diff options
| author | Andrew Kelley <andrew@ziglang.org> | 2019-09-26 01:54:45 -0400 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2019-09-26 01:54:45 -0400 |
| commit | 68bb3945708c43109c48bda3664176307d45b62c (patch) | |
| tree | afb9731e10cef9d192560b52cd9ae2cf179775c4 /lib/std/math/log1p.zig | |
| parent | 6128bc728d1e1024a178c16c2149f5b1a167a013 (diff) | |
| parent | 4637e8f9699af9c3c6cf4df50ef5bb67c7a318a4 (diff) | |
| download | zig-68bb3945708c43109c48bda3664176307d45b62c.tar.gz zig-68bb3945708c43109c48bda3664176307d45b62c.zip | |
Merge pull request #3315 from ziglang/mv-std-lib
Move std/ to lib/std/
Diffstat (limited to 'lib/std/math/log1p.zig')
| -rw-r--r-- | lib/std/math/log1p.zig | 230 |
1 files changed, 230 insertions, 0 deletions
diff --git a/lib/std/math/log1p.zig b/lib/std/math/log1p.zig new file mode 100644 index 0000000000..bae6deb536 --- /dev/null +++ b/lib/std/math/log1p.zig @@ -0,0 +1,230 @@ +// Ported from musl, which is licensed under the MIT license: +// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT +// +// https://git.musl-libc.org/cgit/musl/tree/src/math/log1pf.c +// https://git.musl-libc.org/cgit/musl/tree/src/math/log1p.c + +const builtin = @import("builtin"); +const std = @import("../std.zig"); +const math = std.math; +const expect = std.testing.expect; + +/// Returns the natural logarithm of 1 + x with greater accuracy when x is near zero. +/// +/// Special Cases: +/// - log1p(+inf) = +inf +/// - log1p(+-0) = +-0 +/// - log1p(-1) = -inf +/// - log1p(x) = nan if x < -1 +/// - log1p(nan) = nan +pub fn log1p(x: var) @typeOf(x) { + const T = @typeOf(x); + return switch (T) { + f32 => log1p_32(x), + f64 => log1p_64(x), + else => @compileError("log1p not implemented for " ++ @typeName(T)), + }; +} + +fn log1p_32(x: f32) f32 { + const ln2_hi = 6.9313812256e-01; + const ln2_lo = 9.0580006145e-06; + const Lg1: f32 = 0xaaaaaa.0p-24; + const Lg2: f32 = 0xccce13.0p-25; + const Lg3: f32 = 0x91e9ee.0p-25; + const Lg4: f32 = 0xf89e26.0p-26; + + const u = @bitCast(u32, x); + var ix = u; + var k: i32 = 1; + var f: f32 = undefined; + var c: f32 = undefined; + + // 1 + x < sqrt(2)+ + if (ix < 0x3ED413D0 or ix >> 31 != 0) { + // x <= -1.0 + if (ix >= 0xBF800000) { + // log1p(-1) = -inf + if (x == -1.0) { + return -math.inf(f32); + } + // log1p(x < -1) = nan + else { + return math.nan(f32); + } + } + // |x| < 2^(-24) + if ((ix << 1) < (0x33800000 << 1)) { + // underflow if subnormal + if (ix & 0x7F800000 == 0) { + math.forceEval(x * x); + } + return x; + } + // sqrt(2) / 2- <= 1 + x < sqrt(2)+ + if (ix <= 0xBE95F619) { + k = 0; + c = 0; + f = x; + } + } else if (ix >= 0x7F800000) { + return x; + } + + if (k != 0) { + const uf = 1 + x; + var iu = @bitCast(u32, uf); + iu += 0x3F800000 - 0x3F3504F3; + k = @intCast(i32, iu >> 23) - 0x7F; + + // correction to avoid underflow in c / u + if (k < 25) { + c = if (k >= 2) 1 - (uf - x) else x - (uf - 1); + c /= uf; + } else { + c = 0; + } + + // u into [sqrt(2)/2, sqrt(2)] + iu = (iu & 0x007FFFFF) + 0x3F3504F3; + f = @bitCast(f32, iu) - 1; + } + + const s = f / (2.0 + f); + const z = s * s; + const w = z * z; + const t1 = w * (Lg2 + w * Lg4); + const t2 = z * (Lg1 + w * Lg3); + const R = t2 + t1; + const hfsq = 0.5 * f * f; + const dk = @intToFloat(f32, k); + + return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi; +} + +fn log1p_64(x: f64) f64 { + const ln2_hi: f64 = 6.93147180369123816490e-01; + const ln2_lo: f64 = 1.90821492927058770002e-10; + const Lg1: f64 = 6.666666666666735130e-01; + const Lg2: f64 = 3.999999999940941908e-01; + const Lg3: f64 = 2.857142874366239149e-01; + const Lg4: f64 = 2.222219843214978396e-01; + const Lg5: f64 = 1.818357216161805012e-01; + const Lg6: f64 = 1.531383769920937332e-01; + const Lg7: f64 = 1.479819860511658591e-01; + + var ix = @bitCast(u64, x); + var hx = @intCast(u32, ix >> 32); + var k: i32 = 1; + var c: f64 = undefined; + var f: f64 = undefined; + + // 1 + x < sqrt(2) + if (hx < 0x3FDA827A or hx >> 31 != 0) { + // x <= -1.0 + if (hx >= 0xBFF00000) { + // log1p(-1) = -inf + if (x == -1.0) { + return -math.inf(f64); + } + // log1p(x < -1) = nan + else { + return math.nan(f64); + } + } + // |x| < 2^(-53) + if ((hx << 1) < (0x3CA00000 << 1)) { + if ((hx & 0x7FF00000) == 0) { + math.raiseUnderflow(); + } + return x; + } + // sqrt(2) / 2- <= 1 + x < sqrt(2)+ + if (hx <= 0xBFD2BEC4) { + k = 0; + c = 0; + f = x; + } + } else if (hx >= 0x7FF00000) { + return x; + } + + if (k != 0) { + const uf = 1 + x; + const hu = @bitCast(u64, uf); + var iu = @intCast(u32, hu >> 32); + iu += 0x3FF00000 - 0x3FE6A09E; + k = @intCast(i32, iu >> 20) - 0x3FF; + + // correction to avoid underflow in c / u + if (k < 54) { + c = if (k >= 2) 1 - (uf - x) else x - (uf - 1); + c /= uf; + } else { + c = 0; + } + + // u into [sqrt(2)/2, sqrt(2)] + iu = (iu & 0x000FFFFF) + 0x3FE6A09E; + const iq = (u64(iu) << 32) | (hu & 0xFFFFFFFF); + f = @bitCast(f64, iq) - 1; + } + + const hfsq = 0.5 * f * f; + const s = f / (2.0 + f); + const z = s * s; + const w = z * z; + const t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); + const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); + const R = t2 + t1; + const dk = @intToFloat(f64, k); + + return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi; +} + +test "math.log1p" { + expect(log1p(f32(0.0)) == log1p_32(0.0)); + expect(log1p(f64(0.0)) == log1p_64(0.0)); +} + +test "math.log1p_32" { + const epsilon = 0.000001; + + expect(math.approxEq(f32, log1p_32(0.0), 0.0, epsilon)); + expect(math.approxEq(f32, log1p_32(0.2), 0.182322, epsilon)); + expect(math.approxEq(f32, log1p_32(0.8923), 0.637793, epsilon)); + expect(math.approxEq(f32, log1p_32(1.5), 0.916291, epsilon)); + expect(math.approxEq(f32, log1p_32(37.45), 3.649359, epsilon)); + expect(math.approxEq(f32, log1p_32(89.123), 4.501175, epsilon)); + expect(math.approxEq(f32, log1p_32(123123.234375), 11.720949, epsilon)); +} + +test "math.log1p_64" { + const epsilon = 0.000001; + + expect(math.approxEq(f64, log1p_64(0.0), 0.0, epsilon)); + expect(math.approxEq(f64, log1p_64(0.2), 0.182322, epsilon)); + expect(math.approxEq(f64, log1p_64(0.8923), 0.637793, epsilon)); + expect(math.approxEq(f64, log1p_64(1.5), 0.916291, epsilon)); + expect(math.approxEq(f64, log1p_64(37.45), 3.649359, epsilon)); + expect(math.approxEq(f64, log1p_64(89.123), 4.501175, epsilon)); + expect(math.approxEq(f64, log1p_64(123123.234375), 11.720949, epsilon)); +} + +test "math.log1p_32.special" { + expect(math.isPositiveInf(log1p_32(math.inf(f32)))); + expect(log1p_32(0.0) == 0.0); + expect(log1p_32(-0.0) == -0.0); + expect(math.isNegativeInf(log1p_32(-1.0))); + expect(math.isNan(log1p_32(-2.0))); + expect(math.isNan(log1p_32(math.nan(f32)))); +} + +test "math.log1p_64.special" { + expect(math.isPositiveInf(log1p_64(math.inf(f64)))); + expect(log1p_64(0.0) == 0.0); + expect(log1p_64(-0.0) == -0.0); + expect(math.isNegativeInf(log1p_64(-1.0))); + expect(math.isNan(log1p_64(-2.0))); + expect(math.isNan(log1p_64(math.nan(f64)))); +} |
