{ .prong = multi_i, .item = @intCast(u32, item_i) } },
+ );
+ }
+
+ try sema.validateSwitchNoRange(block, ranges_len, operand.ty, src_node_offset);
+ }
+ }
+ switch (special_prong) {
+ .@"else" => {
+ if (true_count + false_count == 2) {
+ return sema.mod.fail(
+ &block.base,
+ src,
+ "unreachable else prong; all cases already handled",
+ .{},
+ );
+ }
+ },
+ .under, .none => {
+ if (true_count + false_count < 2) {
+ return sema.mod.fail(
+ &block.base,
+ src,
+ "switch must handle all possibilities",
+ .{},
+ );
+ }
+ },
+ }
+ },
+ .EnumLiteral, .Void, .Fn, .Pointer, .Type => {
+ if (special_prong != .@"else") {
+ return sema.mod.fail(
+ &block.base,
+ src,
+ "else prong required when switching on type '{}'",
+ .{operand.ty},
+ );
+ }
+
+ var seen_values = ValueSrcMap.init(gpa);
+ defer seen_values.deinit();
+
+ var extra_index: usize = special.end;
+ {
+ var scalar_i: u32 = 0;
+ while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
+ const item_ref = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_index]);
+ extra_index += 1;
+ const body_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const body = sema.code.extra[extra_index..][0..body_len];
+ extra_index += body_len;
+
+ try sema.validateSwitchItemSparse(
+ block,
+ &seen_values,
+ item_ref,
+ src_node_offset,
+ .{ .scalar = scalar_i },
+ );
+ }
+ }
+ {
+ var multi_i: u32 = 0;
+ while (multi_i < multi_cases_len) : (multi_i += 1) {
+ const items_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const ranges_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const body_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const items = sema.code.refSlice(extra_index, items_len);
+ extra_index += items_len + body_len;
+
+ for (items) |item_ref, item_i| {
+ try sema.validateSwitchItemSparse(
+ block,
+ &seen_values,
+ item_ref,
+ src_node_offset,
+ .{ .multi = .{ .prong = multi_i, .item = @intCast(u32, item_i) } },
+ );
+ }
+
+ try sema.validateSwitchNoRange(block, ranges_len, operand.ty, src_node_offset);
+ }
+ }
+ },
+
+ .ErrorUnion,
+ .NoReturn,
+ .Array,
+ .Struct,
+ .Undefined,
+ .Null,
+ .Optional,
+ .BoundFn,
+ .Opaque,
+ .Vector,
+ .Frame,
+ .AnyFrame,
+ .ComptimeFloat,
+ .Float,
+ => return sema.mod.fail(&block.base, operand_src, "invalid switch operand type '{}'", .{
+ operand.ty,
+ }),
+ }
+
+ if (try sema.resolveDefinedValue(block, src, operand)) |operand_val| {
+ var extra_index: usize = special.end;
+ {
+ var scalar_i: usize = 0;
+ while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
+ const item_ref = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_index]);
+ extra_index += 1;
+ const body_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const body = sema.code.extra[extra_index..][0..body_len];
+ extra_index += body_len;
+
+ // Validation above ensured these will succeed.
+ const item = sema.resolveInst(item_ref) catch unreachable;
+ const item_val = sema.resolveConstValue(block, .unneeded, item) catch unreachable;
+ if (operand_val.eql(item_val)) {
+ return sema.resolveBody(block, body);
+ }
+ }
+ }
+ {
+ var multi_i: usize = 0;
+ while (multi_i < multi_cases_len) : (multi_i += 1) {
+ const items_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const ranges_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const body_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const items = sema.code.refSlice(extra_index, items_len);
+ extra_index += items_len;
+ const body = sema.code.extra[extra_index + 2 * ranges_len ..][0..body_len];
+
+ for (items) |item_ref| {
+ // Validation above ensured these will succeed.
+ const item = sema.resolveInst(item_ref) catch unreachable;
+ const item_val = sema.resolveConstValue(block, item.src, item) catch unreachable;
+ if (operand_val.eql(item_val)) {
+ return sema.resolveBody(block, body);
+ }
+ }
+
+ var range_i: usize = 0;
+ while (range_i < ranges_len) : (range_i += 1) {
+ const item_first = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_index]);
+ extra_index += 1;
+ const item_last = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_index]);
+ extra_index += 1;
+
+ // Validation above ensured these will succeed.
+ const first_tv = sema.resolveInstConst(block, .unneeded, item_first) catch unreachable;
+ const last_tv = sema.resolveInstConst(block, .unneeded, item_last) catch unreachable;
+ if (Value.compare(operand_val, .gte, first_tv.val) and
+ Value.compare(operand_val, .lte, last_tv.val))
+ {
+ return sema.resolveBody(block, body);
+ }
+ }
+
+ extra_index += body_len;
+ }
+ }
+ return sema.resolveBody(block, special.body);
+ }
+
+ if (scalar_cases_len + multi_cases_len == 0) {
+ return sema.resolveBody(block, special.body);
+ }
+
+ try sema.requireRuntimeBlock(block, src);
+
+ const block_inst = try sema.arena.create(Inst.Block);
+ block_inst.* = .{
+ .base = .{
+ .tag = Inst.Block.base_tag,
+ .ty = undefined, // Set after analysis.
+ .src = src,
+ },
+ .body = undefined,
+ };
+
+ var child_block: Scope.Block = .{
+ .parent = block,
+ .sema = sema,
+ .src_decl = block.src_decl,
+ .instructions = .{},
+ // TODO @as here is working around a stage1 miscompilation bug :(
+ .label = @as(?Scope.Block.Label, Scope.Block.Label{
+ .zir_block = switch_inst,
+ .merges = .{
+ .results = .{},
+ .br_list = .{},
+ .block_inst = block_inst,
+ },
+ }),
+ .inlining = block.inlining,
+ .is_comptime = block.is_comptime,
+ };
+ const merges = &child_block.label.?.merges;
+ defer child_block.instructions.deinit(gpa);
+ defer merges.results.deinit(gpa);
+ defer merges.br_list.deinit(gpa);
+
+ // TODO when reworking TZIR memory layout make multi cases get generated as cases,
+ // not as part of the "else" block.
+ const cases = try sema.arena.alloc(Inst.SwitchBr.Case, scalar_cases_len);
+
+ var case_block = child_block.makeSubBlock();
+ defer case_block.instructions.deinit(gpa);
+
+ var extra_index: usize = special.end;
+
+ var scalar_i: usize = 0;
+ while (scalar_i < scalar_cases_len) : (scalar_i += 1) {
+ const item_ref = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_index]);
+ extra_index += 1;
+ const body_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const body = sema.code.extra[extra_index..][0..body_len];
+ extra_index += body_len;
+
+ case_block.instructions.shrinkRetainingCapacity(0);
+ // We validate these above; these two calls are guaranteed to succeed.
+ const item = sema.resolveInst(item_ref) catch unreachable;
+ const item_val = sema.resolveConstValue(&case_block, .unneeded, item) catch unreachable;
+
+ _ = try sema.analyzeBody(&case_block, body);
+
+ cases[scalar_i] = .{
+ .item = item_val,
+ .body = .{ .instructions = try sema.arena.dupe(*Inst, case_block.instructions.items) },
+ };
+ }
+
+ var first_else_body: Body = undefined;
+ var prev_condbr: ?*Inst.CondBr = null;
+
+ var multi_i: usize = 0;
+ while (multi_i < multi_cases_len) : (multi_i += 1) {
+ const items_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const ranges_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const body_len = sema.code.extra[extra_index];
+ extra_index += 1;
+ const items = sema.code.refSlice(extra_index, items_len);
+ extra_index += items_len;
+
+ case_block.instructions.shrinkRetainingCapacity(0);
+
+ var any_ok: ?*Inst = null;
+ const bool_ty = comptime Type.initTag(.bool);
+
+ for (items) |item_ref| {
+ const item = try sema.resolveInst(item_ref);
+ _ = try sema.resolveConstValue(&child_block, item.src, item);
+
+ const cmp_ok = try case_block.addBinOp(item.src, bool_ty, .cmp_eq, operand, item);
+ if (any_ok) |some| {
+ any_ok = try case_block.addBinOp(item.src, bool_ty, .bool_or, some, cmp_ok);
+ } else {
+ any_ok = cmp_ok;
+ }
+ }
+
+ var range_i: usize = 0;
+ while (range_i < ranges_len) : (range_i += 1) {
+ const first_ref = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_index]);
+ extra_index += 1;
+ const last_ref = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_index]);
+ extra_index += 1;
+
+ const item_first = try sema.resolveInst(first_ref);
+ const item_last = try sema.resolveInst(last_ref);
+
+ _ = try sema.resolveConstValue(&child_block, item_first.src, item_first);
+ _ = try sema.resolveConstValue(&child_block, item_last.src, item_last);
+
+ const range_src = item_first.src;
+
+ // operand >= first and operand <= last
+ const range_first_ok = try case_block.addBinOp(
+ item_first.src,
+ bool_ty,
+ .cmp_gte,
+ operand,
+ item_first,
+ );
+ const range_last_ok = try case_block.addBinOp(
+ item_last.src,
+ bool_ty,
+ .cmp_lte,
+ operand,
+ item_last,
+ );
+ const range_ok = try case_block.addBinOp(
+ range_src,
+ bool_ty,
+ .bool_and,
+ range_first_ok,
+ range_last_ok,
+ );
+ if (any_ok) |some| {
+ any_ok = try case_block.addBinOp(range_src, bool_ty, .bool_or, some, range_ok);
+ } else {
+ any_ok = range_ok;
+ }
+ }
+
+ const new_condbr = try sema.arena.create(Inst.CondBr);
+ new_condbr.* = .{
+ .base = .{
+ .tag = .condbr,
+ .ty = Type.initTag(.noreturn),
+ .src = src,
+ },
+ .condition = any_ok.?,
+ .then_body = undefined,
+ .else_body = undefined,
+ };
+ try case_block.instructions.append(gpa, &new_condbr.base);
+
+ const cond_body: Body = .{
+ .instructions = try sema.arena.dupe(*Inst, case_block.instructions.items),
+ };
+
+ case_block.instructions.shrinkRetainingCapacity(0);
+ const body = sema.code.extra[extra_index..][0..body_len];
+ extra_index += body_len;
+ _ = try sema.analyzeBody(&case_block, body);
+ new_condbr.then_body = .{
+ .instructions = try sema.arena.dupe(*Inst, case_block.instructions.items),
+ };
+ if (prev_condbr) |condbr| {
+ condbr.else_body = cond_body;
+ } else {
+ first_else_body = cond_body;
+ }
+ prev_condbr = new_condbr;
+ }
+
+ const final_else_body: Body = blk: {
+ if (special.body.len != 0) {
+ case_block.instructions.shrinkRetainingCapacity(0);
+ _ = try sema.analyzeBody(&case_block, special.body);
+ const else_body: Body = .{
+ .instructions = try sema.arena.dupe(*Inst, case_block.instructions.items),
+ };
+ if (prev_condbr) |condbr| {
+ condbr.else_body = else_body;
+ break :blk first_else_body;
+ } else {
+ break :blk else_body;
+ }
+ } else {
+ break :blk .{ .instructions = &.{} };
+ }
+ };
+
+ _ = try child_block.addSwitchBr(src, operand, cases, final_else_body);
+ return sema.analyzeBlockBody(block, src, &child_block, merges);
+}
+
+fn resolveSwitchItemVal(
+ sema: *Sema,
+ block: *Scope.Block,
+ item_ref: zir.Inst.Ref,
+ switch_node_offset: i32,
+ switch_prong_src: AstGen.SwitchProngSrc,
+ range_expand: AstGen.SwitchProngSrc.RangeExpand,
+) InnerError!Value {
+ const item = try sema.resolveInst(item_ref);
+ // We have to avoid the other helper functions here because we cannot construct a LazySrcLoc
+ // because we only have the switch AST node. Only if we know for sure we need to report
+ // a compile error do we resolve the full source locations.
+ if (item.value()) |val| {
+ if (val.isUndef()) {
+ const src = switch_prong_src.resolve(block.src_decl, switch_node_offset, range_expand);
+ return sema.failWithUseOfUndef(block, src);
+ }
+ return val;
+ }
+ const src = switch_prong_src.resolve(block.src_decl, switch_node_offset, range_expand);
+ return sema.failWithNeededComptime(block, src);
+}
+
+fn validateSwitchRange(
+ sema: *Sema,
+ block: *Scope.Block,
+ range_set: *RangeSet,
+ first_ref: zir.Inst.Ref,
+ last_ref: zir.Inst.Ref,
+ src_node_offset: i32,
+ switch_prong_src: AstGen.SwitchProngSrc,
+) InnerError!void {
+ const first_val = try sema.resolveSwitchItemVal(block, first_ref, src_node_offset, switch_prong_src, .first);
+ const last_val = try sema.resolveSwitchItemVal(block, last_ref, src_node_offset, switch_prong_src, .last);
+ const maybe_prev_src = try range_set.add(first_val, last_val, switch_prong_src);
+ return sema.validateSwitchDupe(block, maybe_prev_src, switch_prong_src, src_node_offset);
+}
+
+fn validateSwitchItem(
+ sema: *Sema,
+ block: *Scope.Block,
+ range_set: *RangeSet,
+ item_ref: zir.Inst.Ref,
+ src_node_offset: i32,
+ switch_prong_src: AstGen.SwitchProngSrc,
+) InnerError!void {
+ const item_val = try sema.resolveSwitchItemVal(block, item_ref, src_node_offset, switch_prong_src, .none);
+ const maybe_prev_src = try range_set.add(item_val, item_val, switch_prong_src);
+ return sema.validateSwitchDupe(block, maybe_prev_src, switch_prong_src, src_node_offset);
+}
+
+fn validateSwitchDupe(
+ sema: *Sema,
+ block: *Scope.Block,
+ maybe_prev_src: ?AstGen.SwitchProngSrc,
+ switch_prong_src: AstGen.SwitchProngSrc,
+ src_node_offset: i32,
+) InnerError!void {
+ const prev_prong_src = maybe_prev_src orelse return;
+ const src = switch_prong_src.resolve(block.src_decl, src_node_offset, .none);
+ const prev_src = prev_prong_src.resolve(block.src_decl, src_node_offset, .none);
+ const msg = msg: {
+ const msg = try sema.mod.errMsg(
+ &block.base,
+ src,
+ "duplicate switch value",
+ .{},
+ );
+ errdefer msg.destroy(sema.gpa);
+ try sema.mod.errNote(
+ &block.base,
+ prev_src,
+ msg,
+ "previous value here",
+ .{},
+ );
+ break :msg msg;
+ };
+ return sema.mod.failWithOwnedErrorMsg(&block.base, msg);
+}
+
+fn validateSwitchItemBool(
+ sema: *Sema,
+ block: *Scope.Block,
+ true_count: *u8,
+ false_count: *u8,
+ item_ref: zir.Inst.Ref,
+ src_node_offset: i32,
+ switch_prong_src: AstGen.SwitchProngSrc,
+) InnerError!void {
+ const item_val = try sema.resolveSwitchItemVal(block, item_ref, src_node_offset, switch_prong_src, .none);
+ if (item_val.toBool()) {
+ true_count.* += 1;
+ } else {
+ false_count.* += 1;
+ }
+ if (true_count.* + false_count.* > 2) {
+ const src = switch_prong_src.resolve(block.src_decl, src_node_offset, .none);
+ return sema.mod.fail(&block.base, src, "duplicate switch value", .{});
+ }
+}
+
+const ValueSrcMap = std.HashMap(Value, AstGen.SwitchProngSrc, Value.hash, Value.eql, std.hash_map.DefaultMaxLoadPercentage);
+
+fn validateSwitchItemSparse(
+ sema: *Sema,
+ block: *Scope.Block,
+ seen_values: *ValueSrcMap,
+ item_ref: zir.Inst.Ref,
+ src_node_offset: i32,
+ switch_prong_src: AstGen.SwitchProngSrc,
+) InnerError!void {
+ const item_val = try sema.resolveSwitchItemVal(block, item_ref, src_node_offset, switch_prong_src, .none);
+ const entry = (try seen_values.fetchPut(item_val, switch_prong_src)) orelse return;
+ return sema.validateSwitchDupe(block, entry.value, switch_prong_src, src_node_offset);
+}
+
+fn validateSwitchNoRange(
+ sema: *Sema,
+ block: *Scope.Block,
+ ranges_len: u32,
+ operand_ty: Type,
+ src_node_offset: i32,
+) InnerError!void {
+ if (ranges_len == 0)
+ return;
+
+ const operand_src: LazySrcLoc = .{ .node_offset_switch_operand = src_node_offset };
+ const range_src: LazySrcLoc = .{ .node_offset_switch_range = src_node_offset };
+
+ const msg = msg: {
+ const msg = try sema.mod.errMsg(
+ &block.base,
+ operand_src,
+ "ranges not allowed when switching on type '{}'",
+ .{operand_ty},
+ );
+ errdefer msg.destroy(sema.gpa);
+ try sema.mod.errNote(
+ &block.base,
+ range_src,
+ msg,
+ "range here",
+ .{},
+ );
+ break :msg msg;
+ };
+ return sema.mod.failWithOwnedErrorMsg(&block.base, msg);
+}
+
+fn zirImport(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node };
+ const operand = try sema.resolveConstString(block, operand_src, inst_data.operand);
+
+ const file_scope = sema.analyzeImport(block, src, operand) catch |err| switch (err) {
+ error.ImportOutsidePkgPath => {
+ return sema.mod.fail(&block.base, src, "import of file outside package path: '{s}'", .{operand});
+ },
+ error.FileNotFound => {
+ return sema.mod.fail(&block.base, src, "unable to find '{s}'", .{operand});
+ },
+ else => {
+ // TODO: make sure this gets retried and not cached
+ return sema.mod.fail(&block.base, src, "unable to open '{s}': {s}", .{ operand, @errorName(err) });
+ },
+ };
+ return sema.mod.constType(sema.arena, src, file_scope.root_container.ty);
+}
+
+fn zirShl(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+ return sema.mod.fail(&block.base, sema.src, "TODO implement zirShl", .{});
+}
+
+fn zirShr(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+ return sema.mod.fail(&block.base, sema.src, "TODO implement zirShr", .{});
+}
+
+fn zirBitwise(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ ir_tag: ir.Inst.Tag,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
+ const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
+ const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.Bin, inst_data.payload_index).data;
+ const lhs = try sema.resolveInst(extra.lhs);
+ const rhs = try sema.resolveInst(extra.rhs);
+
+ const instructions = &[_]*Inst{ lhs, rhs };
+ const resolved_type = try sema.resolvePeerTypes(block, src, instructions);
+ const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
+ const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
+
+ const scalar_type = if (resolved_type.zigTypeTag() == .Vector)
+ resolved_type.elemType()
+ else
+ resolved_type;
+
+ const scalar_tag = scalar_type.zigTypeTag();
+
+ if (lhs.ty.zigTypeTag() == .Vector and rhs.ty.zigTypeTag() == .Vector) {
+ if (lhs.ty.arrayLen() != rhs.ty.arrayLen()) {
+ return sema.mod.fail(&block.base, src, "vector length mismatch: {d} and {d}", .{
+ lhs.ty.arrayLen(),
+ rhs.ty.arrayLen(),
+ });
+ }
+ return sema.mod.fail(&block.base, src, "TODO implement support for vectors in zirBitwise", .{});
+ } else if (lhs.ty.zigTypeTag() == .Vector or rhs.ty.zigTypeTag() == .Vector) {
+ return sema.mod.fail(&block.base, src, "mixed scalar and vector operands to binary expression: '{}' and '{}'", .{
+ lhs.ty,
+ rhs.ty,
+ });
+ }
+
+ const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
+
+ if (!is_int) {
+ return sema.mod.fail(&block.base, src, "invalid operands to binary bitwise expression: '{s}' and '{s}'", .{ @tagName(lhs.ty.zigTypeTag()), @tagName(rhs.ty.zigTypeTag()) });
+ }
+
+ if (casted_lhs.value()) |lhs_val| {
+ if (casted_rhs.value()) |rhs_val| {
+ if (lhs_val.isUndef() or rhs_val.isUndef()) {
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = resolved_type,
+ .val = Value.initTag(.undef),
+ });
+ }
+ return sema.mod.fail(&block.base, src, "TODO implement comptime bitwise operations", .{});
+ }
+ }
+
+ try sema.requireRuntimeBlock(block, src);
+ return block.addBinOp(src, scalar_type, ir_tag, casted_lhs, casted_rhs);
+}
+
+fn zirBitNot(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+ return sema.mod.fail(&block.base, sema.src, "TODO implement zirBitNot", .{});
+}
+
+fn zirArrayCat(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+ return sema.mod.fail(&block.base, sema.src, "TODO implement zirArrayCat", .{});
+}
+
+fn zirArrayMul(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+ return sema.mod.fail(&block.base, sema.src, "TODO implement zirArrayMul", .{});
+}
+
+fn zirNegate(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ tag_override: zir.Inst.Tag,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
+ const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
+ const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
+ const lhs = try sema.resolveInst(.zero);
+ const rhs = try sema.resolveInst(inst_data.operand);
+
+ return sema.analyzeArithmetic(block, tag_override, lhs, rhs, src, lhs_src, rhs_src);
+}
+
+fn zirArithmetic(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const tag_override = block.sema.code.instructions.items(.tag)[inst];
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node };
+ const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node };
+ const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.Bin, inst_data.payload_index).data;
+ const lhs = try sema.resolveInst(extra.lhs);
+ const rhs = try sema.resolveInst(extra.rhs);
+
+ return sema.analyzeArithmetic(block, tag_override, lhs, rhs, src, lhs_src, rhs_src);
+}
+
+fn analyzeArithmetic(
+ sema: *Sema,
+ block: *Scope.Block,
+ zir_tag: zir.Inst.Tag,
+ lhs: *Inst,
+ rhs: *Inst,
+ src: LazySrcLoc,
+ lhs_src: LazySrcLoc,
+ rhs_src: LazySrcLoc,
+) InnerError!*Inst {
+ const instructions = &[_]*Inst{ lhs, rhs };
+ const resolved_type = try sema.resolvePeerTypes(block, src, instructions);
+ const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src);
+ const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src);
+
+ const scalar_type = if (resolved_type.zigTypeTag() == .Vector)
+ resolved_type.elemType()
+ else
+ resolved_type;
+
+ const scalar_tag = scalar_type.zigTypeTag();
+
+ if (lhs.ty.zigTypeTag() == .Vector and rhs.ty.zigTypeTag() == .Vector) {
+ if (lhs.ty.arrayLen() != rhs.ty.arrayLen()) {
+ return sema.mod.fail(&block.base, src, "vector length mismatch: {d} and {d}", .{
+ lhs.ty.arrayLen(),
+ rhs.ty.arrayLen(),
+ });
+ }
+ return sema.mod.fail(&block.base, src, "TODO implement support for vectors in zirBinOp", .{});
+ } else if (lhs.ty.zigTypeTag() == .Vector or rhs.ty.zigTypeTag() == .Vector) {
+ return sema.mod.fail(&block.base, src, "mixed scalar and vector operands to binary expression: '{}' and '{}'", .{
+ lhs.ty,
+ rhs.ty,
+ });
+ }
+
+ const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt;
+ const is_float = scalar_tag == .Float or scalar_tag == .ComptimeFloat;
+
+ if (!is_int and !(is_float and floatOpAllowed(zir_tag))) {
+ return sema.mod.fail(&block.base, src, "invalid operands to binary expression: '{s}' and '{s}'", .{ @tagName(lhs.ty.zigTypeTag()), @tagName(rhs.ty.zigTypeTag()) });
+ }
+
+ if (casted_lhs.value()) |lhs_val| {
+ if (casted_rhs.value()) |rhs_val| {
+ if (lhs_val.isUndef() or rhs_val.isUndef()) {
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = resolved_type,
+ .val = Value.initTag(.undef),
+ });
+ }
+ // incase rhs is 0, simply return lhs without doing any calculations
+ // TODO Once division is implemented we should throw an error when dividing by 0.
+ if (rhs_val.compareWithZero(.eq)) {
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = scalar_type,
+ .val = lhs_val,
+ });
+ }
+
+ const value = switch (zir_tag) {
+ .add => blk: {
+ const val = if (is_int)
+ try Module.intAdd(sema.arena, lhs_val, rhs_val)
+ else
+ try Module.floatAdd(sema.arena, scalar_type, src, lhs_val, rhs_val);
+ break :blk val;
+ },
+ .sub => blk: {
+ const val = if (is_int)
+ try Module.intSub(sema.arena, lhs_val, rhs_val)
+ else
+ try Module.floatSub(sema.arena, scalar_type, src, lhs_val, rhs_val);
+ break :blk val;
+ },
+ else => return sema.mod.fail(&block.base, src, "TODO Implement arithmetic operand '{s}'", .{@tagName(zir_tag)}),
+ };
+
+ log.debug("{s}({}, {}) result: {}", .{ @tagName(zir_tag), lhs_val, rhs_val, value });
+
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = scalar_type,
+ .val = value,
+ });
+ }
+ }
+
+ try sema.requireRuntimeBlock(block, src);
+ const ir_tag: Inst.Tag = switch (zir_tag) {
+ .add => .add,
+ .addwrap => .addwrap,
+ .sub => .sub,
+ .subwrap => .subwrap,
+ .mul => .mul,
+ .mulwrap => .mulwrap,
+ else => return sema.mod.fail(&block.base, src, "TODO implement arithmetic for operand '{s}''", .{@tagName(zir_tag)}),
+ };
+
+ return block.addBinOp(src, scalar_type, ir_tag, casted_lhs, casted_rhs);
+}
+
+fn zirLoad(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const ptr_src: LazySrcLoc = .{ .node_offset_deref_ptr = inst_data.src_node };
+ const ptr = try sema.resolveInst(inst_data.operand);
+ return sema.analyzeLoad(block, src, ptr, ptr_src);
+}
+
+fn zirAsm(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ is_volatile: bool,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const asm_source_src: LazySrcLoc = .{ .node_offset_asm_source = inst_data.src_node };
+ const ret_ty_src: LazySrcLoc = .{ .node_offset_asm_ret_ty = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.Asm, inst_data.payload_index);
+ const return_type = try sema.resolveType(block, ret_ty_src, extra.data.return_type);
+ const asm_source = try sema.resolveConstString(block, asm_source_src, extra.data.asm_source);
+
+ var extra_i = extra.end;
+ const Output = struct { name: []const u8, inst: *Inst };
+ const output: ?Output = if (extra.data.output != .none) blk: {
+ const name = sema.code.nullTerminatedString(sema.code.extra[extra_i]);
+ extra_i += 1;
+ break :blk Output{
+ .name = name,
+ .inst = try sema.resolveInst(extra.data.output),
+ };
+ } else null;
+
+ const args = try sema.arena.alloc(*Inst, extra.data.args_len);
+ const inputs = try sema.arena.alloc([]const u8, extra.data.args_len);
+ const clobbers = try sema.arena.alloc([]const u8, extra.data.clobbers_len);
+
+ for (args) |*arg| {
+ arg.* = try sema.resolveInst(@intToEnum(zir.Inst.Ref, sema.code.extra[extra_i]));
+ extra_i += 1;
+ }
+ for (inputs) |*name| {
+ name.* = sema.code.nullTerminatedString(sema.code.extra[extra_i]);
+ extra_i += 1;
+ }
+ for (clobbers) |*name| {
+ name.* = sema.code.nullTerminatedString(sema.code.extra[extra_i]);
+ extra_i += 1;
+ }
+
+ try sema.requireRuntimeBlock(block, src);
+ const asm_tzir = try sema.arena.create(Inst.Assembly);
+ asm_tzir.* = .{
+ .base = .{
+ .tag = .assembly,
+ .ty = return_type,
+ .src = src,
+ },
+ .asm_source = asm_source,
+ .is_volatile = is_volatile,
+ .output = if (output) |o| o.inst else null,
+ .output_name = if (output) |o| o.name else null,
+ .inputs = inputs,
+ .clobbers = clobbers,
+ .args = args,
+ };
+ try block.instructions.append(sema.gpa, &asm_tzir.base);
+ return &asm_tzir.base;
+}
+
+fn zirCmp(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ op: std.math.CompareOperator,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const extra = sema.code.extraData(zir.Inst.Bin, inst_data.payload_index).data;
+ const src: LazySrcLoc = inst_data.src();
+ const lhs = try sema.resolveInst(extra.lhs);
+ const rhs = try sema.resolveInst(extra.rhs);
+
+ const is_equality_cmp = switch (op) {
+ .eq, .neq => true,
+ else => false,
+ };
+ const lhs_ty_tag = lhs.ty.zigTypeTag();
+ const rhs_ty_tag = rhs.ty.zigTypeTag();
+ if (is_equality_cmp and lhs_ty_tag == .Null and rhs_ty_tag == .Null) {
+ // null == null, null != null
+ return sema.mod.constBool(sema.arena, src, op == .eq);
+ } else if (is_equality_cmp and
+ ((lhs_ty_tag == .Null and rhs_ty_tag == .Optional) or
+ rhs_ty_tag == .Null and lhs_ty_tag == .Optional))
+ {
+ // comparing null with optionals
+ const opt_operand = if (lhs_ty_tag == .Optional) lhs else rhs;
+ return sema.analyzeIsNull(block, src, opt_operand, op == .neq);
+ } else if (is_equality_cmp and
+ ((lhs_ty_tag == .Null and rhs.ty.isCPtr()) or (rhs_ty_tag == .Null and lhs.ty.isCPtr())))
+ {
+ return sema.mod.fail(&block.base, src, "TODO implement C pointer cmp", .{});
+ } else if (lhs_ty_tag == .Null or rhs_ty_tag == .Null) {
+ const non_null_type = if (lhs_ty_tag == .Null) rhs.ty else lhs.ty;
+ return sema.mod.fail(&block.base, src, "comparison of '{}' with null", .{non_null_type});
+ } else if (is_equality_cmp and
+ ((lhs_ty_tag == .EnumLiteral and rhs_ty_tag == .Union) or
+ (rhs_ty_tag == .EnumLiteral and lhs_ty_tag == .Union)))
+ {
+ return sema.mod.fail(&block.base, src, "TODO implement equality comparison between a union's tag value and an enum literal", .{});
+ } else if (lhs_ty_tag == .ErrorSet and rhs_ty_tag == .ErrorSet) {
+ if (!is_equality_cmp) {
+ return sema.mod.fail(&block.base, src, "{s} operator not allowed for errors", .{@tagName(op)});
+ }
+ if (rhs.value()) |rval| {
+ if (lhs.value()) |lval| {
+ // TODO optimisation oppurtunity: evaluate if std.mem.eql is faster with the names, or calling to Module.getErrorValue to get the values and then compare them is faster
+ return sema.mod.constBool(sema.arena, src, std.mem.eql(u8, lval.castTag(.@"error").?.data.name, rval.castTag(.@"error").?.data.name) == (op == .eq));
+ }
+ }
+ try sema.requireRuntimeBlock(block, src);
+ return block.addBinOp(src, Type.initTag(.bool), if (op == .eq) .cmp_eq else .cmp_neq, lhs, rhs);
+ } else if (lhs.ty.isNumeric() and rhs.ty.isNumeric()) {
+ // This operation allows any combination of integer and float types, regardless of the
+ // signed-ness, comptime-ness, and bit-width. So peer type resolution is incorrect for
+ // numeric types.
+ return sema.cmpNumeric(block, src, lhs, rhs, op);
+ } else if (lhs_ty_tag == .Type and rhs_ty_tag == .Type) {
+ if (!is_equality_cmp) {
+ return sema.mod.fail(&block.base, src, "{s} operator not allowed for types", .{@tagName(op)});
+ }
+ return sema.mod.constBool(sema.arena, src, lhs.value().?.eql(rhs.value().?) == (op == .eq));
+ }
+ return sema.mod.fail(&block.base, src, "TODO implement more cmp analysis", .{});
+}
+
+fn zirTypeof(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const operand = try sema.resolveInst(inst_data.operand);
+ return sema.mod.constType(sema.arena, src, operand.ty);
+}
+
+fn zirTypeofElem(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const operand_ptr = try sema.resolveInst(inst_data.operand);
+ const elem_ty = operand_ptr.ty.elemType();
+ return sema.mod.constType(sema.arena, src, elem_ty);
+}
+
+fn zirTypeofPeer(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const extra = sema.code.extraData(zir.Inst.MultiOp, inst_data.payload_index);
+ const args = sema.code.refSlice(extra.end, extra.data.operands_len);
+
+ const inst_list = try sema.gpa.alloc(*ir.Inst, extra.data.operands_len);
+ defer sema.gpa.free(inst_list);
+
+ for (args) |arg_ref, i| {
+ inst_list[i] = try sema.resolveInst(arg_ref);
+ }
+
+ const result_type = try sema.resolvePeerTypes(block, src, inst_list);
+ return sema.mod.constType(sema.arena, src, result_type);
+}
+
+fn zirBoolNot(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const uncasted_operand = try sema.resolveInst(inst_data.operand);
+
+ const bool_type = Type.initTag(.bool);
+ const operand = try sema.coerce(block, bool_type, uncasted_operand, uncasted_operand.src);
+ if (try sema.resolveDefinedValue(block, src, operand)) |val| {
+ return sema.mod.constBool(sema.arena, src, !val.toBool());
+ }
+ try sema.requireRuntimeBlock(block, src);
+ return block.addUnOp(src, bool_type, .not, operand);
+}
+
+fn zirBoolOp(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ comptime is_bool_or: bool,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const src: LazySrcLoc = .unneeded;
+ const bool_type = Type.initTag(.bool);
+ const bin_inst = sema.code.instructions.items(.data)[inst].bin;
+ const uncasted_lhs = try sema.resolveInst(bin_inst.lhs);
+ const lhs = try sema.coerce(block, bool_type, uncasted_lhs, uncasted_lhs.src);
+ const uncasted_rhs = try sema.resolveInst(bin_inst.rhs);
+ const rhs = try sema.coerce(block, bool_type, uncasted_rhs, uncasted_rhs.src);
+
+ if (lhs.value()) |lhs_val| {
+ if (rhs.value()) |rhs_val| {
+ if (is_bool_or) {
+ return sema.mod.constBool(sema.arena, src, lhs_val.toBool() or rhs_val.toBool());
+ } else {
+ return sema.mod.constBool(sema.arena, src, lhs_val.toBool() and rhs_val.toBool());
+ }
+ }
+ }
+ try sema.requireRuntimeBlock(block, src);
+ const tag: ir.Inst.Tag = if (is_bool_or) .bool_or else .bool_and;
+ return block.addBinOp(src, bool_type, tag, lhs, rhs);
+}
+
+fn zirBoolBr(
+ sema: *Sema,
+ parent_block: *Scope.Block,
+ inst: zir.Inst.Index,
+ is_bool_or: bool,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const datas = sema.code.instructions.items(.data);
+ const inst_data = datas[inst].bool_br;
+ const src: LazySrcLoc = .unneeded;
+ const lhs = try sema.resolveInst(inst_data.lhs);
+ const extra = sema.code.extraData(zir.Inst.Block, inst_data.payload_index);
+ const body = sema.code.extra[extra.end..][0..extra.data.body_len];
+
+ if (try sema.resolveDefinedValue(parent_block, src, lhs)) |lhs_val| {
+ if (lhs_val.toBool() == is_bool_or) {
+ return sema.mod.constBool(sema.arena, src, is_bool_or);
+ }
+ // comptime-known left-hand side. No need for a block here; the result
+ // is simply the rhs expression. Here we rely on there only being 1
+ // break instruction (`break_inline`).
+ return sema.resolveBody(parent_block, body);
+ }
+
+ const block_inst = try sema.arena.create(Inst.Block);
+ block_inst.* = .{
+ .base = .{
+ .tag = Inst.Block.base_tag,
+ .ty = Type.initTag(.bool),
+ .src = src,
+ },
+ .body = undefined,
+ };
+
+ var child_block = parent_block.makeSubBlock();
+ defer child_block.instructions.deinit(sema.gpa);
+
+ var then_block = child_block.makeSubBlock();
+ defer then_block.instructions.deinit(sema.gpa);
+
+ var else_block = child_block.makeSubBlock();
+ defer else_block.instructions.deinit(sema.gpa);
+
+ const lhs_block = if (is_bool_or) &then_block else &else_block;
+ const rhs_block = if (is_bool_or) &else_block else &then_block;
+
+ const lhs_result = try sema.mod.constInst(sema.arena, src, .{
+ .ty = Type.initTag(.bool),
+ .val = if (is_bool_or) Value.initTag(.bool_true) else Value.initTag(.bool_false),
+ });
+ _ = try lhs_block.addBr(src, block_inst, lhs_result);
+
+ const rhs_result = try sema.resolveBody(rhs_block, body);
+ _ = try rhs_block.addBr(src, block_inst, rhs_result);
+
+ const tzir_then_body: ir.Body = .{ .instructions = try sema.arena.dupe(*Inst, then_block.instructions.items) };
+ const tzir_else_body: ir.Body = .{ .instructions = try sema.arena.dupe(*Inst, rhs_block.instructions.items) };
+ _ = try child_block.addCondBr(src, lhs, tzir_then_body, tzir_else_body);
+
+ block_inst.body = .{
+ .instructions = try sema.arena.dupe(*Inst, child_block.instructions.items),
+ };
+ try parent_block.instructions.append(sema.gpa, &block_inst.base);
+ return &block_inst.base;
+}
+
+fn zirIsNull(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ invert_logic: bool,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const operand = try sema.resolveInst(inst_data.operand);
+ return sema.analyzeIsNull(block, src, operand, invert_logic);
+}
+
+fn zirIsNullPtr(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ invert_logic: bool,
+) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const ptr = try sema.resolveInst(inst_data.operand);
+ const loaded = try sema.analyzeLoad(block, src, ptr, src);
+ return sema.analyzeIsNull(block, src, loaded, invert_logic);
+}
+
+fn zirIsErr(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const operand = try sema.resolveInst(inst_data.operand);
+ return sema.analyzeIsErr(block, inst_data.src(), operand);
+}
+
+fn zirIsErrPtr(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const ptr = try sema.resolveInst(inst_data.operand);
+ const loaded = try sema.analyzeLoad(block, src, ptr, src);
+ return sema.analyzeIsErr(block, src, loaded);
+}
+
+fn zirCondbr(
+ sema: *Sema,
+ parent_block: *Scope.Block,
+ inst: zir.Inst.Index,
+) InnerError!zir.Inst.Index {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].pl_node;
+ const src = inst_data.src();
+ const cond_src: LazySrcLoc = .{ .node_offset_if_cond = inst_data.src_node };
+ const extra = sema.code.extraData(zir.Inst.CondBr, inst_data.payload_index);
+
+ const then_body = sema.code.extra[extra.end..][0..extra.data.then_body_len];
+ const else_body = sema.code.extra[extra.end + then_body.len ..][0..extra.data.else_body_len];
+
+ const uncasted_cond = try sema.resolveInst(extra.data.condition);
+ const cond = try sema.coerce(parent_block, Type.initTag(.bool), uncasted_cond, cond_src);
+
+ if (try sema.resolveDefinedValue(parent_block, src, cond)) |cond_val| {
+ const body = if (cond_val.toBool()) then_body else else_body;
+ _ = try sema.analyzeBody(parent_block, body);
+ return always_noreturn;
+ }
+
+ var sub_block = parent_block.makeSubBlock();
+ defer sub_block.instructions.deinit(sema.gpa);
+
+ _ = try sema.analyzeBody(&sub_block, then_body);
+ const tzir_then_body: ir.Body = .{
+ .instructions = try sema.arena.dupe(*Inst, sub_block.instructions.items),
+ };
+
+ sub_block.instructions.shrinkRetainingCapacity(0);
+
+ _ = try sema.analyzeBody(&sub_block, else_body);
+ const tzir_else_body: ir.Body = .{
+ .instructions = try sema.arena.dupe(*Inst, sub_block.instructions.items),
+ };
+
+ _ = try parent_block.addCondBr(src, cond, tzir_then_body, tzir_else_body);
+ return always_noreturn;
+}
+
+fn zirUnreachable(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!zir.Inst.Index {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].@"unreachable";
+ const src = inst_data.src();
+ const safety_check = inst_data.safety;
+ try sema.requireRuntimeBlock(block, src);
+ // TODO Add compile error for @optimizeFor occurring too late in a scope.
+ if (safety_check and block.wantSafety()) {
+ return sema.safetyPanic(block, src, .unreach);
+ } else {
+ _ = try block.addNoOp(src, Type.initTag(.noreturn), .unreach);
+ return always_noreturn;
+ }
+}
+
+fn zirRetTok(
+ sema: *Sema,
+ block: *Scope.Block,
+ inst: zir.Inst.Index,
+ need_coercion: bool,
+) InnerError!zir.Inst.Index {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_tok;
+ const operand = try sema.resolveInst(inst_data.operand);
+ const src = inst_data.src();
+
+ return sema.analyzeRet(block, operand, src, need_coercion);
+}
+
+fn zirRetNode(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!zir.Inst.Index {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const operand = try sema.resolveInst(inst_data.operand);
+ const src = inst_data.src();
+
+ return sema.analyzeRet(block, operand, src, false);
+}
+
+fn analyzeRet(
+ sema: *Sema,
+ block: *Scope.Block,
+ operand: *Inst,
+ src: LazySrcLoc,
+ need_coercion: bool,
+) InnerError!zir.Inst.Index {
+ if (block.inlining) |inlining| {
+ // We are inlining a function call; rewrite the `ret` as a `break`.
+ try inlining.merges.results.append(sema.gpa, operand);
+ _ = try block.addBr(src, inlining.merges.block_inst, operand);
+ return always_noreturn;
+ }
+
+ if (need_coercion) {
+ if (sema.func) |func| {
+ const fn_ty = func.owner_decl.typed_value.most_recent.typed_value.ty;
+ const fn_ret_ty = fn_ty.fnReturnType();
+ const casted_operand = try sema.coerce(block, fn_ret_ty, operand, src);
+ if (fn_ret_ty.zigTypeTag() == .Void)
+ _ = try block.addNoOp(src, Type.initTag(.noreturn), .retvoid)
+ else
+ _ = try block.addUnOp(src, Type.initTag(.noreturn), .ret, casted_operand);
+ return always_noreturn;
+ }
+ }
+ _ = try block.addUnOp(src, Type.initTag(.noreturn), .ret, operand);
+ return always_noreturn;
+}
+
+fn floatOpAllowed(tag: zir.Inst.Tag) bool {
+ // extend this swich as additional operators are implemented
+ return switch (tag) {
+ .add, .sub => true,
+ else => false,
+ };
+}
+
+fn zirPtrTypeSimple(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].ptr_type_simple;
+ const elem_type = try sema.resolveType(block, .unneeded, inst_data.elem_type);
+ const ty = try sema.mod.ptrType(
+ sema.arena,
+ elem_type,
+ null,
+ 0,
+ 0,
+ 0,
+ inst_data.is_mutable,
+ inst_data.is_allowzero,
+ inst_data.is_volatile,
+ inst_data.size,
+ );
+ return sema.mod.constType(sema.arena, .unneeded, ty);
+}
+
+fn zirPtrType(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const src: LazySrcLoc = .unneeded;
+ const inst_data = sema.code.instructions.items(.data)[inst].ptr_type;
+ const extra = sema.code.extraData(zir.Inst.PtrType, inst_data.payload_index);
+
+ var extra_i = extra.end;
+
+ const sentinel = if (inst_data.flags.has_sentinel) blk: {
+ const ref = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_i]);
+ extra_i += 1;
+ break :blk (try sema.resolveInstConst(block, .unneeded, ref)).val;
+ } else null;
+
+ const abi_align = if (inst_data.flags.has_align) blk: {
+ const ref = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_i]);
+ extra_i += 1;
+ break :blk try sema.resolveAlreadyCoercedInt(block, .unneeded, ref, u32);
+ } else 0;
+
+ const bit_start = if (inst_data.flags.has_bit_range) blk: {
+ const ref = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_i]);
+ extra_i += 1;
+ break :blk try sema.resolveAlreadyCoercedInt(block, .unneeded, ref, u16);
+ } else 0;
+
+ const bit_end = if (inst_data.flags.has_bit_range) blk: {
+ const ref = @intToEnum(zir.Inst.Ref, sema.code.extra[extra_i]);
+ extra_i += 1;
+ break :blk try sema.resolveAlreadyCoercedInt(block, .unneeded, ref, u16);
+ } else 0;
+
+ if (bit_end != 0 and bit_start >= bit_end * 8)
+ return sema.mod.fail(&block.base, src, "bit offset starts after end of host integer", .{});
+
+ const elem_type = try sema.resolveType(block, .unneeded, extra.data.elem_type);
+
+ const ty = try sema.mod.ptrType(
+ sema.arena,
+ elem_type,
+ sentinel,
+ abi_align,
+ bit_start,
+ bit_end,
+ inst_data.flags.is_mutable,
+ inst_data.flags.is_allowzero,
+ inst_data.flags.is_volatile,
+ inst_data.size,
+ );
+ return sema.mod.constType(sema.arena, src, ty);
+}
+
+fn zirStructInitEmpty(sema: *Sema, block: *Scope.Block, inst: zir.Inst.Index) InnerError!*Inst {
+ const tracy = trace(@src());
+ defer tracy.end();
+
+ const inst_data = sema.code.instructions.items(.data)[inst].un_node;
+ const src = inst_data.src();
+ const struct_type = try sema.resolveType(block, src, inst_data.operand);
+
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = struct_type,
+ .val = Value.initTag(.empty_struct_value),
+ });
+}
+
+fn requireFunctionBlock(sema: *Sema, block: *Scope.Block, src: LazySrcLoc) !void {
+ if (sema.func == null) {
+ return sema.mod.fail(&block.base, src, "instruction illegal outside function body", .{});
+ }
+}
+
+fn requireRuntimeBlock(sema: *Sema, block: *Scope.Block, src: LazySrcLoc) !void {
+ if (block.is_comptime) {
+ return sema.mod.fail(&block.base, src, "unable to resolve comptime value", .{});
+ }
+ try sema.requireFunctionBlock(block, src);
+}
+
+fn validateVarType(sema: *Sema, block: *Scope.Block, src: LazySrcLoc, ty: Type) !void {
+ if (!ty.isValidVarType(false)) {
+ return sema.mod.fail(&block.base, src, "variable of type '{}' must be const or comptime", .{ty});
+ }
+}
+
+pub const PanicId = enum {
+ unreach,
+ unwrap_null,
+ unwrap_errunion,
+ invalid_error_code,
+};
+
+fn addSafetyCheck(sema: *Sema, parent_block: *Scope.Block, ok: *Inst, panic_id: PanicId) !void {
+ const block_inst = try sema.arena.create(Inst.Block);
+ block_inst.* = .{
+ .base = .{
+ .tag = Inst.Block.base_tag,
+ .ty = Type.initTag(.void),
+ .src = ok.src,
+ },
+ .body = .{
+ .instructions = try sema.arena.alloc(*Inst, 1), // Only need space for the condbr.
+ },
+ };
+
+ const ok_body: ir.Body = .{
+ .instructions = try sema.arena.alloc(*Inst, 1), // Only need space for the br_void.
+ };
+ const br_void = try sema.arena.create(Inst.BrVoid);
+ br_void.* = .{
+ .base = .{
+ .tag = .br_void,
+ .ty = Type.initTag(.noreturn),
+ .src = ok.src,
+ },
+ .block = block_inst,
+ };
+ ok_body.instructions[0] = &br_void.base;
+
+ var fail_block: Scope.Block = .{
+ .parent = parent_block,
+ .sema = sema,
+ .src_decl = parent_block.src_decl,
+ .instructions = .{},
+ .inlining = parent_block.inlining,
+ .is_comptime = parent_block.is_comptime,
+ };
+
+ defer fail_block.instructions.deinit(sema.gpa);
+
+ _ = try sema.safetyPanic(&fail_block, ok.src, panic_id);
+
+ const fail_body: ir.Body = .{ .instructions = try sema.arena.dupe(*Inst, fail_block.instructions.items) };
+
+ const condbr = try sema.arena.create(Inst.CondBr);
+ condbr.* = .{
+ .base = .{
+ .tag = .condbr,
+ .ty = Type.initTag(.noreturn),
+ .src = ok.src,
+ },
+ .condition = ok,
+ .then_body = ok_body,
+ .else_body = fail_body,
+ };
+ block_inst.body.instructions[0] = &condbr.base;
+
+ try parent_block.instructions.append(sema.gpa, &block_inst.base);
+}
+
+fn safetyPanic(sema: *Sema, block: *Scope.Block, src: LazySrcLoc, panic_id: PanicId) !zir.Inst.Index {
+ // TODO Once we have a panic function to call, call it here instead of breakpoint.
+ _ = try block.addNoOp(src, Type.initTag(.void), .breakpoint);
+ _ = try block.addNoOp(src, Type.initTag(.noreturn), .unreach);
+ return always_noreturn;
+}
+
+fn emitBackwardBranch(sema: *Sema, block: *Scope.Block, src: LazySrcLoc) !void {
+ sema.branch_count += 1;
+ if (sema.branch_count > sema.branch_quota) {
+ // TODO show the "called from here" stack
+ return sema.mod.fail(&block.base, src, "evaluation exceeded {d} backwards branches", .{sema.branch_quota});
+ }
+}
+
+fn namedFieldPtr(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ object_ptr: *Inst,
+ field_name: []const u8,
+ field_name_src: LazySrcLoc,
+) InnerError!*Inst {
+ const elem_ty = switch (object_ptr.ty.zigTypeTag()) {
+ .Pointer => object_ptr.ty.elemType(),
+ else => return sema.mod.fail(&block.base, object_ptr.src, "expected pointer, found '{}'", .{object_ptr.ty}),
+ };
+ switch (elem_ty.zigTypeTag()) {
+ .Array => {
+ if (mem.eql(u8, field_name, "len")) {
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = Type.initTag(.single_const_pointer_to_comptime_int),
+ .val = try Value.Tag.ref_val.create(
+ sema.arena,
+ try Value.Tag.int_u64.create(sema.arena, elem_ty.arrayLen()),
+ ),
+ });
+ } else {
+ return sema.mod.fail(
+ &block.base,
+ field_name_src,
+ "no member named '{s}' in '{}'",
+ .{ field_name, elem_ty },
+ );
+ }
+ },
+ .Pointer => {
+ const ptr_child = elem_ty.elemType();
+ switch (ptr_child.zigTypeTag()) {
+ .Array => {
+ if (mem.eql(u8, field_name, "len")) {
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = Type.initTag(.single_const_pointer_to_comptime_int),
+ .val = try Value.Tag.ref_val.create(
+ sema.arena,
+ try Value.Tag.int_u64.create(sema.arena, ptr_child.arrayLen()),
+ ),
+ });
+ } else {
+ return sema.mod.fail(
+ &block.base,
+ field_name_src,
+ "no member named '{s}' in '{}'",
+ .{ field_name, elem_ty },
+ );
+ }
+ },
+ else => {},
+ }
+ },
+ .Type => {
+ _ = try sema.resolveConstValue(block, object_ptr.src, object_ptr);
+ const result = try sema.analyzeLoad(block, src, object_ptr, object_ptr.src);
+ const val = result.value().?;
+ const child_type = try val.toType(sema.arena);
+ switch (child_type.zigTypeTag()) {
+ .ErrorSet => {
+ // TODO resolve inferred error sets
+ const name: []const u8 = if (child_type.castTag(.error_set)) |payload| blk: {
+ const error_set = payload.data;
+ // TODO this is O(N). I'm putting off solving this until we solve inferred
+ // error sets at the same time.
+ const names = error_set.names_ptr[0..error_set.names_len];
+ for (names) |name| {
+ if (mem.eql(u8, field_name, name)) {
+ break :blk name;
+ }
+ }
+ return sema.mod.fail(&block.base, src, "no error named '{s}' in '{}'", .{
+ field_name,
+ child_type,
+ });
+ } else (try sema.mod.getErrorValue(field_name)).key;
+
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = try sema.mod.simplePtrType(sema.arena, child_type, false, .One),
+ .val = try Value.Tag.ref_val.create(
+ sema.arena,
+ try Value.Tag.@"error".create(sema.arena, .{
+ .name = name,
+ }),
+ ),
+ });
+ },
+ .Struct => {
+ const container_scope = child_type.getContainerScope();
+ if (sema.mod.lookupDeclName(&container_scope.base, field_name)) |decl| {
+ // TODO if !decl.is_pub and inDifferentFiles() "{} is private"
+ return sema.analyzeDeclRef(block, src, decl);
+ }
+
+ if (container_scope.file_scope == sema.mod.root_scope) {
+ return sema.mod.fail(&block.base, src, "root source file has no member called '{s}'", .{field_name});
+ } else {
+ return sema.mod.fail(&block.base, src, "container '{}' has no member called '{s}'", .{ child_type, field_name });
+ }
+ },
+ else => return sema.mod.fail(&block.base, src, "type '{}' does not support field access", .{child_type}),
+ }
+ },
+ .Struct => return sema.analyzeStructFieldPtr(block, src, object_ptr, field_name, field_name_src, elem_ty),
+ else => {},
+ }
+ return sema.mod.fail(&block.base, src, "type '{}' does not support field access", .{elem_ty});
+}
+
+fn analyzeStructFieldPtr(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ struct_ptr: *Inst,
+ field_name: []const u8,
+ field_name_src: LazySrcLoc,
+ elem_ty: Type,
+) InnerError!*Inst {
+ const mod = sema.mod;
+ const arena = sema.arena;
+ assert(elem_ty.zigTypeTag() == .Struct);
+
+ const struct_obj = elem_ty.castTag(.@"struct").?.data;
+
+ const field_index = struct_obj.fields.getIndex(field_name) orelse {
+ // TODO note: struct S declared here
+ return mod.fail(&block.base, field_name_src, "no field named '{s}' in struct '{}'", .{
+ field_name, elem_ty,
+ });
+ };
+ const field = struct_obj.fields.entries.items[field_index].value;
+ const ptr_field_ty = try mod.simplePtrType(arena, field.ty, true, .One);
+ // TODO comptime field access
+ try sema.requireRuntimeBlock(block, src);
+ return block.addStructFieldPtr(src, ptr_field_ty, struct_ptr, @intCast(u32, field_index));
+}
+
+fn elemPtr(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ array_ptr: *Inst,
+ elem_index: *Inst,
+ elem_index_src: LazySrcLoc,
+) InnerError!*Inst {
+ const elem_ty = switch (array_ptr.ty.zigTypeTag()) {
+ .Pointer => array_ptr.ty.elemType(),
+ else => return sema.mod.fail(&block.base, array_ptr.src, "expected pointer, found '{}'", .{array_ptr.ty}),
+ };
+ if (!elem_ty.isIndexable()) {
+ return sema.mod.fail(&block.base, src, "array access of non-array type '{}'", .{elem_ty});
+ }
+
+ if (elem_ty.isSinglePointer() and elem_ty.elemType().zigTypeTag() == .Array) {
+ // we have to deref the ptr operand to get the actual array pointer
+ const array_ptr_deref = try sema.analyzeLoad(block, src, array_ptr, array_ptr.src);
+ if (array_ptr_deref.value()) |array_ptr_val| {
+ if (elem_index.value()) |index_val| {
+ // Both array pointer and index are compile-time known.
+ const index_u64 = index_val.toUnsignedInt();
+ // @intCast here because it would have been impossible to construct a value that
+ // required a larger index.
+ const elem_ptr = try array_ptr_val.elemPtr(sema.arena, @intCast(usize, index_u64));
+ const pointee_type = elem_ty.elemType().elemType();
+
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = try Type.Tag.single_const_pointer.create(sema.arena, pointee_type),
+ .val = elem_ptr,
+ });
+ }
+ }
+ }
+
+ return sema.mod.fail(&block.base, src, "TODO implement more analyze elemptr", .{});
+}
+
+fn coerce(
+ sema: *Sema,
+ block: *Scope.Block,
+ dest_type: Type,
+ inst: *Inst,
+ inst_src: LazySrcLoc,
+) InnerError!*Inst {
+ if (dest_type.tag() == .var_args_param) {
+ return sema.coerceVarArgParam(block, inst);
+ }
+ // If the types are the same, we can return the operand.
+ if (dest_type.eql(inst.ty))
+ return inst;
+
+ const in_memory_result = coerceInMemoryAllowed(dest_type, inst.ty);
+ if (in_memory_result == .ok) {
+ return sema.bitcast(block, dest_type, inst);
+ }
+
+ // undefined to anything
+ if (inst.value()) |val| {
+ if (val.isUndef() or inst.ty.zigTypeTag() == .Undefined) {
+ return sema.mod.constInst(sema.arena, inst_src, .{ .ty = dest_type, .val = val });
+ }
+ }
+ assert(inst.ty.zigTypeTag() != .Undefined);
+
+ // T to E!T or E to E!T
+ if (dest_type.tag() == .error_union) {
+ return try sema.wrapErrorUnion(block, dest_type, inst);
+ }
+
+ // comptime known number to other number
+ if (try sema.coerceNum(block, dest_type, inst)) |some|
+ return some;
+
+ const target = sema.mod.getTarget();
+
+ switch (dest_type.zigTypeTag()) {
+ .Optional => {
+ // null to ?T
+ if (inst.ty.zigTypeTag() == .Null) {
+ return sema.mod.constInst(sema.arena, inst_src, .{ .ty = dest_type, .val = Value.initTag(.null_value) });
+ }
+
+ // T to ?T
+ var buf: Type.Payload.ElemType = undefined;
+ const child_type = dest_type.optionalChild(&buf);
+ if (child_type.eql(inst.ty)) {
+ return sema.wrapOptional(block, dest_type, inst);
+ } else if (try sema.coerceNum(block, child_type, inst)) |some| {
+ return sema.wrapOptional(block, dest_type, some);
+ }
+ },
+ .Pointer => {
+ // Coercions where the source is a single pointer to an array.
+ src_array_ptr: {
+ if (!inst.ty.isSinglePointer()) break :src_array_ptr;
+ const array_type = inst.ty.elemType();
+ if (array_type.zigTypeTag() != .Array) break :src_array_ptr;
+ const array_elem_type = array_type.elemType();
+ if (inst.ty.isConstPtr() and !dest_type.isConstPtr()) break :src_array_ptr;
+ if (inst.ty.isVolatilePtr() and !dest_type.isVolatilePtr()) break :src_array_ptr;
+
+ const dst_elem_type = dest_type.elemType();
+ switch (coerceInMemoryAllowed(dst_elem_type, array_elem_type)) {
+ .ok => {},
+ .no_match => break :src_array_ptr,
+ }
+
+ switch (dest_type.ptrSize()) {
+ .Slice => {
+ // *[N]T to []T
+ return sema.coerceArrayPtrToSlice(block, dest_type, inst);
+ },
+ .C => {
+ // *[N]T to [*c]T
+ return sema.coerceArrayPtrToMany(block, dest_type, inst);
+ },
+ .Many => {
+ // *[N]T to [*]T
+ // *[N:s]T to [*:s]T
+ const src_sentinel = array_type.sentinel();
+ const dst_sentinel = dest_type.sentinel();
+ if (src_sentinel == null and dst_sentinel == null)
+ return sema.coerceArrayPtrToMany(block, dest_type, inst);
+
+ if (src_sentinel) |src_s| {
+ if (dst_sentinel) |dst_s| {
+ if (src_s.eql(dst_s)) {
+ return sema.coerceArrayPtrToMany(block, dest_type, inst);
+ }
+ }
+ }
+ },
+ .One => {},
+ }
+ }
+ },
+ .Int => {
+ // integer widening
+ if (inst.ty.zigTypeTag() == .Int) {
+ assert(inst.value() == null); // handled above
+
+ const dst_info = dest_type.intInfo(target);
+ const src_info = inst.ty.intInfo(target);
+ if ((src_info.signedness == dst_info.signedness and dst_info.bits >= src_info.bits) or
+ // small enough unsigned ints can get casted to large enough signed ints
+ (src_info.signedness == .signed and dst_info.signedness == .unsigned and dst_info.bits > src_info.bits))
+ {
+ try sema.requireRuntimeBlock(block, inst_src);
+ return block.addUnOp(inst_src, dest_type, .intcast, inst);
+ }
+ }
+ },
+ .Float => {
+ // float widening
+ if (inst.ty.zigTypeTag() == .Float) {
+ assert(inst.value() == null); // handled above
+
+ const src_bits = inst.ty.floatBits(target);
+ const dst_bits = dest_type.floatBits(target);
+ if (dst_bits >= src_bits) {
+ try sema.requireRuntimeBlock(block, inst_src);
+ return block.addUnOp(inst_src, dest_type, .floatcast, inst);
+ }
+ }
+ },
+ else => {},
+ }
+
+ return sema.mod.fail(&block.base, inst_src, "expected {}, found {}", .{ dest_type, inst.ty });
+}
+
+const InMemoryCoercionResult = enum {
+ ok,
+ no_match,
+};
+
+fn coerceInMemoryAllowed(dest_type: Type, src_type: Type) InMemoryCoercionResult {
+ if (dest_type.eql(src_type))
+ return .ok;
+
+ // TODO: implement more of this function
+
+ return .no_match;
+}
+
+fn coerceNum(sema: *Sema, block: *Scope.Block, dest_type: Type, inst: *Inst) InnerError!?*Inst {
+ const val = inst.value() orelse return null;
+ const src_zig_tag = inst.ty.zigTypeTag();
+ const dst_zig_tag = dest_type.zigTypeTag();
+
+ const target = sema.mod.getTarget();
+
+ if (dst_zig_tag == .ComptimeInt or dst_zig_tag == .Int) {
+ if (src_zig_tag == .Float or src_zig_tag == .ComptimeFloat) {
+ if (val.floatHasFraction()) {
+ return sema.mod.fail(&block.base, inst.src, "fractional component prevents float value {} from being casted to type '{}'", .{ val, inst.ty });
+ }
+ return sema.mod.fail(&block.base, inst.src, "TODO float to int", .{});
+ } else if (src_zig_tag == .Int or src_zig_tag == .ComptimeInt) {
+ if (!val.intFitsInType(dest_type, target)) {
+ return sema.mod.fail(&block.base, inst.src, "type {} cannot represent integer value {}", .{ inst.ty, val });
+ }
+ return sema.mod.constInst(sema.arena, inst.src, .{ .ty = dest_type, .val = val });
+ }
+ } else if (dst_zig_tag == .ComptimeFloat or dst_zig_tag == .Float) {
+ if (src_zig_tag == .Float or src_zig_tag == .ComptimeFloat) {
+ const res = val.floatCast(sema.arena, dest_type, target) catch |err| switch (err) {
+ error.Overflow => return sema.mod.fail(
+ &block.base,
+ inst.src,
+ "cast of value {} to type '{}' loses information",
+ .{ val, dest_type },
+ ),
+ error.OutOfMemory => return error.OutOfMemory,
+ };
+ return sema.mod.constInst(sema.arena, inst.src, .{ .ty = dest_type, .val = res });
+ } else if (src_zig_tag == .Int or src_zig_tag == .ComptimeInt) {
+ return sema.mod.fail(&block.base, inst.src, "TODO int to float", .{});
+ }
+ }
+ return null;
+}
+
+fn coerceVarArgParam(sema: *Sema, block: *Scope.Block, inst: *Inst) !*Inst {
+ switch (inst.ty.zigTypeTag()) {
+ .ComptimeInt, .ComptimeFloat => return sema.mod.fail(&block.base, inst.src, "integer and float literals in var args function must be casted", .{}),
+ else => {},
+ }
+ // TODO implement more of this function.
+ return inst;
+}
+
+fn storePtr(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ ptr: *Inst,
+ uncasted_value: *Inst,
+) !void {
+ if (ptr.ty.isConstPtr())
+ return sema.mod.fail(&block.base, src, "cannot assign to constant", .{});
+
+ const elem_ty = ptr.ty.elemType();
+ const value = try sema.coerce(block, elem_ty, uncasted_value, src);
+ if (elem_ty.onePossibleValue() != null)
+ return;
+
+ // TODO handle comptime pointer writes
+ // TODO handle if the element type requires comptime
+
+ try sema.requireRuntimeBlock(block, src);
+ _ = try block.addBinOp(src, Type.initTag(.void), .store, ptr, value);
+}
+
+fn bitcast(sema: *Sema, block: *Scope.Block, dest_type: Type, inst: *Inst) !*Inst {
+ if (inst.value()) |val| {
+ // Keep the comptime Value representation; take the new type.
+ return sema.mod.constInst(sema.arena, inst.src, .{ .ty = dest_type, .val = val });
+ }
+ // TODO validate the type size and other compile errors
+ try sema.requireRuntimeBlock(block, inst.src);
+ return block.addUnOp(inst.src, dest_type, .bitcast, inst);
+}
+
+fn coerceArrayPtrToSlice(sema: *Sema, block: *Scope.Block, dest_type: Type, inst: *Inst) !*Inst {
+ if (inst.value()) |val| {
+ // The comptime Value representation is compatible with both types.
+ return sema.mod.constInst(sema.arena, inst.src, .{ .ty = dest_type, .val = val });
+ }
+ return sema.mod.fail(&block.base, inst.src, "TODO implement coerceArrayPtrToSlice runtime instruction", .{});
+}
+
+fn coerceArrayPtrToMany(sema: *Sema, block: *Scope.Block, dest_type: Type, inst: *Inst) !*Inst {
+ if (inst.value()) |val| {
+ // The comptime Value representation is compatible with both types.
+ return sema.mod.constInst(sema.arena, inst.src, .{ .ty = dest_type, .val = val });
+ }
+ return sema.mod.fail(&block.base, inst.src, "TODO implement coerceArrayPtrToMany runtime instruction", .{});
+}
+
+fn analyzeDeclVal(sema: *Sema, block: *Scope.Block, src: LazySrcLoc, decl: *Decl) InnerError!*Inst {
+ const decl_ref = try sema.analyzeDeclRef(block, src, decl);
+ return sema.analyzeLoad(block, src, decl_ref, src);
+}
+
+fn analyzeDeclRef(sema: *Sema, block: *Scope.Block, src: LazySrcLoc, decl: *Decl) InnerError!*Inst {
+ try sema.mod.declareDeclDependency(sema.owner_decl, decl);
+ sema.mod.ensureDeclAnalyzed(decl) catch |err| {
+ if (sema.func) |func| {
+ func.state = .dependency_failure;
+ } else {
+ sema.owner_decl.analysis = .dependency_failure;
+ }
+ return err;
+ };
+
+ const decl_tv = try decl.typedValue();
+ if (decl_tv.val.tag() == .variable) {
+ return sema.analyzeVarRef(block, src, decl_tv);
+ }
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = try sema.mod.simplePtrType(sema.arena, decl_tv.ty, false, .One),
+ .val = try Value.Tag.decl_ref.create(sema.arena, decl),
+ });
+}
+
+fn analyzeVarRef(sema: *Sema, block: *Scope.Block, src: LazySrcLoc, tv: TypedValue) InnerError!*Inst {
+ const variable = tv.val.castTag(.variable).?.data;
+
+ const ty = try sema.mod.simplePtrType(sema.arena, tv.ty, variable.is_mutable, .One);
+ if (!variable.is_mutable and !variable.is_extern) {
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = ty,
+ .val = try Value.Tag.ref_val.create(sema.arena, variable.init),
+ });
+ }
+
+ try sema.requireRuntimeBlock(block, src);
+ const inst = try sema.arena.create(Inst.VarPtr);
+ inst.* = .{
+ .base = .{
+ .tag = .varptr,
+ .ty = ty,
+ .src = src,
+ },
+ .variable = variable,
+ };
+ try block.instructions.append(sema.gpa, &inst.base);
+ return &inst.base;
+}
+
+fn analyzeRef(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ operand: *Inst,
+) InnerError!*Inst {
+ const ptr_type = try sema.mod.simplePtrType(sema.arena, operand.ty, false, .One);
+
+ if (operand.value()) |val| {
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = ptr_type,
+ .val = try Value.Tag.ref_val.create(sema.arena, val),
+ });
+ }
+
+ try sema.requireRuntimeBlock(block, src);
+ return block.addUnOp(src, ptr_type, .ref, operand);
+}
+
+fn analyzeLoad(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ ptr: *Inst,
+ ptr_src: LazySrcLoc,
+) InnerError!*Inst {
+ const elem_ty = switch (ptr.ty.zigTypeTag()) {
+ .Pointer => ptr.ty.elemType(),
+ else => return sema.mod.fail(&block.base, ptr_src, "expected pointer, found '{}'", .{ptr.ty}),
+ };
+ if (ptr.value()) |val| {
+ return sema.mod.constInst(sema.arena, src, .{
+ .ty = elem_ty,
+ .val = try val.pointerDeref(sema.arena),
+ });
+ }
+
+ try sema.requireRuntimeBlock(block, src);
+ return block.addUnOp(src, elem_ty, .load, ptr);
+}
+
+fn analyzeIsNull(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ operand: *Inst,
+ invert_logic: bool,
+) InnerError!*Inst {
+ if (operand.value()) |opt_val| {
+ const is_null = opt_val.isNull();
+ const bool_value = if (invert_logic) !is_null else is_null;
+ return sema.mod.constBool(sema.arena, src, bool_value);
+ }
+ try sema.requireRuntimeBlock(block, src);
+ const inst_tag: Inst.Tag = if (invert_logic) .is_non_null else .is_null;
+ return block.addUnOp(src, Type.initTag(.bool), inst_tag, operand);
+}
+
+fn analyzeIsErr(sema: *Sema, block: *Scope.Block, src: LazySrcLoc, operand: *Inst) InnerError!*Inst {
+ const ot = operand.ty.zigTypeTag();
+ if (ot != .ErrorSet and ot != .ErrorUnion) return sema.mod.constBool(sema.arena, src, false);
+ if (ot == .ErrorSet) return sema.mod.constBool(sema.arena, src, true);
+ assert(ot == .ErrorUnion);
+ if (operand.value()) |err_union| {
+ return sema.mod.constBool(sema.arena, src, err_union.getError() != null);
+ }
+ try sema.requireRuntimeBlock(block, src);
+ return block.addUnOp(src, Type.initTag(.bool), .is_err, operand);
+}
+
+fn analyzeSlice(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ array_ptr: *Inst,
+ start: *Inst,
+ end_opt: ?*Inst,
+ sentinel_opt: ?*Inst,
+ sentinel_src: LazySrcLoc,
+) InnerError!*Inst {
+ const ptr_child = switch (array_ptr.ty.zigTypeTag()) {
+ .Pointer => array_ptr.ty.elemType(),
+ else => return sema.mod.fail(&block.base, src, "expected pointer, found '{}'", .{array_ptr.ty}),
+ };
+
+ var array_type = ptr_child;
+ const elem_type = switch (ptr_child.zigTypeTag()) {
+ .Array => ptr_child.elemType(),
+ .Pointer => blk: {
+ if (ptr_child.isSinglePointer()) {
+ if (ptr_child.elemType().zigTypeTag() == .Array) {
+ array_type = ptr_child.elemType();
+ break :blk ptr_child.elemType().elemType();
+ }
+
+ return sema.mod.fail(&block.base, src, "slice of single-item pointer", .{});
+ }
+ break :blk ptr_child.elemType();
+ },
+ else => return sema.mod.fail(&block.base, src, "slice of non-array type '{}'", .{ptr_child}),
+ };
+
+ const slice_sentinel = if (sentinel_opt) |sentinel| blk: {
+ const casted = try sema.coerce(block, elem_type, sentinel, sentinel.src);
+ break :blk try sema.resolveConstValue(block, sentinel_src, casted);
+ } else null;
+
+ var return_ptr_size: std.builtin.TypeInfo.Pointer.Size = .Slice;
+ var return_elem_type = elem_type;
+ if (end_opt) |end| {
+ if (end.value()) |end_val| {
+ if (start.value()) |start_val| {
+ const start_u64 = start_val.toUnsignedInt();
+ const end_u64 = end_val.toUnsignedInt();
+ if (start_u64 > end_u64) {
+ return sema.mod.fail(&block.base, src, "out of bounds slice", .{});
+ }
+
+ const len = end_u64 - start_u64;
+ const array_sentinel = if (array_type.zigTypeTag() == .Array and end_u64 == array_type.arrayLen())
+ array_type.sentinel()
+ else
+ slice_sentinel;
+ return_elem_type = try sema.mod.arrayType(sema.arena, len, array_sentinel, elem_type);
+ return_ptr_size = .One;
+ }
+ }
+ }
+ const return_type = try sema.mod.ptrType(
+ sema.arena,
+ return_elem_type,
+ if (end_opt == null) slice_sentinel else null,
+ 0, // TODO alignment
+ 0,
+ 0,
+ !ptr_child.isConstPtr(),
+ ptr_child.isAllowzeroPtr(),
+ ptr_child.isVolatilePtr(),
+ return_ptr_size,
+ );
+
+ return sema.mod.fail(&block.base, src, "TODO implement analysis of slice", .{});
+}
+
+fn analyzeImport(sema: *Sema, block: *Scope.Block, src: LazySrcLoc, target_string: []const u8) !*Scope.File {
+ const cur_pkg = block.getFileScope().pkg;
+ const cur_pkg_dir_path = cur_pkg.root_src_directory.path orelse ".";
+ const found_pkg = cur_pkg.table.get(target_string);
+
+ const resolved_path = if (found_pkg) |pkg|
+ try std.fs.path.resolve(sema.gpa, &[_][]const u8{ pkg.root_src_directory.path orelse ".", pkg.root_src_path })
+ else
+ try std.fs.path.resolve(sema.gpa, &[_][]const u8{ cur_pkg_dir_path, target_string });
+ errdefer sema.gpa.free(resolved_path);
+
+ if (sema.mod.import_table.get(resolved_path)) |some| {
+ sema.gpa.free(resolved_path);
+ return some;
+ }
+
+ if (found_pkg == null) {
+ const resolved_root_path = try std.fs.path.resolve(sema.gpa, &[_][]const u8{cur_pkg_dir_path});
+ defer sema.gpa.free(resolved_root_path);
+
+ if (!mem.startsWith(u8, resolved_path, resolved_root_path)) {
+ return error.ImportOutsidePkgPath;
+ }
+ }
+
+ // TODO Scope.Container arena for ty and sub_file_path
+ const file_scope = try sema.gpa.create(Scope.File);
+ errdefer sema.gpa.destroy(file_scope);
+ const struct_ty = try Type.Tag.empty_struct.create(sema.gpa, &file_scope.root_container);
+ errdefer sema.gpa.destroy(struct_ty.castTag(.empty_struct).?);
+
+ file_scope.* = .{
+ .sub_file_path = resolved_path,
+ .source = .{ .unloaded = {} },
+ .tree = undefined,
+ .status = .never_loaded,
+ .pkg = found_pkg orelse cur_pkg,
+ .root_container = .{
+ .file_scope = file_scope,
+ .decls = .{},
+ .ty = struct_ty,
+ },
+ };
+ sema.mod.analyzeContainer(&file_scope.root_container) catch |err| switch (err) {
+ error.AnalysisFail => {
+ assert(sema.mod.comp.totalErrorCount() != 0);
+ },
+ else => |e| return e,
+ };
+ try sema.mod.import_table.put(sema.gpa, file_scope.sub_file_path, file_scope);
+ return file_scope;
+}
+
+/// Asserts that lhs and rhs types are both numeric.
+fn cmpNumeric(
+ sema: *Sema,
+ block: *Scope.Block,
+ src: LazySrcLoc,
+ lhs: *Inst,
+ rhs: *Inst,
+ op: std.math.CompareOperator,
+) InnerError!*Inst {
+ assert(lhs.ty.isNumeric());
+ assert(rhs.ty.isNumeric());
+
+ const lhs_ty_tag = lhs.ty.zigTypeTag();
+ const rhs_ty_tag = rhs.ty.zigTypeTag();
+
+ if (lhs_ty_tag == .Vector and rhs_ty_tag == .Vector) {
+ if (lhs.ty.arrayLen() != rhs.ty.arrayLen()) {
+ return sema.mod.fail(&block.base, src, "vector length mismatch: {d} and {d}", .{
+ lhs.ty.arrayLen(),
+ rhs.ty.arrayLen(),
+ });
+ }
+ return sema.mod.fail(&block.base, src, "TODO implement support for vectors in cmpNumeric", .{});
+ } else if (lhs_ty_tag == .Vector or rhs_ty_tag == .Vector) {
+ return sema.mod.fail(&block.base, src, "mixed scalar and vector operands to comparison operator: '{}' and '{}'", .{
+ lhs.ty,
+ rhs.ty,
+ });
+ }
+
+ if (lhs.value()) |lhs_val| {
+ if (rhs.value()) |rhs_val| {
+ return sema.mod.constBool(sema.arena, src, Value.compare(lhs_val, op, rhs_val));
+ }
+ }
+
+ // TODO handle comparisons against lazy zero values
+ // Some values can be compared against zero without being runtime known or without forcing
+ // a full resolution of their value, for example `@sizeOf(@Frame(function))` is known to
+ // always be nonzero, and we benefit from not forcing the full evaluation and stack frame layout
+ // of this function if we don't need to.
+
+ // It must be a runtime comparison.
+ try sema.requireRuntimeBlock(block, src);
+ // For floats, emit a float comparison instruction.
+ const lhs_is_float = switch (lhs_ty_tag) {
+ .Float, .ComptimeFloat => true,
+ else => false,
+ };
+ const rhs_is_float = switch (rhs_ty_tag) {
+ .Float, .ComptimeFloat => true,
+ else => false,
+ };
+ const target = sema.mod.getTarget();
+ if (lhs_is_float and rhs_is_float) {
+ // Implicit cast the smaller one to the larger one.
+ const dest_type = x: {
+ if (lhs_ty_tag == .ComptimeFloat) {
+ break :x rhs.ty;
+ } else if (rhs_ty_tag == .ComptimeFloat) {
+ break :x lhs.ty;
+ }
+ if (lhs.ty.floatBits(target) >= rhs.ty.floatBits(target)) {
+ break :x lhs.ty;
+ } else {
+ break :x rhs.ty;
+ }
+ };
+ const casted_lhs = try sema.coerce(block, dest_type, lhs, lhs.src);
+ const casted_rhs = try sema.coerce(block, dest_type, rhs, rhs.src);
+ return block.addBinOp(src, dest_type, Inst.Tag.fromCmpOp(op), casted_lhs, casted_rhs);
+ }
+ // For mixed unsigned integer sizes, implicit cast both operands to the larger integer.
+ // For mixed signed and unsigned integers, implicit cast both operands to a signed
+ // integer with + 1 bit.
+ // For mixed floats and integers, extract the integer part from the float, cast that to
+ // a signed integer with mantissa bits + 1, and if there was any non-integral part of the float,
+ // add/subtract 1.
+ const lhs_is_signed = if (lhs.value()) |lhs_val|
+ lhs_val.compareWithZero(.lt)
+ else
+ (lhs.ty.isFloat() or lhs.ty.isSignedInt());
+ const rhs_is_signed = if (rhs.value()) |rhs_val|
+ rhs_val.compareWithZero(.lt)
+ else
+ (rhs.ty.isFloat() or rhs.ty.isSignedInt());
+ const dest_int_is_signed = lhs_is_signed or rhs_is_signed;
+
+ var dest_float_type: ?Type = null;
+
+ var lhs_bits: usize = undefined;
+ if (lhs.value()) |lhs_val| {
+ if (lhs_val.isUndef())
+ return sema.mod.constUndef(sema.arena, src, Type.initTag(.bool));
+ const is_unsigned = if (lhs_is_float) x: {
+ var bigint_space: Value.BigIntSpace = undefined;
+ var bigint = try lhs_val.toBigInt(&bigint_space).toManaged(sema.gpa);
+ defer bigint.deinit();
+ const zcmp = lhs_val.orderAgainstZero();
+ if (lhs_val.floatHasFraction()) {
+ switch (op) {
+ .eq => return sema.mod.constBool(sema.arena, src, false),
+ .neq => return sema.mod.constBool(sema.arena, src, true),
+ else => {},
+ }
+ if (zcmp == .lt) {
+ try bigint.addScalar(bigint.toConst(), -1);
+ } else {
+ try bigint.addScalar(bigint.toConst(), 1);
+ }
+ }
+ lhs_bits = bigint.toConst().bitCountTwosComp();
+ break :x (zcmp != .lt);
+ } else x: {
+ lhs_bits = lhs_val.intBitCountTwosComp();
+ break :x (lhs_val.orderAgainstZero() != .lt);
+ };
+ lhs_bits += @boolToInt(is_unsigned and dest_int_is_signed);
+ } else if (lhs_is_float) {
+ dest_float_type = lhs.ty;
+ } else {
+ const int_info = lhs.ty.intInfo(target);
+ lhs_bits = int_info.bits + @boolToInt(int_info.signedness == .unsigned and dest_int_is_signed);
+ }
+
+ var rhs_bits: usize = undefined;
+ if (rhs.value()) |rhs_val| {
+ if (rhs_val.isUndef())
+ return sema.mod.constUndef(sema.arena, src, Type.initTag(.bool));
+ const is_unsigned = if (rhs_is_float) x: {
+ var bigint_space: Value.BigIntSpace = undefined;
+ var bigint = try rhs_val.toBigInt(&bigint_space).toManaged(sema.gpa);
+ defer bigint.deinit();
+ const zcmp = rhs_val.orderAgainstZero();
+ if (rhs_val.floatHasFraction()) {
+ switch (op) {
+ .eq => return sema.mod.constBool(sema.arena, src, false),
+ .neq => return sema.mod.constBool(sema.arena, src, true),
+ else => {},
+ }
+ if (zcmp == .lt) {
+ try bigint.addScalar(bigint.toConst(), -1);
+ } else {
+ try bigint.addScalar(bigint.toConst(), 1);
+ }
+ }
+ rhs_bits = bigint.toConst().bitCountTwosComp();
+ break :x (zcmp != .lt);
+ } else x: {
+ rhs_bits = rhs_val.intBitCountTwosComp();
+ break :x (rhs_val.orderAgainstZero() != .lt);
+ };
+ rhs_bits += @boolToInt(is_unsigned and dest_int_is_signed);
+ } else if (rhs_is_float) {
+ dest_float_type = rhs.ty;
+ } else {
+ const int_info = rhs.ty.intInfo(target);
+ rhs_bits = int_info.bits + @boolToInt(int_info.signedness == .unsigned and dest_int_is_signed);
+ }
+
+ const dest_type = if (dest_float_type) |ft| ft else blk: {
+ const max_bits = std.math.max(lhs_bits, rhs_bits);
+ const casted_bits = std.math.cast(u16, max_bits) catch |err| switch (err) {
+ error.Overflow => return sema.mod.fail(&block.base, src, "{d} exceeds maximum integer bit count", .{max_bits}),
+ };
+ const signedness: std.builtin.Signedness = if (dest_int_is_signed) .signed else .unsigned;
+ break :blk try Module.makeIntType(sema.arena, signedness, casted_bits);
+ };
+ const casted_lhs = try sema.coerce(block, dest_type, lhs, lhs.src);
+ const casted_rhs = try sema.coerce(block, dest_type, rhs, rhs.src);
+
+ return block.addBinOp(src, Type.initTag(.bool), Inst.Tag.fromCmpOp(op), casted_lhs, casted_rhs);
+}
+
+fn wrapOptional(sema: *Sema, block: *Scope.Block, dest_type: Type, inst: *Inst) !*Inst {
+ if (inst.value()) |val| {
+ return sema.mod.constInst(sema.arena, inst.src, .{ .ty = dest_type, .val = val });
+ }
+
+ try sema.requireRuntimeBlock(block, inst.src);
+ return block.addUnOp(inst.src, dest_type, .wrap_optional, inst);
+}
+
+fn wrapErrorUnion(sema: *Sema, block: *Scope.Block, dest_type: Type, inst: *Inst) !*Inst {
+ // TODO deal with inferred error sets
+ const err_union = dest_type.castTag(.error_union).?;
+ if (inst.value()) |val| {
+ const to_wrap = if (inst.ty.zigTypeTag() != .ErrorSet) blk: {
+ _ = try sema.coerce(block, err_union.data.payload, inst, inst.src);
+ break :blk val;
+ } else switch (err_union.data.error_set.tag()) {
+ .anyerror => val,
+ .error_set_single => blk: {
+ const expected_name = val.castTag(.@"error").?.data.name;
+ const n = err_union.data.error_set.castTag(.error_set_single).?.data;
+ if (!mem.eql(u8, expected_name, n)) {
+ return sema.mod.fail(
+ &block.base,
+ inst.src,
+ "expected type '{}', found type '{}'",
+ .{ err_union.data.error_set, inst.ty },
+ );
+ }
+ break :blk val;
+ },
+ .error_set => blk: {
+ const expected_name = val.castTag(.@"error").?.data.name;
+ const error_set = err_union.data.error_set.castTag(.error_set).?.data;
+ const names = error_set.names_ptr[0..error_set.names_len];
+ // TODO this is O(N). I'm putting off solving this until we solve inferred
+ // error sets at the same time.
+ const found = for (names) |name| {
+ if (mem.eql(u8, expected_name, name)) break true;
+ } else false;
+ if (!found) {
+ return sema.mod.fail(
+ &block.base,
+ inst.src,
+ "expected type '{}', found type '{}'",
+ .{ err_union.data.error_set, inst.ty },
+ );
+ }
+ break :blk val;
+ },
+ else => unreachable,
+ };
+
+ return sema.mod.constInst(sema.arena, inst.src, .{
+ .ty = dest_type,
+ // creating a SubValue for the error_union payload
+ .val = try Value.Tag.error_union.create(
+ sema.arena,
+ to_wrap,
+ ),
+ });
+ }
+
+ try sema.requireRuntimeBlock(block, inst.src);
+
+ // we are coercing from E to E!T
+ if (inst.ty.zigTypeTag() == .ErrorSet) {
+ var coerced = try sema.coerce(block, err_union.data.error_set, inst, inst.src);
+ return block.addUnOp(inst.src, dest_type, .wrap_errunion_err, coerced);
+ } else {
+ var coerced = try sema.coerce(block, err_union.data.payload, inst, inst.src);
+ return block.addUnOp(inst.src, dest_type, .wrap_errunion_payload, coerced);
+ }
+}
+
+fn resolvePeerTypes(sema: *Sema, block: *Scope.Block, src: LazySrcLoc, instructions: []*Inst) !Type {
+ if (instructions.len == 0)
+ return Type.initTag(.noreturn);
+
+ if (instructions.len == 1)
+ return instructions[0].ty;
+
+ const target = sema.mod.getTarget();
+
+ var chosen = instructions[0];
+ for (instructions[1..]) |candidate| {
+ if (candidate.ty.eql(chosen.ty))
+ continue;
+ if (candidate.ty.zigTypeTag() == .NoReturn)
+ continue;
+ if (chosen.ty.zigTypeTag() == .NoReturn) {
+ chosen = candidate;
+ continue;
+ }
+ if (candidate.ty.zigTypeTag() == .Undefined)
+ continue;
+ if (chosen.ty.zigTypeTag() == .Undefined) {
+ chosen = candidate;
+ continue;
+ }
+ if (chosen.ty.isInt() and
+ candidate.ty.isInt() and
+ chosen.ty.isSignedInt() == candidate.ty.isSignedInt())
+ {
+ if (chosen.ty.intInfo(target).bits < candidate.ty.intInfo(target).bits) {
+ chosen = candidate;
+ }
+ continue;
+ }
+ if (chosen.ty.isFloat() and candidate.ty.isFloat()) {
+ if (chosen.ty.floatBits(target) < candidate.ty.floatBits(target)) {
+ chosen = candidate;
+ }
+ continue;
+ }
+
+ if (chosen.ty.zigTypeTag() == .ComptimeInt and candidate.ty.isInt()) {
+ chosen = candidate;
+ continue;
+ }
+
+ if (chosen.ty.isInt() and candidate.ty.zigTypeTag() == .ComptimeInt) {
+ continue;
+ }
+
+ // TODO error notes pointing out each type
+ return sema.mod.fail(&block.base, src, "incompatible types: '{}' and '{}'", .{ chosen.ty, candidate.ty });
+ }
+
+ return chosen.ty;
+}