aboutsummaryrefslogtreecommitdiff
path: root/lib/std/fmt/parse_float/parse.zig
diff options
context:
space:
mode:
authorMarc Tiehuis <marc@tiehu.is>2022-05-02 22:45:06 +1200
committerMarc Tiehuis <marc@tiehu.is>2022-05-03 16:46:40 +1200
commit2085a4af5654a74f2a5d8ac1fa7934a3663bf3a0 (patch)
treeaa5e813758dba7fbcbcb6e9e966e0b6474f72478 /lib/std/fmt/parse_float/parse.zig
parent098bee0e5657bb6dcd92b2b2fa8056ffce893ffc (diff)
downloadzig-2085a4af5654a74f2a5d8ac1fa7934a3663bf3a0.tar.gz
zig-2085a4af5654a74f2a5d8ac1fa7934a3663bf3a0.zip
add new float-parser based on eisel-lemire algorithm
The previous float-parsing method was lacking in a lot of areas. This commit introduces a state-of-the art implementation that is both accurate and fast to std. Code is derived from working repo https://github.com/tiehuis/zig-parsefloat. This includes more test-cases and performance numbers that are present in this commit. * Accuracy The primary testing regime has been using test-data found at https://github.com/tiehuis/parse-number-fxx-test-data. This is a fork of upstream with support for f128 test-cases added. This data has been verified against other independent implementations and represents accurate round-to-even IEEE-754 floating point semantics. * Performance Compared to the existing parseFloat implementation there is ~5-10x performance improvement using the above corpus. (f128 parsing excluded in below measurements). ** Old $ time ./test_all_fxx_data 3520298/5296694 succeeded (1776396 fail) ________________________________________________________ Executed in 28.68 secs fish external usr time 28.48 secs 0.00 micros 28.48 secs sys time 0.08 secs 694.00 micros 0.08 secs ** This Implementation $ time ./test_all_fxx_data 5296693/5296694 succeeded (1 fail) ________________________________________________________ Executed in 4.54 secs fish external usr time 4.37 secs 515.00 micros 4.37 secs sys time 0.10 secs 171.00 micros 0.10 secs Further performance numbers can be seen using the https://github.com/tiehuis/simple_fastfloat_benchmark/ repository, which compares against some other well-known string-to-float conversion functions. A breakdown can be found here: https://github.com/tiehuis/zig-parsefloat/blob/0d9f020f1a37ca88bf889703b397c1c41779f090/PERFORMANCE.md#commit-b15406a0d2e18b50a4b62fceb5a6a3bb60ca5706 In summary, we are within 20% of the C++ reference implementation and have about ~600-700MB/s throughput on a Intel I5-6500 3.5Ghz. * F128 Support Finally, f128 is now completely supported with full accuracy. This does use a slower path which is possible to improve in future. * Behavioural Changes There are a few behavioural changes to note. - `parseHexFloat` is now redundant and these are now supported directly in `parseFloat`. - We implement round-to-even in all parsing routines. This is as specified by IEEE-754. Previous code used different rounding mechanisms (standard was round-to-zero, hex-parsing looked to use round-up) so there may be subtle differences. Closes #2207. Fixes #11169.
Diffstat (limited to 'lib/std/fmt/parse_float/parse.zig')
-rw-r--r--lib/std/fmt/parse_float/parse.zig293
1 files changed, 293 insertions, 0 deletions
diff --git a/lib/std/fmt/parse_float/parse.zig b/lib/std/fmt/parse_float/parse.zig
new file mode 100644
index 0000000000..104052c3b3
--- /dev/null
+++ b/lib/std/fmt/parse_float/parse.zig
@@ -0,0 +1,293 @@
+const std = @import("std");
+const common = @import("common.zig");
+const FloatStream = @import("FloatStream.zig");
+const isEightDigits = common.isEightDigits;
+const Number = common.Number;
+
+/// Parse 8 digits, loaded as bytes in little-endian order.
+///
+/// This uses the trick where every digit is in [0x030, 0x39],
+/// and therefore can be parsed in 3 multiplications, much
+/// faster than the normal 8.
+///
+/// This is based off the algorithm described in "Fast numeric string to
+/// int", available here: <https://johnnylee-sde.github.io/Fast-numeric-string-to-int/>.
+fn parse8Digits(v_: u64) u64 {
+ var v = v_;
+ const mask = 0x0000_00ff_0000_00ff;
+ const mul1 = 0x000f_4240_0000_0064;
+ const mul2 = 0x0000_2710_0000_0001;
+ v -= 0x3030_3030_3030_3030;
+ v = (v * 10) + (v >> 8); // will not overflow, fits in 63 bits
+ const v1 = (v & mask) *% mul1;
+ const v2 = ((v >> 16) & mask) *% mul2;
+ return @as(u64, @truncate(u32, (v1 +% v2) >> 32));
+}
+
+/// Parse digits until a non-digit character is found.
+fn tryParseDigits(comptime T: type, stream: *FloatStream, x: *T, comptime base: u8) void {
+ // Try to parse 8 digits at a time, using an optimized algorithm.
+ // This only supports decimal digits.
+ if (base == 10) {
+ while (stream.hasLen(8)) {
+ const v = stream.readU64Unchecked();
+ if (!isEightDigits(v)) {
+ break;
+ }
+
+ x.* = x.* *% 1_0000_0000 +% parse8Digits(v);
+ stream.advance(8);
+ }
+ }
+
+ while (stream.scanDigit(base)) |digit| {
+ x.* *%= base;
+ x.* +%= digit;
+ }
+}
+
+fn min_n_digit_int(comptime T: type, digit_count: usize) T {
+ var n: T = 1;
+ var i: usize = 1;
+ while (i < digit_count) : (i += 1) n *= 10;
+ return n;
+}
+
+/// Parse up to N digits
+fn tryParseNDigits(comptime T: type, stream: *FloatStream, x: *T, comptime base: u8, comptime n: usize) void {
+ while (x.* < min_n_digit_int(T, n)) {
+ if (stream.scanDigit(base)) |digit| {
+ x.* *%= base;
+ x.* +%= digit;
+ } else {
+ break;
+ }
+ }
+}
+
+/// Parse the scientific notation component of a float.
+fn parseScientific(stream: *FloatStream) ?i64 {
+ var exponent: i64 = 0;
+ var negative = false;
+
+ if (stream.first()) |c| {
+ negative = c == '-';
+ if (c == '-' or c == '+') {
+ stream.advance(1);
+ }
+ }
+ if (stream.firstIsDigit(10)) {
+ while (stream.scanDigit(10)) |digit| {
+ // no overflows here, saturate well before overflow
+ if (exponent < 0x1000_0000) {
+ exponent = 10 * exponent + digit;
+ }
+ }
+
+ return if (negative) -exponent else exponent;
+ }
+
+ return null;
+}
+
+const ParseInfo = struct {
+ // 10 or 16
+ base: u8,
+ // 10^19 fits in u64, 16^16 fits in u64
+ max_mantissa_digits: usize,
+ // e.g. e or p (E and P also checked)
+ exp_char_lower: u8,
+};
+
+fn parsePartialNumberBase(comptime T: type, stream: *FloatStream, negative: bool, n: *usize, comptime info: ParseInfo) ?Number(T) {
+ const MantissaT = common.mantissaType(T);
+
+ // parse initial digits before dot
+ var mantissa: MantissaT = 0;
+ tryParseDigits(MantissaT, stream, &mantissa, info.base);
+ var int_end = stream.offsetTrue();
+ var n_digits = @intCast(isize, stream.offsetTrue());
+
+ // handle dot with the following digits
+ var exponent: i64 = 0;
+ if (stream.firstIs('.')) {
+ stream.advance(1);
+ const marker = stream.offsetTrue();
+ tryParseDigits(MantissaT, stream, &mantissa, info.base);
+ const n_after_dot = stream.offsetTrue() - marker;
+ exponent = -@intCast(i64, n_after_dot);
+ n_digits += @intCast(isize, n_after_dot);
+ }
+
+ // adjust required shift to offset mantissa for base-16 (2^4)
+ if (info.base == 16) {
+ exponent *= 4;
+ }
+
+ if (n_digits == 0) {
+ return null;
+ }
+
+ // handle scientific format
+ var exp_number: i64 = 0;
+ if (stream.firstIsLower(info.exp_char_lower)) {
+ stream.advance(1);
+ exp_number = parseScientific(stream) orelse return null;
+ exponent += exp_number;
+ }
+
+ const len = stream.offset; // length must be complete parsed length
+ n.* = len;
+
+ if (stream.underscore_count > 0 and !validUnderscores(stream.slice, info.base)) {
+ return null;
+ }
+
+ // common case with not many digits
+ if (n_digits <= info.max_mantissa_digits) {
+ return Number(T){
+ .exponent = exponent,
+ .mantissa = mantissa,
+ .negative = negative,
+ .many_digits = false,
+ .hex = info.base == 16,
+ };
+ }
+
+ n_digits -= info.max_mantissa_digits;
+ var many_digits = false;
+ stream.reset(); // re-parse from beginning
+ while (stream.firstIs3('0', '.', '_')) {
+ // '0' = '.' + 2
+ const next = stream.firstUnchecked();
+ if (next != '_') {
+ n_digits -= @intCast(isize, next -| ('0' - 1));
+ } else {
+ stream.underscore_count += 1;
+ }
+ stream.advance(1);
+ }
+ if (n_digits > 0) {
+ // at this point we have more than max_mantissa_digits significant digits, let's try again
+ many_digits = true;
+ mantissa = 0;
+ stream.reset();
+ tryParseNDigits(MantissaT, stream, &mantissa, info.base, info.max_mantissa_digits);
+
+ exponent = blk: {
+ if (mantissa >= min_n_digit_int(MantissaT, info.max_mantissa_digits)) {
+ // big int
+ break :blk @intCast(i64, int_end) - @intCast(i64, stream.offsetTrue());
+ } else {
+ // the next byte must be present and be '.'
+ // We know this is true because we had more than 19
+ // digits previously, so we overflowed a 64-bit integer,
+ // but parsing only the integral digits produced less
+ // than 19 digits. That means we must have a decimal
+ // point, and at least 1 fractional digit.
+ stream.advance(1);
+ var marker = stream.offsetTrue();
+ tryParseNDigits(MantissaT, stream, &mantissa, info.base, info.max_mantissa_digits);
+ break :blk @intCast(i64, marker) - @intCast(i64, stream.offsetTrue());
+ }
+ };
+ // add back the explicit part
+ exponent += exp_number;
+ }
+
+ return Number(T){
+ .exponent = exponent,
+ .mantissa = mantissa,
+ .negative = negative,
+ .many_digits = many_digits,
+ .hex = info.base == 16,
+ };
+}
+
+/// Parse a partial, non-special floating point number.
+///
+/// This creates a representation of the float as the
+/// significant digits and the decimal exponent.
+fn parsePartialNumber(comptime T: type, s: []const u8, negative: bool, n: *usize) ?Number(T) {
+ std.debug.assert(s.len != 0);
+ var stream = FloatStream.init(s);
+ const MantissaT = common.mantissaType(T);
+
+ if (stream.hasLen(2) and stream.atUnchecked(0) == '0' and std.ascii.toLower(stream.atUnchecked(1)) == 'x') {
+ stream.advance(2);
+ return parsePartialNumberBase(T, &stream, negative, n, .{
+ .base = 16,
+ .max_mantissa_digits = if (MantissaT == u64) 16 else 32,
+ .exp_char_lower = 'p',
+ });
+ } else {
+ return parsePartialNumberBase(T, &stream, negative, n, .{
+ .base = 10,
+ .max_mantissa_digits = if (MantissaT == u64) 19 else 38,
+ .exp_char_lower = 'e',
+ });
+ }
+}
+
+pub fn parseNumber(comptime T: type, s: []const u8, negative: bool) ?Number(T) {
+ var consumed: usize = 0;
+ if (parsePartialNumber(T, s, negative, &consumed)) |number| {
+ // must consume entire float (no trailing data)
+ if (s.len == consumed) {
+ return number;
+ }
+ }
+ return null;
+}
+
+fn parsePartialInfOrNan(comptime T: type, s: []const u8, n: *usize) ?T {
+ // inf/infinity; infxxx should only consume inf.
+ if (std.ascii.startsWithIgnoreCase(s, "inf")) {
+ n.* = 3;
+ if (std.ascii.startsWithIgnoreCase(s[3..], "inity")) {
+ n.* = 8;
+ }
+ return std.math.inf(T);
+ }
+
+ if (std.ascii.startsWithIgnoreCase(s, "nan")) {
+ n.* = 3;
+ return std.math.nan(T);
+ }
+
+ return null;
+}
+
+pub fn parseInfOrNan(comptime T: type, s: []const u8, negative: bool) ?T {
+ var consumed: usize = 0;
+ if (parsePartialInfOrNan(T, s, &consumed)) |special| {
+ if (s.len == consumed) {
+ if (negative) {
+ return -1 * special;
+ }
+ return special;
+ }
+ }
+ return null;
+}
+
+pub fn validUnderscores(s: []const u8, comptime base: u8) bool {
+ var i: usize = 0;
+ while (i < s.len) : (i += 1) {
+ if (s[i] == '_') {
+ // underscore at start of end
+ if (i == 0 or i + 1 == s.len) {
+ return false;
+ }
+ // consecutive underscores
+ if (!common.isDigit(s[i - 1], base) or !common.isDigit(s[i + 1], base)) {
+ return false;
+ }
+
+ // next is guaranteed a digit, skip an extra
+ i += 1;
+ }
+ }
+
+ return true;
+}