aboutsummaryrefslogtreecommitdiff
path: root/lib/std/simd.zig
diff options
context:
space:
mode:
authorAndrew Kelley <andrew@ziglang.org>2022-07-01 15:52:54 -0700
committerAndrew Kelley <andrew@ziglang.org>2022-07-01 15:52:54 -0700
commitc89dd15e1be4959800dc7092d7dd4375253db7bc (patch)
treeca184ae53592efa21e67128a5f891d642d7f1118 /lib/std/simd.zig
parent5466e87fce581f2ef90ac23bb80b1dbc05836fc6 (diff)
parent2360f8c490f3ec684ed64ff28e8c1fade249070b (diff)
downloadzig-c89dd15e1be4959800dc7092d7dd4375253db7bc.tar.gz
zig-c89dd15e1be4959800dc7092d7dd4375253db7bc.zip
Merge remote-tracking branch 'origin/master' into llvm14
Diffstat (limited to 'lib/std/simd.zig')
-rw-r--r--lib/std/simd.zig409
1 files changed, 409 insertions, 0 deletions
diff --git a/lib/std/simd.zig b/lib/std/simd.zig
new file mode 100644
index 0000000000..a30622aef6
--- /dev/null
+++ b/lib/std/simd.zig
@@ -0,0 +1,409 @@
+//! This module provides functions for working conveniently with SIMD (Single Instruction; Multiple Data),
+//! which may offer a potential boost in performance on some targets by performing the same operations on
+//! multiple elements at once.
+//! Please be aware that some functions are known to not work on MIPS.
+
+const std = @import("std");
+const builtin = @import("builtin");
+
+pub fn suggestVectorSizeForCpu(comptime T: type, cpu: std.Target.Cpu) ?usize {
+ switch (cpu.arch) {
+ .x86_64 => {
+ // Note: This is mostly just guesswork. It'd be great if someone more qualified were to take a
+ // proper look at this.
+
+ if (T == bool and std.Target.x86.featureSetHas(.prefer_mask_registers)) return 64;
+
+ const vector_bit_size = blk: {
+ if (std.Target.x86.featureSetHas(.avx512f)) break :blk 512;
+ if (std.Target.x86.featureSetHas(.prefer_256_bit)) break :blk 256;
+ if (std.Target.x86.featureSetHas(.prefer_128_bit)) break :blk 128;
+ return null;
+ };
+ const element_bit_size = std.math.max(8, std.math.ceilPowerOfTwo(T, @bitSizeOf(T)));
+ return @divExact(vector_bit_size, element_bit_size);
+ },
+ else => {
+ return null;
+ },
+ }
+}
+
+/// Suggests a target-dependant vector size for a given type, or null if scalars are recommended.
+/// Not yet implemented for every CPU architecture.
+pub fn suggestVectorSize(comptime T: type) ?usize {
+ return suggestVectorSizeForCpu(T, builtin.cpu);
+}
+
+fn vectorLength(comptime VectorType: type) comptime_int {
+ return switch (@typeInfo(VectorType)) {
+ .Vector => |info| info.len,
+ .Array => |info| info.len,
+ else => @compileError("Invalid type " ++ @typeName(VectorType)),
+ };
+}
+
+/// Returns the smallest type of unsigned ints capable of indexing any element within the given vector type.
+pub fn VectorIndex(comptime VectorType: type) type {
+ return std.math.IntFittingRange(0, vectorLength(VectorType) - 1);
+}
+
+/// Returns the smallest type of unsigned ints capable of holding the length of the given vector type.
+pub fn VectorCount(comptime VectorType: type) type {
+ return std.math.IntFittingRange(0, vectorLength(VectorType));
+}
+
+/// Returns a vector containing the first `len` integers in order from 0 to `len`-1.
+/// For example, `iota(i32, 8)` will return a vector containing `.{0, 1, 2, 3, 4, 5, 6, 7}`.
+pub fn iota(comptime T: type, comptime len: usize) @Vector(len, T) {
+ var out: [len]T = undefined;
+ for (out) |*element, i| {
+ element.* = switch (@typeInfo(T)) {
+ .Int => @intCast(T, i),
+ .Float => @intToFloat(T, i),
+ else => @compileError("Can't use type " ++ @typeName(T) ++ " in iota."),
+ };
+ }
+ return @as(@Vector(len, T), out);
+}
+
+/// Returns a vector containing the same elements as the input, but repeated until the desired length is reached.
+/// For example, `repeat(8, [_]u32{1, 2, 3})` will return a vector containing `.{1, 2, 3, 1, 2, 3, 1, 2}`.
+pub fn repeat(comptime len: usize, vec: anytype) @Vector(len, std.meta.Child(@TypeOf(vec))) {
+ const Child = std.meta.Child(@TypeOf(vec));
+
+ return @shuffle(Child, vec, undefined, iota(i32, len) % @splat(len, @intCast(i32, vectorLength(@TypeOf(vec)))));
+}
+
+/// Returns a vector containing all elements of the first vector at the lower indices followed by all elements of the second vector
+/// at the higher indices.
+pub fn join(a: anytype, b: anytype) @Vector(vectorLength(@TypeOf(a)) + vectorLength(@TypeOf(b)), std.meta.Child(@TypeOf(a))) {
+ const Child = std.meta.Child(@TypeOf(a));
+ const a_len = vectorLength(@TypeOf(a));
+ const b_len = vectorLength(@TypeOf(b));
+
+ return @shuffle(Child, a, b, @as([a_len]i32, iota(i32, a_len)) ++ @as([b_len]i32, ~iota(i32, b_len)));
+}
+
+/// Returns a vector whose elements alternates between those of each input vector.
+/// For example, `interlace(.{[4]u32{11, 12, 13, 14}, [4]u32{21, 22, 23, 24}})` returns a vector containing `.{11, 21, 12, 22, 13, 23, 14, 24}`.
+pub fn interlace(vecs: anytype) @Vector(vectorLength(@TypeOf(vecs[0])) * vecs.len, std.meta.Child(@TypeOf(vecs[0]))) {
+ // interlace doesn't work on MIPS, for some reason.
+ // Notes from earlier debug attempt:
+ // The indices are correct. The problem seems to be with the @shuffle builtin.
+ // On MIPS, the test that interlaces small_base gives { 0, 2, 0, 0, 64, 255, 248, 200, 0, 0 }.
+ // Calling this with two inputs seems to work fine, but I'll let the compile error trigger for all inputs, just to be safe.
+ comptime if (builtin.cpu.arch.isMIPS()) @compileError("TODO: Find out why interlace() doesn't work on MIPS");
+
+ const VecType = @TypeOf(vecs[0]);
+ const vecs_arr = @as([vecs.len]VecType, vecs);
+ const Child = std.meta.Child(@TypeOf(vecs_arr[0]));
+
+ if (vecs_arr.len == 1) return vecs_arr[0];
+
+ const a_vec_count = (1 + vecs_arr.len) >> 1;
+ const b_vec_count = vecs_arr.len >> 1;
+
+ const a = interlace(@ptrCast(*const [a_vec_count]VecType, vecs_arr[0..a_vec_count]).*);
+ const b = interlace(@ptrCast(*const [b_vec_count]VecType, vecs_arr[a_vec_count..]).*);
+
+ const a_len = vectorLength(@TypeOf(a));
+ const b_len = vectorLength(@TypeOf(b));
+ const len = a_len + b_len;
+
+ const indices = comptime blk: {
+ const count_up = iota(i32, len);
+ const cycle = @divFloor(count_up, @splat(len, @intCast(i32, vecs_arr.len)));
+ const select_mask = repeat(len, join(@splat(a_vec_count, true), @splat(b_vec_count, false)));
+ const a_indices = count_up - cycle * @splat(len, @intCast(i32, b_vec_count));
+ const b_indices = shiftElementsRight(count_up - cycle * @splat(len, @intCast(i32, a_vec_count)), a_vec_count, 0);
+ break :blk @select(i32, select_mask, a_indices, ~b_indices);
+ };
+
+ return @shuffle(Child, a, b, indices);
+}
+
+/// The contents of `interlaced` is evenly split between vec_count vectors that are returned as an array. They "take turns",
+/// recieving one element from `interlaced` at a time.
+pub fn deinterlace(
+ comptime vec_count: usize,
+ interlaced: anytype,
+) [vec_count]@Vector(
+ vectorLength(@TypeOf(interlaced)) / vec_count,
+ std.meta.Child(@TypeOf(interlaced)),
+) {
+ const vec_len = vectorLength(@TypeOf(interlaced)) / vec_count;
+ const Child = std.meta.Child(@TypeOf(interlaced));
+
+ var out: [vec_count]@Vector(vec_len, Child) = undefined;
+
+ comptime var i: usize = 0; // for-loops don't work for this, apparently.
+ inline while (i < out.len) : (i += 1) {
+ const indices = comptime iota(i32, vec_len) * @splat(vec_len, @intCast(i32, vec_count)) + @splat(vec_len, @intCast(i32, i));
+ out[i] = @shuffle(Child, interlaced, undefined, indices);
+ }
+
+ return out;
+}
+
+pub fn extract(
+ vec: anytype,
+ comptime first: VectorIndex(@TypeOf(vec)),
+ comptime count: VectorCount(@TypeOf(vec)),
+) @Vector(count, std.meta.Child(@TypeOf(vec))) {
+ const Child = std.meta.Child(@TypeOf(vec));
+ const len = vectorLength(@TypeOf(vec));
+
+ std.debug.assert(@intCast(comptime_int, first) + @intCast(comptime_int, count) <= len);
+
+ return @shuffle(Child, vec, undefined, iota(i32, count) + @splat(count, @intCast(i32, first)));
+}
+
+test "vector patterns" {
+ const base = @Vector(4, u32){ 10, 20, 30, 40 };
+ const other_base = @Vector(4, u32){ 55, 66, 77, 88 };
+
+ const small_bases = [5]@Vector(2, u8){
+ @Vector(2, u8){ 0, 1 },
+ @Vector(2, u8){ 2, 3 },
+ @Vector(2, u8){ 4, 5 },
+ @Vector(2, u8){ 6, 7 },
+ @Vector(2, u8){ 8, 9 },
+ };
+
+ try std.testing.expectEqual([6]u32{ 10, 20, 30, 40, 10, 20 }, repeat(6, base));
+ try std.testing.expectEqual([8]u32{ 10, 20, 30, 40, 55, 66, 77, 88 }, join(base, other_base));
+ try std.testing.expectEqual([2]u32{ 20, 30 }, extract(base, 1, 2));
+
+ if (comptime !builtin.cpu.arch.isMIPS()) {
+ try std.testing.expectEqual([8]u32{ 10, 55, 20, 66, 30, 77, 40, 88 }, interlace(.{ base, other_base }));
+
+ const small_braid = interlace(small_bases);
+ try std.testing.expectEqual([10]u8{ 0, 2, 4, 6, 8, 1, 3, 5, 7, 9 }, small_braid);
+ try std.testing.expectEqual(small_bases, deinterlace(small_bases.len, small_braid));
+ }
+}
+
+/// Joins two vectors, shifts them leftwards (towards lower indices) and extracts the leftmost elements into a vector the size of a and b.
+pub fn mergeShift(a: anytype, b: anytype, comptime shift: VectorCount(@TypeOf(a, b))) @TypeOf(a, b) {
+ const len = vectorLength(@TypeOf(a, b));
+
+ return extract(join(a, b), shift, len);
+}
+
+/// Elements are shifted rightwards (towards higher indices). New elements are added to the left, and the rightmost elements are cut off
+/// so that the size of the vector stays the same.
+pub fn shiftElementsRight(vec: anytype, comptime amount: VectorCount(@TypeOf(vec)), shift_in: std.meta.Child(@TypeOf(vec))) @TypeOf(vec) {
+ // It may be possible to implement shifts and rotates with a runtime-friendly slice of two joined vectors, as the length of the
+ // slice would be comptime-known. This would permit vector shifts and rotates by a non-comptime-known amount.
+ // However, I am unsure whether compiler optimizations would handle that well enough on all platforms.
+ const len = vectorLength(@TypeOf(vec));
+
+ return mergeShift(@splat(len, shift_in), vec, len - amount);
+}
+
+/// Elements are shifted leftwards (towards lower indices). New elements are added to the right, and the leftmost elements are cut off
+/// so that no elements with indices below 0 remain.
+pub fn shiftElementsLeft(vec: anytype, comptime amount: VectorCount(@TypeOf(vec)), shift_in: std.meta.Child(@TypeOf(vec))) @TypeOf(vec) {
+ const len = vectorLength(@TypeOf(vec));
+
+ return mergeShift(vec, @splat(len, shift_in), amount);
+}
+
+/// Elements are shifted leftwards (towards lower indices). Elements that leave to the left will reappear to the right in the same order.
+pub fn rotateElementsLeft(vec: anytype, comptime amount: VectorCount(@TypeOf(vec))) @TypeOf(vec) {
+ return mergeShift(vec, vec, amount);
+}
+
+/// Elements are shifted rightwards (towards higher indices). Elements that leave to the right will reappear to the left in the same order.
+pub fn rotateElementsRight(vec: anytype, comptime amount: VectorCount(@TypeOf(vec))) @TypeOf(vec) {
+ return rotateElementsLeft(vec, vectorLength(@TypeOf(vec)) - amount);
+}
+
+pub fn reverseOrder(vec: anytype) @TypeOf(vec) {
+ const Child = std.meta.Child(@TypeOf(vec));
+ const len = vectorLength(@TypeOf(vec));
+
+ return @shuffle(Child, vec, undefined, @splat(len, @intCast(i32, len) - 1) - iota(i32, len));
+}
+
+test "vector shifting" {
+ const base = @Vector(4, u32){ 10, 20, 30, 40 };
+
+ try std.testing.expectEqual([4]u32{ 30, 40, 999, 999 }, shiftElementsLeft(base, 2, 999));
+ try std.testing.expectEqual([4]u32{ 999, 999, 10, 20 }, shiftElementsRight(base, 2, 999));
+ try std.testing.expectEqual([4]u32{ 20, 30, 40, 10 }, rotateElementsLeft(base, 1));
+ try std.testing.expectEqual([4]u32{ 40, 10, 20, 30 }, rotateElementsRight(base, 1));
+ try std.testing.expectEqual([4]u32{ 40, 30, 20, 10 }, reverseOrder(base));
+}
+
+pub fn firstTrue(vec: anytype) ?VectorIndex(@TypeOf(vec)) {
+ const len = vectorLength(@TypeOf(vec));
+ const IndexInt = VectorIndex(@TypeOf(vec));
+
+ if (!@reduce(.Or, vec)) {
+ return null;
+ }
+ const indices = @select(IndexInt, vec, iota(IndexInt, len), @splat(len, ~@as(IndexInt, 0)));
+ return @reduce(.Min, indices);
+}
+
+pub fn lastTrue(vec: anytype) ?VectorIndex(@TypeOf(vec)) {
+ const len = vectorLength(@TypeOf(vec));
+ const IndexInt = VectorIndex(@TypeOf(vec));
+
+ if (!@reduce(.Or, vec)) {
+ return null;
+ }
+ const indices = @select(IndexInt, vec, iota(IndexInt, len), @splat(len, @as(IndexInt, 0)));
+ return @reduce(.Max, indices);
+}
+
+pub fn countTrues(vec: anytype) VectorCount(@TypeOf(vec)) {
+ const len = vectorLength(@TypeOf(vec));
+ const CountIntType = VectorCount(@TypeOf(vec));
+
+ const one_if_true = @select(CountIntType, vec, @splat(len, @as(CountIntType, 1)), @splat(len, @as(CountIntType, 0)));
+ return @reduce(.Add, one_if_true);
+}
+
+pub fn firstIndexOfValue(vec: anytype, value: std.meta.Child(@TypeOf(vec))) ?VectorIndex(@TypeOf(vec)) {
+ const len = vectorLength(@TypeOf(vec));
+
+ return firstTrue(vec == @splat(len, value));
+}
+
+pub fn lastIndexOfValue(vec: anytype, value: std.meta.Child(@TypeOf(vec))) ?VectorIndex(@TypeOf(vec)) {
+ const len = vectorLength(@TypeOf(vec));
+
+ return lastTrue(vec == @splat(len, value));
+}
+
+pub fn countElementsWithValue(vec: anytype, value: std.meta.Child(@TypeOf(vec))) VectorCount(@TypeOf(vec)) {
+ const len = vectorLength(@TypeOf(vec));
+
+ return countTrues(vec == @splat(len, value));
+}
+
+test "vector searching" {
+ const base = @Vector(8, u32){ 6, 4, 7, 4, 4, 2, 3, 7 };
+
+ try std.testing.expectEqual(@as(?u3, 1), firstIndexOfValue(base, 4));
+ try std.testing.expectEqual(@as(?u3, 4), lastIndexOfValue(base, 4));
+ try std.testing.expectEqual(@as(?u3, null), lastIndexOfValue(base, 99));
+ try std.testing.expectEqual(@as(u4, 3), countElementsWithValue(base, 4));
+}
+
+/// Same as prefixScan, but with a user-provided, mathematically associative function.
+pub fn prefixScanWithFunc(
+ comptime hop: isize,
+ vec: anytype,
+ /// The error type that `func` might return. Set this to `void` if `func` doesn't return an error union.
+ comptime ErrorType: type,
+ comptime func: fn (@TypeOf(vec), @TypeOf(vec)) if (ErrorType == void) @TypeOf(vec) else ErrorType!@TypeOf(vec),
+ /// When one operand of the operation performed by `func` is this value, the result must equal the other operand.
+ /// For example, this should be 0 for addition or 1 for multiplication.
+ comptime identity: std.meta.Child(@TypeOf(vec)),
+) if (ErrorType == void) @TypeOf(vec) else ErrorType!@TypeOf(vec) {
+ // I haven't debugged this, but it might be a cousin of sorts to what's going on with interlace.
+ comptime if (builtin.cpu.arch.isMIPS()) @compileError("TODO: Find out why prefixScan doesn't work on MIPS");
+
+ const len = vectorLength(@TypeOf(vec));
+
+ if (hop == 0) @compileError("hop can not be 0; you'd be going nowhere forever!");
+ const abs_hop = if (hop < 0) -hop else hop;
+
+ var acc = vec;
+ comptime var i = 0;
+ inline while ((abs_hop << i) < len) : (i += 1) {
+ const shifted = if (hop < 0) shiftElementsLeft(acc, abs_hop << i, identity) else shiftElementsRight(acc, abs_hop << i, identity);
+
+ acc = if (ErrorType == void) func(acc, shifted) else try func(acc, shifted);
+ }
+ return acc;
+}
+
+/// Returns a vector whose elements are the result of performing the specified operation on the corresponding
+/// element of the input vector and every hop'th element that came before it (or after, if hop is negative).
+/// Supports the same operations as the @reduce() builtin. Takes O(logN) to compute.
+/// The scan is not linear, which may affect floating point errors. This may affect the determinism of
+/// algorithms that use this function.
+pub fn prefixScan(comptime op: std.builtin.ReduceOp, comptime hop: isize, vec: anytype) @TypeOf(vec) {
+ const VecType = @TypeOf(vec);
+ const Child = std.meta.Child(VecType);
+ const len = vectorLength(VecType);
+
+ const identity = comptime switch (@typeInfo(Child)) {
+ .Bool => switch (op) {
+ .Or, .Xor => false,
+ .And => true,
+ else => @compileError("Invalid prefixScan operation " ++ @tagName(op) ++ " for vector of booleans."),
+ },
+ .Int => switch (op) {
+ .Max => std.math.minInt(Child),
+ .Add, .Or, .Xor => 0,
+ .Mul => 1,
+ .And, .Min => std.math.maxInt(Child),
+ },
+ .Float => switch (op) {
+ .Max => -std.math.inf(Child),
+ .Add => 0,
+ .Mul => 1,
+ .Min => std.math.inf(Child),
+ else => @compileError("Invalid prefixScan operation " ++ @tagName(op) ++ " for vector of floats."),
+ },
+ else => @compileError("Invalid type " ++ @typeName(VecType) ++ " for prefixScan."),
+ };
+
+ const fn_container = struct {
+ fn opFn(a: VecType, b: VecType) VecType {
+ return if (Child == bool) switch (op) {
+ .And => @select(bool, a, b, @splat(len, false)),
+ .Or => @select(bool, a, @splat(len, true), b),
+ .Xor => a != b,
+ else => unreachable,
+ } else switch (op) {
+ .And => a & b,
+ .Or => a | b,
+ .Xor => a ^ b,
+ .Add => a + b,
+ .Mul => a * b,
+ .Min => @minimum(a, b),
+ .Max => @maximum(a, b),
+ };
+ }
+ };
+
+ return prefixScanWithFunc(hop, vec, void, fn_container.opFn, identity);
+}
+
+test "vector prefix scan" {
+ if (comptime builtin.cpu.arch.isMIPS()) {
+ return error.SkipZigTest;
+ }
+
+ const int_base = @Vector(4, i32){ 11, 23, 9, -21 };
+ const float_base = @Vector(4, f32){ 2, 0.5, -10, 6.54321 };
+ const bool_base = @Vector(4, bool){ true, false, true, false };
+
+ try std.testing.expectEqual(iota(u8, 32) + @splat(32, @as(u8, 1)), prefixScan(.Add, 1, @splat(32, @as(u8, 1))));
+ try std.testing.expectEqual(@Vector(4, i32){ 11, 3, 1, 1 }, prefixScan(.And, 1, int_base));
+ try std.testing.expectEqual(@Vector(4, i32){ 11, 31, 31, -1 }, prefixScan(.Or, 1, int_base));
+ try std.testing.expectEqual(@Vector(4, i32){ 11, 28, 21, -2 }, prefixScan(.Xor, 1, int_base));
+ try std.testing.expectEqual(@Vector(4, i32){ 11, 34, 43, 22 }, prefixScan(.Add, 1, int_base));
+ try std.testing.expectEqual(@Vector(4, i32){ 11, 253, 2277, -47817 }, prefixScan(.Mul, 1, int_base));
+ try std.testing.expectEqual(@Vector(4, i32){ 11, 11, 9, -21 }, prefixScan(.Min, 1, int_base));
+ try std.testing.expectEqual(@Vector(4, i32){ 11, 23, 23, 23 }, prefixScan(.Max, 1, int_base));
+
+ // Trying to predict all inaccuracies when adding and multiplying floats with prefixScans would be a mess, so we don't test those.
+ try std.testing.expectEqual(@Vector(4, f32){ 2, 0.5, -10, -10 }, prefixScan(.Min, 1, float_base));
+ try std.testing.expectEqual(@Vector(4, f32){ 2, 2, 2, 6.54321 }, prefixScan(.Max, 1, float_base));
+
+ try std.testing.expectEqual(@Vector(4, bool){ true, true, false, false }, prefixScan(.Xor, 1, bool_base));
+ try std.testing.expectEqual(@Vector(4, bool){ true, true, true, true }, prefixScan(.Or, 1, bool_base));
+ try std.testing.expectEqual(@Vector(4, bool){ true, false, false, false }, prefixScan(.And, 1, bool_base));
+
+ try std.testing.expectEqual(@Vector(4, i32){ 11, 23, 20, 2 }, prefixScan(.Add, 2, int_base));
+ try std.testing.expectEqual(@Vector(4, i32){ 22, 11, -12, -21 }, prefixScan(.Add, -1, int_base));
+ try std.testing.expectEqual(@Vector(4, i32){ 11, 23, 9, -10 }, prefixScan(.Add, 3, int_base));
+}