aboutsummaryrefslogtreecommitdiff
path: root/lib/std/crypto/ff.zig
diff options
context:
space:
mode:
authorLoris Cro <kappaloris@gmail.com>2023-06-18 09:06:40 +0200
committerGitHub <noreply@github.com>2023-06-18 09:06:40 +0200
commit216ef10dc471e4db60a30208be178d6c59efeaaf (patch)
tree8c239dab283ae9cb3b7fe099bae240bcc53f894e /lib/std/crypto/ff.zig
parent0fc1d396495c1ab482197021dedac8bea3f9401c (diff)
parent729a051e9e38674233190aea23c0ac8c134f2d67 (diff)
downloadzig-216ef10dc471e4db60a30208be178d6c59efeaaf.tar.gz
zig-216ef10dc471e4db60a30208be178d6c59efeaaf.zip
Merge branch 'master' into autodoc-searchkey
Diffstat (limited to 'lib/std/crypto/ff.zig')
-rw-r--r--lib/std/crypto/ff.zig909
1 files changed, 909 insertions, 0 deletions
diff --git a/lib/std/crypto/ff.zig b/lib/std/crypto/ff.zig
new file mode 100644
index 0000000000..37e3d1c1b3
--- /dev/null
+++ b/lib/std/crypto/ff.zig
@@ -0,0 +1,909 @@
+//! Allocation-free, (best-effort) constant-time, finite field arithmetic for large integers.
+//!
+//! Unlike `std.math.big`, these integers have a fixed maximum length and are only designed to be used for modular arithmetic.
+//! Arithmetic operations are meant to run in constant-time for a given modulus, making them suitable for cryptography.
+//!
+//! Parts of that code was ported from the BSD-licensed crypto/internal/bigmod/nat.go file in the Go language, itself inspired from BearSSL.
+
+const std = @import("std");
+const builtin = std.builtin;
+const crypto = std.crypto;
+const math = std.math;
+const mem = std.mem;
+const meta = std.meta;
+const testing = std.testing;
+const BoundedArray = std.BoundedArray;
+const assert = std.debug.assert;
+
+// A Limb is a single digit in a big integer.
+const Limb = usize;
+
+// The number of reserved bits in a Limb.
+const carry_bits = 1;
+
+// The number of active bits in a Limb.
+const t_bits: usize = @bitSizeOf(Limb) - carry_bits;
+
+// A TLimb is a Limb that is truncated to t_bits.
+const TLimb = meta.Int(.unsigned, t_bits);
+
+const native_endian = @import("builtin").target.cpu.arch.endian();
+
+// A WideLimb is a Limb that is twice as wide as a normal Limb.
+const WideLimb = struct {
+ hi: Limb,
+ lo: Limb,
+};
+
+/// Value is too large for the destination.
+pub const OverflowError = error{Overflow};
+
+/// Invalid modulus. Modulus must be odd.
+pub const InvalidModulusError = error{ EvenModulus, ModulusTooSmall };
+
+/// Exponentation with a null exponent.
+/// Exponentiation in cryptographic protocols is almost always a sign of a bug which can lead to trivial attacks.
+/// Therefore, this module returns an error when a null exponent is encountered, encouraging applications to handle this case explicitly.
+pub const NullExponentError = error{NullExponent};
+
+/// Invalid field element for the given modulus.
+pub const FieldElementError = error{NonCanonical};
+
+/// Invalid representation (Montgomery vs non-Montgomery domain.)
+pub const RepresentationError = error{UnexpectedRepresentation};
+
+/// The set of all possible errors `std.crypto.ff` functions can return.
+pub const Error = OverflowError || InvalidModulusError || NullExponentError || FieldElementError || RepresentationError;
+
+/// An unsigned big integer with a fixed maximum size (`max_bits`), suitable for cryptographic operations.
+/// Unless side-channels mitigations are explicitly disabled, operations are designed to be constant-time.
+pub fn Uint(comptime max_bits: comptime_int) type {
+ comptime assert(@bitSizeOf(Limb) % 8 == 0); // Limb size must be a multiple of 8
+
+ return struct {
+ const Self = @This();
+
+ const max_limbs_count = math.divCeil(usize, max_bits, t_bits) catch unreachable;
+ const Limbs = BoundedArray(Limb, max_limbs_count);
+ limbs: Limbs,
+
+ /// Number of bytes required to serialize an integer.
+ pub const encoded_bytes = math.divCeil(usize, max_bits, 8) catch unreachable;
+
+ // Returns the number of active limbs.
+ fn limbs_count(self: Self) usize {
+ return self.limbs.len;
+ }
+
+ // Removes limbs whose value is zero from the active limbs.
+ fn normalize(self: Self) Self {
+ var res = self;
+ if (self.limbs_count() < 2) {
+ return res;
+ }
+ var i = self.limbs_count() - 1;
+ while (i > 0 and res.limbs.get(i) == 0) : (i -= 1) {}
+ res.limbs.resize(i + 1) catch unreachable;
+ return res;
+ }
+
+ /// The zero integer.
+ pub const zero = zero: {
+ var limbs = Limbs.init(0) catch unreachable;
+ limbs.appendNTimesAssumeCapacity(0, max_limbs_count);
+ break :zero Self{ .limbs = limbs };
+ };
+
+ /// Creates a new big integer from a primitive type.
+ /// This function may not run in constant time.
+ pub fn fromPrimitive(comptime T: type, x_: T) OverflowError!Self {
+ var x = x_;
+ var out = Self.zero;
+ for (0..out.limbs.capacity()) |i| {
+ const t = if (@bitSizeOf(T) > t_bits) @truncate(TLimb, x) else x;
+ out.limbs.set(i, t);
+ x = math.shr(T, x, t_bits);
+ }
+ if (x != 0) {
+ return error.Overflow;
+ }
+ return out;
+ }
+
+ /// Converts a big integer to a primitive type.
+ /// This function may not run in constant time.
+ pub fn toPrimitive(self: Self, comptime T: type) OverflowError!T {
+ var x: T = 0;
+ var i = self.limbs_count() - 1;
+ while (true) : (i -= 1) {
+ if (@bitSizeOf(T) >= t_bits and math.shr(T, x, @bitSizeOf(T) - t_bits) != 0) {
+ return error.Overflow;
+ }
+ x = math.shl(T, x, t_bits);
+ const v = math.cast(T, self.limbs.get(i)) orelse return error.Overflow;
+ x |= v;
+ if (i == 0) break;
+ }
+ return x;
+ }
+
+ /// Encodes a big integer into a byte array.
+ pub fn toBytes(self: Self, bytes: []u8, comptime endian: builtin.Endian) OverflowError!void {
+ if (bytes.len == 0) {
+ if (self.isZero()) return;
+ return error.Overflow;
+ }
+ @memset(bytes, 0);
+ var shift: usize = 0;
+ var out_i: usize = switch (endian) {
+ .Big => bytes.len - 1,
+ .Little => 0,
+ };
+ for (0..self.limbs.len) |i| {
+ var remaining_bits = t_bits;
+ var limb = self.limbs.get(i);
+ while (remaining_bits >= 8) {
+ bytes[out_i] |= math.shl(u8, @truncate(u8, limb), shift);
+ const consumed = 8 - shift;
+ limb >>= @truncate(u4, consumed);
+ remaining_bits -= consumed;
+ shift = 0;
+ switch (endian) {
+ .Big => {
+ if (out_i == 0) {
+ if (i != self.limbs.len - 1 or limb != 0) {
+ return error.Overflow;
+ }
+ return;
+ }
+ out_i -= 1;
+ },
+ .Little => {
+ out_i += 1;
+ if (out_i == bytes.len) {
+ if (i != self.limbs.len - 1 or limb != 0) {
+ return error.Overflow;
+ }
+ return;
+ }
+ },
+ }
+ }
+ bytes[out_i] |= @truncate(u8, limb);
+ shift = remaining_bits;
+ }
+ }
+
+ /// Creates a new big integer from a byte array.
+ pub fn fromBytes(bytes: []const u8, comptime endian: builtin.Endian) OverflowError!Self {
+ if (bytes.len == 0) return Self.zero;
+ var shift: usize = 0;
+ var out = Self.zero;
+ var out_i: usize = 0;
+ var i: usize = switch (endian) {
+ .Big => bytes.len - 1,
+ .Little => 0,
+ };
+ while (true) {
+ const bi = bytes[i];
+ out.limbs.set(out_i, out.limbs.get(out_i) | math.shl(Limb, bi, shift));
+ shift += 8;
+ if (shift >= t_bits) {
+ shift -= t_bits;
+ out.limbs.set(out_i, @truncate(TLimb, out.limbs.get(out_i)));
+ const overflow = math.shr(Limb, bi, 8 - shift);
+ out_i += 1;
+ if (out_i >= out.limbs.len) {
+ if (overflow != 0 or i != 0) {
+ return error.Overflow;
+ }
+ break;
+ }
+ out.limbs.set(out_i, overflow);
+ }
+ switch (endian) {
+ .Big => {
+ if (i == 0) break;
+ i -= 1;
+ },
+ .Little => {
+ i += 1;
+ if (i == bytes.len) break;
+ },
+ }
+ }
+ return out;
+ }
+
+ /// Returns `true` if both integers are equal.
+ pub fn eql(x: Self, y: Self) bool {
+ return crypto.utils.timingSafeEql([max_limbs_count]Limb, x.limbs.buffer, y.limbs.buffer);
+ }
+
+ /// Compares two integers.
+ pub fn compare(x: Self, y: Self) math.Order {
+ return crypto.utils.timingSafeCompare(
+ Limb,
+ x.limbs.constSlice(),
+ y.limbs.constSlice(),
+ .Little,
+ );
+ }
+
+ /// Returns `true` if the integer is zero.
+ pub fn isZero(x: Self) bool {
+ const x_limbs = x.limbs.constSlice();
+ var t: Limb = 0;
+ for (0..x.limbs_count()) |i| {
+ t |= x_limbs[i];
+ }
+ return ct.eql(t, 0);
+ }
+
+ /// Returns `true` if the integer is odd.
+ pub fn isOdd(x: Self) bool {
+ return @bitCast(bool, @truncate(u1, x.limbs.get(0)));
+ }
+
+ /// Adds `y` to `x`, and returns `true` if the operation overflowed.
+ pub fn addWithOverflow(x: *Self, y: Self) u1 {
+ return x.conditionalAddWithOverflow(true, y);
+ }
+
+ /// Subtracts `y` from `x`, and returns `true` if the operation overflowed.
+ pub fn subWithOverflow(x: *Self, y: Self) u1 {
+ return x.conditionalSubWithOverflow(true, y);
+ }
+
+ // Replaces the limbs of `x` with the limbs of `y` if `on` is `true`.
+ fn cmov(x: *Self, on: bool, y: Self) void {
+ const x_limbs = x.limbs.slice();
+ const y_limbs = y.limbs.constSlice();
+ for (0..y.limbs_count()) |i| {
+ x_limbs[i] = ct.select(on, y_limbs[i], x_limbs[i]);
+ }
+ }
+
+ // Adds `y` to `x` if `on` is `true`, and returns `true` if the operation overflowed.
+ fn conditionalAddWithOverflow(x: *Self, on: bool, y: Self) u1 {
+ assert(x.limbs_count() == y.limbs_count()); // Operands must have the same size.
+ const x_limbs = x.limbs.slice();
+ const y_limbs = y.limbs.constSlice();
+
+ var carry: u1 = 0;
+ for (0..x.limbs_count()) |i| {
+ const res = x_limbs[i] + y_limbs[i] + carry;
+ x_limbs[i] = ct.select(on, @truncate(TLimb, res), x_limbs[i]);
+ carry = @truncate(u1, res >> t_bits);
+ }
+ return carry;
+ }
+
+ // Subtracts `y` from `x` if `on` is `true`, and returns `true` if the operation overflowed.
+ fn conditionalSubWithOverflow(x: *Self, on: bool, y: Self) u1 {
+ assert(x.limbs_count() == y.limbs_count()); // Operands must have the same size.
+ const x_limbs = x.limbs.slice();
+ const y_limbs = y.limbs.constSlice();
+
+ var borrow: u1 = 0;
+ for (0..x.limbs_count()) |i| {
+ const res = x_limbs[i] -% y_limbs[i] -% borrow;
+ x_limbs[i] = ct.select(on, @truncate(TLimb, res), x_limbs[i]);
+ borrow = @truncate(u1, res >> t_bits);
+ }
+ return borrow;
+ }
+ };
+}
+
+/// A field element.
+fn Fe_(comptime bits: comptime_int) type {
+ return struct {
+ const Self = @This();
+
+ const FeUint = Uint(bits);
+
+ /// The element value as a `Uint`.
+ v: FeUint,
+
+ /// `true` is the element is in Montgomery form.
+ montgomery: bool = false,
+
+ /// The maximum number of bytes required to encode a field element.
+ pub const encoded_bytes = FeUint.encoded_bytes;
+
+ // The number of active limbs to represent the field element.
+ fn limbs_count(self: Self) usize {
+ return self.v.limbs_count();
+ }
+
+ /// Creates a field element from a primitive.
+ /// This function may not run in constant time.
+ pub fn fromPrimitive(comptime T: type, m: Modulus(bits), x: T) (OverflowError || FieldElementError)!Self {
+ comptime assert(@bitSizeOf(T) <= bits); // Primitive type is larger than the modulus type.
+ const v = try FeUint.fromPrimitive(T, x);
+ var fe = Self{ .v = v };
+ try m.shrink(&fe);
+ try m.rejectNonCanonical(fe);
+ return fe;
+ }
+
+ /// Converts the field element to a primitive.
+ /// This function may not run in constant time.
+ pub fn toPrimitive(self: Self, comptime T: type) OverflowError!T {
+ return self.v.toPrimitive(T);
+ }
+
+ /// Creates a field element from a byte string.
+ pub fn fromBytes(m: Modulus(bits), bytes: []const u8, comptime endian: builtin.Endian) (OverflowError || FieldElementError)!Self {
+ const v = try FeUint.fromBytes(bytes, endian);
+ var fe = Self{ .v = v };
+ try m.shrink(&fe);
+ try m.rejectNonCanonical(fe);
+ return fe;
+ }
+
+ /// Converts the field element to a byte string.
+ pub fn toBytes(self: Self, bytes: []u8, comptime endian: builtin.Endian) OverflowError!void {
+ return self.v.toBytes(bytes, endian);
+ }
+
+ /// Returns `true` if the field elements are equal, in constant time.
+ pub fn eql(x: Self, y: Self) bool {
+ return x.v.eql(y.v);
+ }
+
+ /// Compares two field elements in constant time.
+ pub fn compare(x: Self, y: Self) math.Order {
+ return x.v.compare(y.v);
+ }
+
+ /// Returns `true` if the element is zero.
+ pub fn isZero(self: Self) bool {
+ return self.v.isZero();
+ }
+
+ /// Returns `true` is the element is odd.
+ pub fn isOdd(self: Self) bool {
+ return self.v.isOdd();
+ }
+ };
+}
+
+/// A modulus, defining a finite field.
+/// All operations within the field are performed modulo this modulus, without heap allocations.
+/// `max_bits` represents the number of bits in the maximum value the modulus can be set to.
+pub fn Modulus(comptime max_bits: comptime_int) type {
+ return struct {
+ const Self = @This();
+
+ /// A field element, representing a value within the field defined by this modulus.
+ pub const Fe = Fe_(max_bits);
+
+ const FeUint = Fe.FeUint;
+
+ /// The neutral element.
+ zero: Fe,
+
+ /// The modulus value.
+ v: FeUint,
+
+ /// R^2 for the Montgomery representation.
+ rr: Fe,
+ /// Inverse of the first limb
+ m0inv: Limb,
+ /// Number of leading zero bits in the modulus.
+ leading: usize,
+
+ // Number of active limbs in the modulus.
+ fn limbs_count(self: Self) usize {
+ return self.v.limbs_count();
+ }
+
+ /// Actual size of the modulus, in bits.
+ pub fn bits(self: Self) usize {
+ return self.limbs_count() * t_bits - self.leading;
+ }
+
+ /// Returns the element `1`.
+ pub fn one(self: Self) Fe {
+ var fe = self.zero;
+ fe.v.limbs.set(0, 1);
+ return fe;
+ }
+
+ /// Creates a new modulus from a `Uint` value.
+ /// The modulus must be odd and larger than 2.
+ pub fn fromUint(v_: FeUint) InvalidModulusError!Self {
+ if (!v_.isOdd()) return error.EvenModulus;
+
+ var v = v_.normalize();
+ const hi = v.limbs.get(v.limbs_count() - 1);
+ const lo = v.limbs.get(0);
+
+ if (v.limbs_count() < 2 and lo < 3) {
+ return error.ModulusTooSmall;
+ }
+
+ const leading = @clz(hi) - carry_bits;
+
+ var y = lo;
+
+ inline for (0..comptime math.log2_int(usize, t_bits)) |_| {
+ y = y *% (2 -% lo *% y);
+ }
+ const m0inv = (@as(Limb, 1) << t_bits) - (@truncate(TLimb, y));
+
+ const zero = Fe{ .v = FeUint.zero };
+
+ var m = Self{
+ .zero = zero,
+ .v = v,
+ .leading = leading,
+ .m0inv = m0inv,
+ .rr = undefined, // will be computed right after
+ };
+ m.shrink(&m.zero) catch unreachable;
+ computeRR(&m);
+
+ return m;
+ }
+
+ /// Creates a new modulus from a primitive value.
+ /// The modulus must be odd and larger than 2.
+ pub fn fromPrimitive(comptime T: type, x: T) (InvalidModulusError || OverflowError)!Self {
+ comptime assert(@bitSizeOf(T) <= max_bits); // Primitive type is larger than the modulus type.
+ const v = try FeUint.fromPrimitive(T, x);
+ return try Self.fromUint(v);
+ }
+
+ /// Creates a new modulus from a byte string.
+ pub fn fromBytes(bytes: []const u8, comptime endian: builtin.Endian) (InvalidModulusError || OverflowError)!Self {
+ const v = try FeUint.fromBytes(bytes, endian);
+ return try Self.fromUint(v);
+ }
+
+ /// Serializes the modulus to a byte string.
+ pub fn toBytes(self: Self, bytes: []u8, comptime endian: builtin.Endian) OverflowError!void {
+ return self.v.toBytes(bytes, endian);
+ }
+
+ /// Rejects field elements that are not in the canonical form.
+ pub fn rejectNonCanonical(self: Self, fe: Fe) error{NonCanonical}!void {
+ if (fe.limbs_count() != self.limbs_count() or ct.limbsCmpGeq(fe.v, self.v)) {
+ return error.NonCanonical;
+ }
+ }
+
+ // Makes the number of active limbs in a field element match the one of the modulus.
+ fn shrink(self: Self, fe: *Fe) OverflowError!void {
+ const new_len = self.limbs_count();
+ if (fe.limbs_count() < new_len) return error.Overflow;
+ var acc: Limb = 0;
+ for (fe.v.limbs.constSlice()[new_len..]) |limb| {
+ acc |= limb;
+ }
+ if (acc != 0) return error.Overflow;
+ try fe.v.limbs.resize(new_len);
+ }
+
+ // Computes R^2 for the Montgomery representation.
+ fn computeRR(self: *Self) void {
+ self.rr = self.zero;
+ const n = self.rr.limbs_count();
+ self.rr.v.limbs.set(n - 1, 1);
+ for ((n - 1)..(2 * n)) |_| {
+ self.shiftIn(&self.rr, 0);
+ }
+ self.shrink(&self.rr) catch unreachable;
+ }
+
+ /// Computes x << t_bits + y (mod m)
+ fn shiftIn(self: Self, x: *Fe, y: Limb) void {
+ var d = self.zero;
+ const x_limbs = x.v.limbs.slice();
+ const d_limbs = d.v.limbs.slice();
+ const m_limbs = self.v.limbs.constSlice();
+
+ var need_sub = false;
+ var i: usize = t_bits - 1;
+ while (true) : (i -= 1) {
+ var carry = @truncate(u1, math.shr(Limb, y, i));
+ var borrow: u1 = 0;
+ for (0..self.limbs_count()) |j| {
+ const l = ct.select(need_sub, d_limbs[j], x_limbs[j]);
+ var res = (l << 1) + carry;
+ x_limbs[j] = @truncate(TLimb, res);
+ carry = @truncate(u1, res >> t_bits);
+
+ res = x_limbs[j] -% m_limbs[j] -% borrow;
+ d_limbs[j] = @truncate(TLimb, res);
+
+ borrow = @truncate(u1, res >> t_bits);
+ }
+ need_sub = ct.eql(carry, borrow);
+ if (i == 0) break;
+ }
+ x.v.cmov(need_sub, d.v);
+ }
+
+ /// Adds two field elements (mod m).
+ pub fn add(self: Self, x: Fe, y: Fe) Fe {
+ var out = x;
+ const overflow = out.v.addWithOverflow(y.v);
+ const underflow = @bitCast(u1, ct.limbsCmpLt(out.v, self.v));
+ const need_sub = ct.eql(overflow, underflow);
+ _ = out.v.conditionalSubWithOverflow(need_sub, self.v);
+ return out;
+ }
+
+ /// Subtracts two field elements (mod m).
+ pub fn sub(self: Self, x: Fe, y: Fe) Fe {
+ var out = x;
+ const underflow = @bitCast(bool, out.v.subWithOverflow(y.v));
+ _ = out.v.conditionalAddWithOverflow(underflow, self.v);
+ return out;
+ }
+
+ /// Converts a field element to the Montgomery form.
+ pub fn toMontgomery(self: Self, x: *Fe) RepresentationError!void {
+ if (x.montgomery) {
+ return error.UnexpectedRepresentation;
+ }
+ self.shrink(x) catch unreachable;
+ x.* = self.montgomeryMul(x.*, self.rr);
+ x.montgomery = true;
+ }
+
+ /// Takes a field element out of the Montgomery form.
+ pub fn fromMontgomery(self: Self, x: *Fe) RepresentationError!void {
+ if (!x.montgomery) {
+ return error.UnexpectedRepresentation;
+ }
+ self.shrink(x) catch unreachable;
+ x.* = self.montgomeryMul(x.*, self.one());
+ x.montgomery = false;
+ }
+
+ /// Reduces an arbitrary `Uint`, converting it to a field element.
+ pub fn reduce(self: Self, x: anytype) Fe {
+ var out = self.zero;
+ var i = x.limbs_count() - 1;
+ if (self.limbs_count() >= 2) {
+ const start = @min(i, self.limbs_count() - 2);
+ var j = start;
+ while (true) : (j -= 1) {
+ out.v.limbs.set(j, x.limbs.get(i));
+ i -= 1;
+ if (j == 0) break;
+ }
+ }
+ while (true) : (i -= 1) {
+ self.shiftIn(&out, x.limbs.get(i));
+ if (i == 0) break;
+ }
+ return out;
+ }
+
+ fn montgomeryLoop(self: Self, d: *Fe, x: Fe, y: Fe) u1 {
+ assert(d.limbs_count() == x.limbs_count());
+ assert(d.limbs_count() == y.limbs_count());
+ assert(d.limbs_count() == self.limbs_count());
+
+ const a_limbs = x.v.limbs.constSlice();
+ const b_limbs = y.v.limbs.constSlice();
+ const d_limbs = d.v.limbs.slice();
+ const m_limbs = self.v.limbs.constSlice();
+
+ var overflow: u1 = 0;
+ for (0..self.limbs_count()) |i| {
+ var carry: Limb = 0;
+
+ var wide = ct.mulWide(a_limbs[i], b_limbs[0]);
+ var z_lo = @addWithOverflow(d_limbs[0], wide.lo);
+ const f = @truncate(TLimb, z_lo[0] *% self.m0inv);
+ var z_hi = wide.hi +% z_lo[1];
+ wide = ct.mulWide(f, m_limbs[0]);
+ z_lo = @addWithOverflow(z_lo[0], wide.lo);
+ z_hi +%= z_lo[1];
+ z_hi +%= wide.hi;
+ carry = (z_hi << 1) | (z_lo[0] >> t_bits);
+
+ for (1..self.limbs_count()) |j| {
+ wide = ct.mulWide(a_limbs[i], b_limbs[j]);
+ z_lo = @addWithOverflow(d_limbs[j], wide.lo);
+ z_hi = wide.hi +% z_lo[1];
+ wide = ct.mulWide(f, m_limbs[j]);
+ z_lo = @addWithOverflow(z_lo[0], wide.lo);
+ z_hi +%= z_lo[1];
+ z_hi +%= wide.hi;
+ z_lo = @addWithOverflow(z_lo[0], carry);
+ z_hi +%= z_lo[1];
+ if (j > 0) {
+ d_limbs[j - 1] = @truncate(TLimb, z_lo[0]);
+ }
+ carry = (z_hi << 1) | (z_lo[0] >> t_bits);
+ }
+ const z = overflow + carry;
+ d_limbs[self.limbs_count() - 1] = @truncate(TLimb, z);
+ overflow = @truncate(u1, z >> t_bits);
+ }
+ return overflow;
+ }
+
+ // Montgomery multiplication.
+ fn montgomeryMul(self: Self, x: Fe, y: Fe) Fe {
+ var d = self.zero;
+ assert(x.limbs_count() == self.limbs_count());
+ assert(y.limbs_count() == self.limbs_count());
+ const overflow = self.montgomeryLoop(&d, x, y);
+ const underflow = 1 -% @boolToInt(ct.limbsCmpGeq(d.v, self.v));
+ const need_sub = ct.eql(overflow, underflow);
+ _ = d.v.conditionalSubWithOverflow(need_sub, self.v);
+ d.montgomery = x.montgomery == y.montgomery;
+ return d;
+ }
+
+ // Montgomery squaring.
+ fn montgomerySq(self: Self, x: Fe) Fe {
+ var d = self.zero;
+ assert(x.limbs_count() == self.limbs_count());
+ const overflow = self.montgomeryLoop(&d, x, x);
+ const underflow = 1 -% @boolToInt(ct.limbsCmpGeq(d.v, self.v));
+ const need_sub = ct.eql(overflow, underflow);
+ _ = d.v.conditionalSubWithOverflow(need_sub, self.v);
+ d.montgomery = true;
+ return d;
+ }
+
+ /// Multiplies two field elements.
+ pub fn mul(self: Self, x: Fe, y: Fe) Fe {
+ if (x.montgomery != y.montgomery) {
+ return self.montgomeryMul(x, y);
+ }
+ var a_ = x;
+ if (x.montgomery == false) {
+ self.toMontgomery(&a_) catch unreachable;
+ } else {
+ self.fromMontgomery(&a_) catch unreachable;
+ }
+ return self.montgomeryMul(a_, y);
+ }
+
+ /// Squares a field element.
+ pub fn sq(self: Self, x: Fe) Fe {
+ var out = x;
+ if (x.montgomery == true) {
+ self.fromMontgomery(&out) catch unreachable;
+ }
+ out = self.montgomerySq(out);
+ out.montgomery = false;
+ self.toMontgomery(&out) catch unreachable;
+ return out;
+ }
+
+ /// Returns x^e (mod m) in constant time.
+ pub fn pow(self: Self, x: Fe, e: Fe) NullExponentError!Fe {
+ var buf: [Fe.encoded_bytes]u8 = undefined;
+ e.toBytes(&buf, native_endian) catch unreachable;
+ return self.powWithEncodedExponent(x, &buf, native_endian);
+ }
+
+ /// Returns x^e (mod m), assuming that the exponent is public.
+ /// The function remains constant time with respect to `x`.
+ pub fn powPublic(self: Self, x: Fe, e: Fe) NullExponentError!Fe {
+ var e_normalized = Fe{ .v = e.v.normalize() };
+ var buf_: [Fe.encoded_bytes]u8 = undefined;
+ var buf = buf_[0 .. math.divCeil(usize, e_normalized.v.limbs_count() * t_bits, 8) catch unreachable];
+ e_normalized.toBytes(buf, .Little) catch unreachable;
+ const leading = @clz(e_normalized.v.limbs.get(e_normalized.v.limbs_count() - carry_bits));
+ buf = buf[0 .. buf.len - leading / 8];
+ return self.powWithEncodedExponent(x, buf, .Little);
+ }
+
+ /// Returns x^e (mod m), assuming that the exponent is public, and provided as a byte string.
+ /// Exponents are usually small, so this function is faster than `powPublic` as a field element
+ /// doesn't have to be created if a serialized representation is already available.
+ pub fn powWithEncodedExponent(self: Self, x: Fe, e: []const u8, endian: builtin.Endian) NullExponentError!Fe {
+ var acc: u8 = 0;
+ for (e) |b| acc |= b;
+ if (acc == 0) return error.NullExponent;
+
+ var pc = [1]Fe{x} ++ [_]Fe{self.zero} ** 14;
+ if (x.montgomery == false) {
+ self.toMontgomery(&pc[0]) catch unreachable;
+ }
+ for (1..pc.len) |i| {
+ pc[i] = self.montgomeryMul(pc[i - 1], pc[0]);
+ }
+ var out = self.one();
+ self.toMontgomery(&out) catch unreachable;
+ var t0 = self.zero;
+ var s = switch (endian) {
+ .Big => 0,
+ .Little => e.len - 1,
+ };
+ while (true) {
+ const b = e[s];
+ for ([_]u3{ 4, 0 }) |j| {
+ for (0..4) |_| {
+ out = self.montgomerySq(out);
+ }
+ const k = (b >> j) & 0b1111;
+ if (std.options.side_channels_mitigations == .none) {
+ if (k == 0) continue;
+ t0 = pc[k - 1];
+ } else {
+ for (pc, 0..) |t, i| {
+ t0.v.cmov(ct.eql(k, @truncate(u8, i + 1)), t.v);
+ }
+ }
+ const t1 = self.montgomeryMul(out, t0);
+ out.v.cmov(!ct.eql(k, 0), t1.v);
+ }
+ switch (endian) {
+ .Big => {
+ s += 1;
+ if (s == e.len) break;
+ },
+ .Little => {
+ if (s == 0) break;
+ s -= 1;
+ },
+ }
+ }
+ self.fromMontgomery(&out) catch unreachable;
+ return out;
+ }
+ };
+}
+
+const ct = if (std.options.side_channels_mitigations == .none) ct_unprotected else ct_protected;
+
+const ct_protected = struct {
+ // Returns x if on is true, otherwise y.
+ fn select(on: bool, x: Limb, y: Limb) Limb {
+ const mask = @as(Limb, 0) -% @boolToInt(on);
+ return y ^ (mask & (y ^ x));
+ }
+
+ // Compares two values in constant time.
+ fn eql(x: anytype, y: @TypeOf(x)) bool {
+ const c1 = @subWithOverflow(x, y)[1];
+ const c2 = @subWithOverflow(y, x)[1];
+ return @bitCast(bool, 1 - (c1 | c2));
+ }
+
+ // Compares two big integers in constant time, returning true if x < y.
+ fn limbsCmpLt(x: anytype, y: @TypeOf(x)) bool {
+ assert(x.limbs_count() == y.limbs_count());
+ const x_limbs = x.limbs.constSlice();
+ const y_limbs = y.limbs.constSlice();
+
+ var c: u1 = 0;
+ for (0..x.limbs_count()) |i| {
+ c = @truncate(u1, (x_limbs[i] -% y_limbs[i] -% c) >> t_bits);
+ }
+ return @bitCast(bool, c);
+ }
+
+ // Compares two big integers in constant time, returning true if x >= y.
+ fn limbsCmpGeq(x: anytype, y: @TypeOf(x)) bool {
+ return @bitCast(bool, 1 - @boolToInt(ct.limbsCmpLt(x, y)));
+ }
+
+ // Multiplies two limbs and returns the result as a wide limb.
+ fn mulWide(x: Limb, y: Limb) WideLimb {
+ const half_bits = @typeInfo(Limb).Int.bits / 2;
+ const Half = meta.Int(.unsigned, half_bits);
+ const x0 = @truncate(Half, x);
+ const x1 = @truncate(Half, x >> half_bits);
+ const y0 = @truncate(Half, y);
+ const y1 = @truncate(Half, y >> half_bits);
+ const w0 = math.mulWide(Half, x0, y0);
+ const t = math.mulWide(Half, x1, y0) + (w0 >> half_bits);
+ var w1: Limb = @truncate(Half, t);
+ const w2 = @truncate(Half, t >> half_bits);
+ w1 += math.mulWide(Half, x0, y1);
+ const hi = math.mulWide(Half, x1, y1) + w2 + (w1 >> half_bits);
+ const lo = x *% y;
+ return .{ .hi = hi, .lo = lo };
+ }
+};
+
+const ct_unprotected = struct {
+ // Returns x if on is true, otherwise y.
+ fn select(on: bool, x: Limb, y: Limb) Limb {
+ return if (on) x else y;
+ }
+
+ // Compares two values in constant time.
+ fn eql(x: anytype, y: @TypeOf(x)) bool {
+ return x == y;
+ }
+
+ // Compares two big integers in constant time, returning true if x < y.
+ fn limbsCmpLt(x: anytype, y: @TypeOf(x)) bool {
+ assert(x.limbs_count() == y.limbs_count());
+ const x_limbs = x.limbs.constSlice();
+ const y_limbs = y.limbs.constSlice();
+
+ var i = x.limbs_count();
+ while (i != 0) {
+ i -= 1;
+ if (x_limbs[i] != y_limbs[i]) {
+ return x_limbs[i] < y_limbs[i];
+ }
+ }
+ return false;
+ }
+
+ // Compares two big integers in constant time, returning true if x >= y.
+ fn limbsCmpGeq(x: anytype, y: @TypeOf(x)) bool {
+ return !ct.limbsCmpLt(x, y);
+ }
+
+ // Multiplies two limbs and returns the result as a wide limb.
+ fn mulWide(x: Limb, y: Limb) WideLimb {
+ const wide = math.mulWide(Limb, x, y);
+ return .{
+ .hi = @truncate(Limb, wide >> @typeInfo(Limb).Int.bits),
+ .lo = @truncate(Limb, wide),
+ };
+ }
+};
+
+test {
+ if (@import("builtin").zig_backend == .stage2_c) return error.SkipZigTest;
+
+ const M = Modulus(256);
+ const m = try M.fromPrimitive(u256, 3429938563481314093726330772853735541133072814650493833233);
+ var x = try M.Fe.fromPrimitive(u256, m, 80169837251094269539116136208111827396136208141182357733);
+ var y = try M.Fe.fromPrimitive(u256, m, 24620149608466364616251608466389896540098571);
+
+ const x_ = try x.toPrimitive(u256);
+ try testing.expect((try M.Fe.fromPrimitive(@TypeOf(x_), m, x_)).eql(x));
+ try testing.expectError(error.Overflow, x.toPrimitive(u50));
+
+ const bits = m.bits();
+ try testing.expectEqual(bits, 192);
+
+ var x_y = m.mul(x, y);
+ try testing.expectEqual(x_y.toPrimitive(u256), 1666576607955767413750776202132407807424848069716933450241);
+
+ try m.toMontgomery(&x);
+ x_y = m.mul(x, y);
+ try testing.expectEqual(x_y.toPrimitive(u256), 1666576607955767413750776202132407807424848069716933450241);
+ try m.fromMontgomery(&x);
+
+ x = m.add(x, y);
+ try testing.expectEqual(x.toPrimitive(u256), 80169837251118889688724602572728079004602598037722456304);
+ x = m.sub(x, y);
+ try testing.expectEqual(x.toPrimitive(u256), 80169837251094269539116136208111827396136208141182357733);
+
+ const big = try Uint(512).fromPrimitive(u495, 77285373554113307281465049383342993856348131409372633077285373554113307281465049383323332333429938563481314093726330772853735541133072814650493833233);
+ const reduced = m.reduce(big);
+ try testing.expectEqual(reduced.toPrimitive(u495), 858047099884257670294681641776170038885500210968322054970);
+
+ const x_pow_y = try m.powPublic(x, y);
+ try testing.expectEqual(x_pow_y.toPrimitive(u256), 1631933139300737762906024873185789093007782131928298618473);
+ try m.toMontgomery(&x);
+ const x_pow_y2 = try m.powPublic(x, y);
+ try m.fromMontgomery(&x);
+ try testing.expect(x_pow_y2.eql(x_pow_y));
+ try testing.expectError(error.NullExponent, m.powPublic(x, m.zero));
+
+ try testing.expect(!x.isZero());
+ try testing.expect(!y.isZero());
+ try testing.expect(m.v.isOdd());
+
+ const x_sq = m.sq(x);
+ const x_sq2 = m.mul(x, x);
+ try testing.expect(x_sq.eql(x_sq2));
+ try m.toMontgomery(&x);
+ const x_sq3 = m.sq(x);
+ const x_sq4 = m.mul(x, x);
+ try testing.expect(x_sq.eql(x_sq3));
+ try testing.expect(x_sq3.eql(x_sq4));
+ try m.fromMontgomery(&x);
+}