aboutsummaryrefslogtreecommitdiff
path: root/lib/std/math/log1p.zig
diff options
context:
space:
mode:
authorAndrew Kelley <andrew@ziglang.org>2019-09-26 01:54:45 -0400
committerGitHub <noreply@github.com>2019-09-26 01:54:45 -0400
commit68bb3945708c43109c48bda3664176307d45b62c (patch)
treeafb9731e10cef9d192560b52cd9ae2cf179775c4 /lib/std/math/log1p.zig
parent6128bc728d1e1024a178c16c2149f5b1a167a013 (diff)
parent4637e8f9699af9c3c6cf4df50ef5bb67c7a318a4 (diff)
downloadzig-68bb3945708c43109c48bda3664176307d45b62c.tar.gz
zig-68bb3945708c43109c48bda3664176307d45b62c.zip
Merge pull request #3315 from ziglang/mv-std-lib
Move std/ to lib/std/
Diffstat (limited to 'lib/std/math/log1p.zig')
-rw-r--r--lib/std/math/log1p.zig230
1 files changed, 230 insertions, 0 deletions
diff --git a/lib/std/math/log1p.zig b/lib/std/math/log1p.zig
new file mode 100644
index 0000000000..bae6deb536
--- /dev/null
+++ b/lib/std/math/log1p.zig
@@ -0,0 +1,230 @@
+// Ported from musl, which is licensed under the MIT license:
+// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
+//
+// https://git.musl-libc.org/cgit/musl/tree/src/math/log1pf.c
+// https://git.musl-libc.org/cgit/musl/tree/src/math/log1p.c
+
+const builtin = @import("builtin");
+const std = @import("../std.zig");
+const math = std.math;
+const expect = std.testing.expect;
+
+/// Returns the natural logarithm of 1 + x with greater accuracy when x is near zero.
+///
+/// Special Cases:
+/// - log1p(+inf) = +inf
+/// - log1p(+-0) = +-0
+/// - log1p(-1) = -inf
+/// - log1p(x) = nan if x < -1
+/// - log1p(nan) = nan
+pub fn log1p(x: var) @typeOf(x) {
+ const T = @typeOf(x);
+ return switch (T) {
+ f32 => log1p_32(x),
+ f64 => log1p_64(x),
+ else => @compileError("log1p not implemented for " ++ @typeName(T)),
+ };
+}
+
+fn log1p_32(x: f32) f32 {
+ const ln2_hi = 6.9313812256e-01;
+ const ln2_lo = 9.0580006145e-06;
+ const Lg1: f32 = 0xaaaaaa.0p-24;
+ const Lg2: f32 = 0xccce13.0p-25;
+ const Lg3: f32 = 0x91e9ee.0p-25;
+ const Lg4: f32 = 0xf89e26.0p-26;
+
+ const u = @bitCast(u32, x);
+ var ix = u;
+ var k: i32 = 1;
+ var f: f32 = undefined;
+ var c: f32 = undefined;
+
+ // 1 + x < sqrt(2)+
+ if (ix < 0x3ED413D0 or ix >> 31 != 0) {
+ // x <= -1.0
+ if (ix >= 0xBF800000) {
+ // log1p(-1) = -inf
+ if (x == -1.0) {
+ return -math.inf(f32);
+ }
+ // log1p(x < -1) = nan
+ else {
+ return math.nan(f32);
+ }
+ }
+ // |x| < 2^(-24)
+ if ((ix << 1) < (0x33800000 << 1)) {
+ // underflow if subnormal
+ if (ix & 0x7F800000 == 0) {
+ math.forceEval(x * x);
+ }
+ return x;
+ }
+ // sqrt(2) / 2- <= 1 + x < sqrt(2)+
+ if (ix <= 0xBE95F619) {
+ k = 0;
+ c = 0;
+ f = x;
+ }
+ } else if (ix >= 0x7F800000) {
+ return x;
+ }
+
+ if (k != 0) {
+ const uf = 1 + x;
+ var iu = @bitCast(u32, uf);
+ iu += 0x3F800000 - 0x3F3504F3;
+ k = @intCast(i32, iu >> 23) - 0x7F;
+
+ // correction to avoid underflow in c / u
+ if (k < 25) {
+ c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
+ c /= uf;
+ } else {
+ c = 0;
+ }
+
+ // u into [sqrt(2)/2, sqrt(2)]
+ iu = (iu & 0x007FFFFF) + 0x3F3504F3;
+ f = @bitCast(f32, iu) - 1;
+ }
+
+ const s = f / (2.0 + f);
+ const z = s * s;
+ const w = z * z;
+ const t1 = w * (Lg2 + w * Lg4);
+ const t2 = z * (Lg1 + w * Lg3);
+ const R = t2 + t1;
+ const hfsq = 0.5 * f * f;
+ const dk = @intToFloat(f32, k);
+
+ return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
+}
+
+fn log1p_64(x: f64) f64 {
+ const ln2_hi: f64 = 6.93147180369123816490e-01;
+ const ln2_lo: f64 = 1.90821492927058770002e-10;
+ const Lg1: f64 = 6.666666666666735130e-01;
+ const Lg2: f64 = 3.999999999940941908e-01;
+ const Lg3: f64 = 2.857142874366239149e-01;
+ const Lg4: f64 = 2.222219843214978396e-01;
+ const Lg5: f64 = 1.818357216161805012e-01;
+ const Lg6: f64 = 1.531383769920937332e-01;
+ const Lg7: f64 = 1.479819860511658591e-01;
+
+ var ix = @bitCast(u64, x);
+ var hx = @intCast(u32, ix >> 32);
+ var k: i32 = 1;
+ var c: f64 = undefined;
+ var f: f64 = undefined;
+
+ // 1 + x < sqrt(2)
+ if (hx < 0x3FDA827A or hx >> 31 != 0) {
+ // x <= -1.0
+ if (hx >= 0xBFF00000) {
+ // log1p(-1) = -inf
+ if (x == -1.0) {
+ return -math.inf(f64);
+ }
+ // log1p(x < -1) = nan
+ else {
+ return math.nan(f64);
+ }
+ }
+ // |x| < 2^(-53)
+ if ((hx << 1) < (0x3CA00000 << 1)) {
+ if ((hx & 0x7FF00000) == 0) {
+ math.raiseUnderflow();
+ }
+ return x;
+ }
+ // sqrt(2) / 2- <= 1 + x < sqrt(2)+
+ if (hx <= 0xBFD2BEC4) {
+ k = 0;
+ c = 0;
+ f = x;
+ }
+ } else if (hx >= 0x7FF00000) {
+ return x;
+ }
+
+ if (k != 0) {
+ const uf = 1 + x;
+ const hu = @bitCast(u64, uf);
+ var iu = @intCast(u32, hu >> 32);
+ iu += 0x3FF00000 - 0x3FE6A09E;
+ k = @intCast(i32, iu >> 20) - 0x3FF;
+
+ // correction to avoid underflow in c / u
+ if (k < 54) {
+ c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
+ c /= uf;
+ } else {
+ c = 0;
+ }
+
+ // u into [sqrt(2)/2, sqrt(2)]
+ iu = (iu & 0x000FFFFF) + 0x3FE6A09E;
+ const iq = (u64(iu) << 32) | (hu & 0xFFFFFFFF);
+ f = @bitCast(f64, iq) - 1;
+ }
+
+ const hfsq = 0.5 * f * f;
+ const s = f / (2.0 + f);
+ const z = s * s;
+ const w = z * z;
+ const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
+ const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
+ const R = t2 + t1;
+ const dk = @intToFloat(f64, k);
+
+ return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
+}
+
+test "math.log1p" {
+ expect(log1p(f32(0.0)) == log1p_32(0.0));
+ expect(log1p(f64(0.0)) == log1p_64(0.0));
+}
+
+test "math.log1p_32" {
+ const epsilon = 0.000001;
+
+ expect(math.approxEq(f32, log1p_32(0.0), 0.0, epsilon));
+ expect(math.approxEq(f32, log1p_32(0.2), 0.182322, epsilon));
+ expect(math.approxEq(f32, log1p_32(0.8923), 0.637793, epsilon));
+ expect(math.approxEq(f32, log1p_32(1.5), 0.916291, epsilon));
+ expect(math.approxEq(f32, log1p_32(37.45), 3.649359, epsilon));
+ expect(math.approxEq(f32, log1p_32(89.123), 4.501175, epsilon));
+ expect(math.approxEq(f32, log1p_32(123123.234375), 11.720949, epsilon));
+}
+
+test "math.log1p_64" {
+ const epsilon = 0.000001;
+
+ expect(math.approxEq(f64, log1p_64(0.0), 0.0, epsilon));
+ expect(math.approxEq(f64, log1p_64(0.2), 0.182322, epsilon));
+ expect(math.approxEq(f64, log1p_64(0.8923), 0.637793, epsilon));
+ expect(math.approxEq(f64, log1p_64(1.5), 0.916291, epsilon));
+ expect(math.approxEq(f64, log1p_64(37.45), 3.649359, epsilon));
+ expect(math.approxEq(f64, log1p_64(89.123), 4.501175, epsilon));
+ expect(math.approxEq(f64, log1p_64(123123.234375), 11.720949, epsilon));
+}
+
+test "math.log1p_32.special" {
+ expect(math.isPositiveInf(log1p_32(math.inf(f32))));
+ expect(log1p_32(0.0) == 0.0);
+ expect(log1p_32(-0.0) == -0.0);
+ expect(math.isNegativeInf(log1p_32(-1.0)));
+ expect(math.isNan(log1p_32(-2.0)));
+ expect(math.isNan(log1p_32(math.nan(f32))));
+}
+
+test "math.log1p_64.special" {
+ expect(math.isPositiveInf(log1p_64(math.inf(f64))));
+ expect(log1p_64(0.0) == 0.0);
+ expect(log1p_64(-0.0) == -0.0);
+ expect(math.isNegativeInf(log1p_64(-1.0)));
+ expect(math.isNan(log1p_64(-2.0)));
+ expect(math.isNan(log1p_64(math.nan(f64))));
+}