diff options
| author | Andrew Kelley <andrew@ziglang.org> | 2019-09-26 01:54:45 -0400 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2019-09-26 01:54:45 -0400 |
| commit | 68bb3945708c43109c48bda3664176307d45b62c (patch) | |
| tree | afb9731e10cef9d192560b52cd9ae2cf179775c4 /lib/std/math/ln.zig | |
| parent | 6128bc728d1e1024a178c16c2149f5b1a167a013 (diff) | |
| parent | 4637e8f9699af9c3c6cf4df50ef5bb67c7a318a4 (diff) | |
| download | zig-68bb3945708c43109c48bda3664176307d45b62c.tar.gz zig-68bb3945708c43109c48bda3664176307d45b62c.zip | |
Merge pull request #3315 from ziglang/mv-std-lib
Move std/ to lib/std/
Diffstat (limited to 'lib/std/math/ln.zig')
| -rw-r--r-- | lib/std/math/ln.zig | 190 |
1 files changed, 190 insertions, 0 deletions
diff --git a/lib/std/math/ln.zig b/lib/std/math/ln.zig new file mode 100644 index 0000000000..c5d4c9ff25 --- /dev/null +++ b/lib/std/math/ln.zig @@ -0,0 +1,190 @@ +// Ported from musl, which is licensed under the MIT license: +// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT +// +// https://git.musl-libc.org/cgit/musl/tree/src/math/lnf.c +// https://git.musl-libc.org/cgit/musl/tree/src/math/ln.c + +const std = @import("../std.zig"); +const math = std.math; +const expect = std.testing.expect; +const builtin = @import("builtin"); +const TypeId = builtin.TypeId; + +/// Returns the natural logarithm of x. +/// +/// Special Cases: +/// - ln(+inf) = +inf +/// - ln(0) = -inf +/// - ln(x) = nan if x < 0 +/// - ln(nan) = nan +pub fn ln(x: var) @typeOf(x) { + const T = @typeOf(x); + switch (@typeId(T)) { + TypeId.ComptimeFloat => { + return @typeOf(1.0)(ln_64(x)); + }, + TypeId.Float => { + return switch (T) { + f32 => ln_32(x), + f64 => ln_64(x), + else => @compileError("ln not implemented for " ++ @typeName(T)), + }; + }, + TypeId.ComptimeInt => { + return @typeOf(1)(math.floor(ln_64(f64(x)))); + }, + TypeId.Int => { + return T(math.floor(ln_64(f64(x)))); + }, + else => @compileError("ln not implemented for " ++ @typeName(T)), + } +} + +pub fn ln_32(x_: f32) f32 { + const ln2_hi: f32 = 6.9313812256e-01; + const ln2_lo: f32 = 9.0580006145e-06; + const Lg1: f32 = 0xaaaaaa.0p-24; + const Lg2: f32 = 0xccce13.0p-25; + const Lg3: f32 = 0x91e9ee.0p-25; + const Lg4: f32 = 0xf89e26.0p-26; + + var x = x_; + var ix = @bitCast(u32, x); + var k: i32 = 0; + + // x < 2^(-126) + if (ix < 0x00800000 or ix >> 31 != 0) { + // log(+-0) = -inf + if (ix << 1 == 0) { + return -math.inf(f32); + } + // log(-#) = nan + if (ix >> 31 != 0) { + return math.nan(f32); + } + + // subnormal, scale x + k -= 25; + x *= 0x1.0p25; + ix = @bitCast(u32, x); + } else if (ix >= 0x7F800000) { + return x; + } else if (ix == 0x3F800000) { + return 0; + } + + // x into [sqrt(2) / 2, sqrt(2)] + ix += 0x3F800000 - 0x3F3504F3; + k += @intCast(i32, ix >> 23) - 0x7F; + ix = (ix & 0x007FFFFF) + 0x3F3504F3; + x = @bitCast(f32, ix); + + const f = x - 1.0; + const s = f / (2.0 + f); + const z = s * s; + const w = z * z; + const t1 = w * (Lg2 + w * Lg4); + const t2 = z * (Lg1 + w * Lg3); + const R = t2 + t1; + const hfsq = 0.5 * f * f; + const dk = @intToFloat(f32, k); + + return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi; +} + +pub fn ln_64(x_: f64) f64 { + const ln2_hi: f64 = 6.93147180369123816490e-01; + const ln2_lo: f64 = 1.90821492927058770002e-10; + const Lg1: f64 = 6.666666666666735130e-01; + const Lg2: f64 = 3.999999999940941908e-01; + const Lg3: f64 = 2.857142874366239149e-01; + const Lg4: f64 = 2.222219843214978396e-01; + const Lg5: f64 = 1.818357216161805012e-01; + const Lg6: f64 = 1.531383769920937332e-01; + const Lg7: f64 = 1.479819860511658591e-01; + + var x = x_; + var ix = @bitCast(u64, x); + var hx = @intCast(u32, ix >> 32); + var k: i32 = 0; + + if (hx < 0x00100000 or hx >> 31 != 0) { + // log(+-0) = -inf + if (ix << 1 == 0) { + return -math.inf(f64); + } + // log(-#) = nan + if (hx >> 31 != 0) { + return math.nan(f64); + } + + // subnormal, scale x + k -= 54; + x *= 0x1.0p54; + hx = @intCast(u32, @bitCast(u64, ix) >> 32); + } else if (hx >= 0x7FF00000) { + return x; + } else if (hx == 0x3FF00000 and ix << 32 == 0) { + return 0; + } + + // x into [sqrt(2) / 2, sqrt(2)] + hx += 0x3FF00000 - 0x3FE6A09E; + k += @intCast(i32, hx >> 20) - 0x3FF; + hx = (hx & 0x000FFFFF) + 0x3FE6A09E; + ix = (u64(hx) << 32) | (ix & 0xFFFFFFFF); + x = @bitCast(f64, ix); + + const f = x - 1.0; + const hfsq = 0.5 * f * f; + const s = f / (2.0 + f); + const z = s * s; + const w = z * z; + const t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); + const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); + const R = t2 + t1; + const dk = @intToFloat(f64, k); + + return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi; +} + +test "math.ln" { + expect(ln(f32(0.2)) == ln_32(0.2)); + expect(ln(f64(0.2)) == ln_64(0.2)); +} + +test "math.ln32" { + const epsilon = 0.000001; + + expect(math.approxEq(f32, ln_32(0.2), -1.609438, epsilon)); + expect(math.approxEq(f32, ln_32(0.8923), -0.113953, epsilon)); + expect(math.approxEq(f32, ln_32(1.5), 0.405465, epsilon)); + expect(math.approxEq(f32, ln_32(37.45), 3.623007, epsilon)); + expect(math.approxEq(f32, ln_32(89.123), 4.490017, epsilon)); + expect(math.approxEq(f32, ln_32(123123.234375), 11.720941, epsilon)); +} + +test "math.ln64" { + const epsilon = 0.000001; + + expect(math.approxEq(f64, ln_64(0.2), -1.609438, epsilon)); + expect(math.approxEq(f64, ln_64(0.8923), -0.113953, epsilon)); + expect(math.approxEq(f64, ln_64(1.5), 0.405465, epsilon)); + expect(math.approxEq(f64, ln_64(37.45), 3.623007, epsilon)); + expect(math.approxEq(f64, ln_64(89.123), 4.490017, epsilon)); + expect(math.approxEq(f64, ln_64(123123.234375), 11.720941, epsilon)); +} + +test "math.ln32.special" { + expect(math.isPositiveInf(ln_32(math.inf(f32)))); + expect(math.isNegativeInf(ln_32(0.0))); + expect(math.isNan(ln_32(-1.0))); + expect(math.isNan(ln_32(math.nan(f32)))); +} + +test "math.ln64.special" { + expect(math.isPositiveInf(ln_64(math.inf(f64)))); + expect(math.isNegativeInf(ln_64(0.0))); + expect(math.isNan(ln_64(-1.0))); + expect(math.isNan(ln_64(math.nan(f64)))); +} |
