diff options
| author | Loris Cro <kappaloris@gmail.com> | 2023-06-18 09:06:40 +0200 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2023-06-18 09:06:40 +0200 |
| commit | 216ef10dc471e4db60a30208be178d6c59efeaaf (patch) | |
| tree | 8c239dab283ae9cb3b7fe099bae240bcc53f894e /lib/std/crypto/ff.zig | |
| parent | 0fc1d396495c1ab482197021dedac8bea3f9401c (diff) | |
| parent | 729a051e9e38674233190aea23c0ac8c134f2d67 (diff) | |
| download | zig-216ef10dc471e4db60a30208be178d6c59efeaaf.tar.gz zig-216ef10dc471e4db60a30208be178d6c59efeaaf.zip | |
Merge branch 'master' into autodoc-searchkey
Diffstat (limited to 'lib/std/crypto/ff.zig')
| -rw-r--r-- | lib/std/crypto/ff.zig | 909 |
1 files changed, 909 insertions, 0 deletions
diff --git a/lib/std/crypto/ff.zig b/lib/std/crypto/ff.zig new file mode 100644 index 0000000000..37e3d1c1b3 --- /dev/null +++ b/lib/std/crypto/ff.zig @@ -0,0 +1,909 @@ +//! Allocation-free, (best-effort) constant-time, finite field arithmetic for large integers. +//! +//! Unlike `std.math.big`, these integers have a fixed maximum length and are only designed to be used for modular arithmetic. +//! Arithmetic operations are meant to run in constant-time for a given modulus, making them suitable for cryptography. +//! +//! Parts of that code was ported from the BSD-licensed crypto/internal/bigmod/nat.go file in the Go language, itself inspired from BearSSL. + +const std = @import("std"); +const builtin = std.builtin; +const crypto = std.crypto; +const math = std.math; +const mem = std.mem; +const meta = std.meta; +const testing = std.testing; +const BoundedArray = std.BoundedArray; +const assert = std.debug.assert; + +// A Limb is a single digit in a big integer. +const Limb = usize; + +// The number of reserved bits in a Limb. +const carry_bits = 1; + +// The number of active bits in a Limb. +const t_bits: usize = @bitSizeOf(Limb) - carry_bits; + +// A TLimb is a Limb that is truncated to t_bits. +const TLimb = meta.Int(.unsigned, t_bits); + +const native_endian = @import("builtin").target.cpu.arch.endian(); + +// A WideLimb is a Limb that is twice as wide as a normal Limb. +const WideLimb = struct { + hi: Limb, + lo: Limb, +}; + +/// Value is too large for the destination. +pub const OverflowError = error{Overflow}; + +/// Invalid modulus. Modulus must be odd. +pub const InvalidModulusError = error{ EvenModulus, ModulusTooSmall }; + +/// Exponentation with a null exponent. +/// Exponentiation in cryptographic protocols is almost always a sign of a bug which can lead to trivial attacks. +/// Therefore, this module returns an error when a null exponent is encountered, encouraging applications to handle this case explicitly. +pub const NullExponentError = error{NullExponent}; + +/// Invalid field element for the given modulus. +pub const FieldElementError = error{NonCanonical}; + +/// Invalid representation (Montgomery vs non-Montgomery domain.) +pub const RepresentationError = error{UnexpectedRepresentation}; + +/// The set of all possible errors `std.crypto.ff` functions can return. +pub const Error = OverflowError || InvalidModulusError || NullExponentError || FieldElementError || RepresentationError; + +/// An unsigned big integer with a fixed maximum size (`max_bits`), suitable for cryptographic operations. +/// Unless side-channels mitigations are explicitly disabled, operations are designed to be constant-time. +pub fn Uint(comptime max_bits: comptime_int) type { + comptime assert(@bitSizeOf(Limb) % 8 == 0); // Limb size must be a multiple of 8 + + return struct { + const Self = @This(); + + const max_limbs_count = math.divCeil(usize, max_bits, t_bits) catch unreachable; + const Limbs = BoundedArray(Limb, max_limbs_count); + limbs: Limbs, + + /// Number of bytes required to serialize an integer. + pub const encoded_bytes = math.divCeil(usize, max_bits, 8) catch unreachable; + + // Returns the number of active limbs. + fn limbs_count(self: Self) usize { + return self.limbs.len; + } + + // Removes limbs whose value is zero from the active limbs. + fn normalize(self: Self) Self { + var res = self; + if (self.limbs_count() < 2) { + return res; + } + var i = self.limbs_count() - 1; + while (i > 0 and res.limbs.get(i) == 0) : (i -= 1) {} + res.limbs.resize(i + 1) catch unreachable; + return res; + } + + /// The zero integer. + pub const zero = zero: { + var limbs = Limbs.init(0) catch unreachable; + limbs.appendNTimesAssumeCapacity(0, max_limbs_count); + break :zero Self{ .limbs = limbs }; + }; + + /// Creates a new big integer from a primitive type. + /// This function may not run in constant time. + pub fn fromPrimitive(comptime T: type, x_: T) OverflowError!Self { + var x = x_; + var out = Self.zero; + for (0..out.limbs.capacity()) |i| { + const t = if (@bitSizeOf(T) > t_bits) @truncate(TLimb, x) else x; + out.limbs.set(i, t); + x = math.shr(T, x, t_bits); + } + if (x != 0) { + return error.Overflow; + } + return out; + } + + /// Converts a big integer to a primitive type. + /// This function may not run in constant time. + pub fn toPrimitive(self: Self, comptime T: type) OverflowError!T { + var x: T = 0; + var i = self.limbs_count() - 1; + while (true) : (i -= 1) { + if (@bitSizeOf(T) >= t_bits and math.shr(T, x, @bitSizeOf(T) - t_bits) != 0) { + return error.Overflow; + } + x = math.shl(T, x, t_bits); + const v = math.cast(T, self.limbs.get(i)) orelse return error.Overflow; + x |= v; + if (i == 0) break; + } + return x; + } + + /// Encodes a big integer into a byte array. + pub fn toBytes(self: Self, bytes: []u8, comptime endian: builtin.Endian) OverflowError!void { + if (bytes.len == 0) { + if (self.isZero()) return; + return error.Overflow; + } + @memset(bytes, 0); + var shift: usize = 0; + var out_i: usize = switch (endian) { + .Big => bytes.len - 1, + .Little => 0, + }; + for (0..self.limbs.len) |i| { + var remaining_bits = t_bits; + var limb = self.limbs.get(i); + while (remaining_bits >= 8) { + bytes[out_i] |= math.shl(u8, @truncate(u8, limb), shift); + const consumed = 8 - shift; + limb >>= @truncate(u4, consumed); + remaining_bits -= consumed; + shift = 0; + switch (endian) { + .Big => { + if (out_i == 0) { + if (i != self.limbs.len - 1 or limb != 0) { + return error.Overflow; + } + return; + } + out_i -= 1; + }, + .Little => { + out_i += 1; + if (out_i == bytes.len) { + if (i != self.limbs.len - 1 or limb != 0) { + return error.Overflow; + } + return; + } + }, + } + } + bytes[out_i] |= @truncate(u8, limb); + shift = remaining_bits; + } + } + + /// Creates a new big integer from a byte array. + pub fn fromBytes(bytes: []const u8, comptime endian: builtin.Endian) OverflowError!Self { + if (bytes.len == 0) return Self.zero; + var shift: usize = 0; + var out = Self.zero; + var out_i: usize = 0; + var i: usize = switch (endian) { + .Big => bytes.len - 1, + .Little => 0, + }; + while (true) { + const bi = bytes[i]; + out.limbs.set(out_i, out.limbs.get(out_i) | math.shl(Limb, bi, shift)); + shift += 8; + if (shift >= t_bits) { + shift -= t_bits; + out.limbs.set(out_i, @truncate(TLimb, out.limbs.get(out_i))); + const overflow = math.shr(Limb, bi, 8 - shift); + out_i += 1; + if (out_i >= out.limbs.len) { + if (overflow != 0 or i != 0) { + return error.Overflow; + } + break; + } + out.limbs.set(out_i, overflow); + } + switch (endian) { + .Big => { + if (i == 0) break; + i -= 1; + }, + .Little => { + i += 1; + if (i == bytes.len) break; + }, + } + } + return out; + } + + /// Returns `true` if both integers are equal. + pub fn eql(x: Self, y: Self) bool { + return crypto.utils.timingSafeEql([max_limbs_count]Limb, x.limbs.buffer, y.limbs.buffer); + } + + /// Compares two integers. + pub fn compare(x: Self, y: Self) math.Order { + return crypto.utils.timingSafeCompare( + Limb, + x.limbs.constSlice(), + y.limbs.constSlice(), + .Little, + ); + } + + /// Returns `true` if the integer is zero. + pub fn isZero(x: Self) bool { + const x_limbs = x.limbs.constSlice(); + var t: Limb = 0; + for (0..x.limbs_count()) |i| { + t |= x_limbs[i]; + } + return ct.eql(t, 0); + } + + /// Returns `true` if the integer is odd. + pub fn isOdd(x: Self) bool { + return @bitCast(bool, @truncate(u1, x.limbs.get(0))); + } + + /// Adds `y` to `x`, and returns `true` if the operation overflowed. + pub fn addWithOverflow(x: *Self, y: Self) u1 { + return x.conditionalAddWithOverflow(true, y); + } + + /// Subtracts `y` from `x`, and returns `true` if the operation overflowed. + pub fn subWithOverflow(x: *Self, y: Self) u1 { + return x.conditionalSubWithOverflow(true, y); + } + + // Replaces the limbs of `x` with the limbs of `y` if `on` is `true`. + fn cmov(x: *Self, on: bool, y: Self) void { + const x_limbs = x.limbs.slice(); + const y_limbs = y.limbs.constSlice(); + for (0..y.limbs_count()) |i| { + x_limbs[i] = ct.select(on, y_limbs[i], x_limbs[i]); + } + } + + // Adds `y` to `x` if `on` is `true`, and returns `true` if the operation overflowed. + fn conditionalAddWithOverflow(x: *Self, on: bool, y: Self) u1 { + assert(x.limbs_count() == y.limbs_count()); // Operands must have the same size. + const x_limbs = x.limbs.slice(); + const y_limbs = y.limbs.constSlice(); + + var carry: u1 = 0; + for (0..x.limbs_count()) |i| { + const res = x_limbs[i] + y_limbs[i] + carry; + x_limbs[i] = ct.select(on, @truncate(TLimb, res), x_limbs[i]); + carry = @truncate(u1, res >> t_bits); + } + return carry; + } + + // Subtracts `y` from `x` if `on` is `true`, and returns `true` if the operation overflowed. + fn conditionalSubWithOverflow(x: *Self, on: bool, y: Self) u1 { + assert(x.limbs_count() == y.limbs_count()); // Operands must have the same size. + const x_limbs = x.limbs.slice(); + const y_limbs = y.limbs.constSlice(); + + var borrow: u1 = 0; + for (0..x.limbs_count()) |i| { + const res = x_limbs[i] -% y_limbs[i] -% borrow; + x_limbs[i] = ct.select(on, @truncate(TLimb, res), x_limbs[i]); + borrow = @truncate(u1, res >> t_bits); + } + return borrow; + } + }; +} + +/// A field element. +fn Fe_(comptime bits: comptime_int) type { + return struct { + const Self = @This(); + + const FeUint = Uint(bits); + + /// The element value as a `Uint`. + v: FeUint, + + /// `true` is the element is in Montgomery form. + montgomery: bool = false, + + /// The maximum number of bytes required to encode a field element. + pub const encoded_bytes = FeUint.encoded_bytes; + + // The number of active limbs to represent the field element. + fn limbs_count(self: Self) usize { + return self.v.limbs_count(); + } + + /// Creates a field element from a primitive. + /// This function may not run in constant time. + pub fn fromPrimitive(comptime T: type, m: Modulus(bits), x: T) (OverflowError || FieldElementError)!Self { + comptime assert(@bitSizeOf(T) <= bits); // Primitive type is larger than the modulus type. + const v = try FeUint.fromPrimitive(T, x); + var fe = Self{ .v = v }; + try m.shrink(&fe); + try m.rejectNonCanonical(fe); + return fe; + } + + /// Converts the field element to a primitive. + /// This function may not run in constant time. + pub fn toPrimitive(self: Self, comptime T: type) OverflowError!T { + return self.v.toPrimitive(T); + } + + /// Creates a field element from a byte string. + pub fn fromBytes(m: Modulus(bits), bytes: []const u8, comptime endian: builtin.Endian) (OverflowError || FieldElementError)!Self { + const v = try FeUint.fromBytes(bytes, endian); + var fe = Self{ .v = v }; + try m.shrink(&fe); + try m.rejectNonCanonical(fe); + return fe; + } + + /// Converts the field element to a byte string. + pub fn toBytes(self: Self, bytes: []u8, comptime endian: builtin.Endian) OverflowError!void { + return self.v.toBytes(bytes, endian); + } + + /// Returns `true` if the field elements are equal, in constant time. + pub fn eql(x: Self, y: Self) bool { + return x.v.eql(y.v); + } + + /// Compares two field elements in constant time. + pub fn compare(x: Self, y: Self) math.Order { + return x.v.compare(y.v); + } + + /// Returns `true` if the element is zero. + pub fn isZero(self: Self) bool { + return self.v.isZero(); + } + + /// Returns `true` is the element is odd. + pub fn isOdd(self: Self) bool { + return self.v.isOdd(); + } + }; +} + +/// A modulus, defining a finite field. +/// All operations within the field are performed modulo this modulus, without heap allocations. +/// `max_bits` represents the number of bits in the maximum value the modulus can be set to. +pub fn Modulus(comptime max_bits: comptime_int) type { + return struct { + const Self = @This(); + + /// A field element, representing a value within the field defined by this modulus. + pub const Fe = Fe_(max_bits); + + const FeUint = Fe.FeUint; + + /// The neutral element. + zero: Fe, + + /// The modulus value. + v: FeUint, + + /// R^2 for the Montgomery representation. + rr: Fe, + /// Inverse of the first limb + m0inv: Limb, + /// Number of leading zero bits in the modulus. + leading: usize, + + // Number of active limbs in the modulus. + fn limbs_count(self: Self) usize { + return self.v.limbs_count(); + } + + /// Actual size of the modulus, in bits. + pub fn bits(self: Self) usize { + return self.limbs_count() * t_bits - self.leading; + } + + /// Returns the element `1`. + pub fn one(self: Self) Fe { + var fe = self.zero; + fe.v.limbs.set(0, 1); + return fe; + } + + /// Creates a new modulus from a `Uint` value. + /// The modulus must be odd and larger than 2. + pub fn fromUint(v_: FeUint) InvalidModulusError!Self { + if (!v_.isOdd()) return error.EvenModulus; + + var v = v_.normalize(); + const hi = v.limbs.get(v.limbs_count() - 1); + const lo = v.limbs.get(0); + + if (v.limbs_count() < 2 and lo < 3) { + return error.ModulusTooSmall; + } + + const leading = @clz(hi) - carry_bits; + + var y = lo; + + inline for (0..comptime math.log2_int(usize, t_bits)) |_| { + y = y *% (2 -% lo *% y); + } + const m0inv = (@as(Limb, 1) << t_bits) - (@truncate(TLimb, y)); + + const zero = Fe{ .v = FeUint.zero }; + + var m = Self{ + .zero = zero, + .v = v, + .leading = leading, + .m0inv = m0inv, + .rr = undefined, // will be computed right after + }; + m.shrink(&m.zero) catch unreachable; + computeRR(&m); + + return m; + } + + /// Creates a new modulus from a primitive value. + /// The modulus must be odd and larger than 2. + pub fn fromPrimitive(comptime T: type, x: T) (InvalidModulusError || OverflowError)!Self { + comptime assert(@bitSizeOf(T) <= max_bits); // Primitive type is larger than the modulus type. + const v = try FeUint.fromPrimitive(T, x); + return try Self.fromUint(v); + } + + /// Creates a new modulus from a byte string. + pub fn fromBytes(bytes: []const u8, comptime endian: builtin.Endian) (InvalidModulusError || OverflowError)!Self { + const v = try FeUint.fromBytes(bytes, endian); + return try Self.fromUint(v); + } + + /// Serializes the modulus to a byte string. + pub fn toBytes(self: Self, bytes: []u8, comptime endian: builtin.Endian) OverflowError!void { + return self.v.toBytes(bytes, endian); + } + + /// Rejects field elements that are not in the canonical form. + pub fn rejectNonCanonical(self: Self, fe: Fe) error{NonCanonical}!void { + if (fe.limbs_count() != self.limbs_count() or ct.limbsCmpGeq(fe.v, self.v)) { + return error.NonCanonical; + } + } + + // Makes the number of active limbs in a field element match the one of the modulus. + fn shrink(self: Self, fe: *Fe) OverflowError!void { + const new_len = self.limbs_count(); + if (fe.limbs_count() < new_len) return error.Overflow; + var acc: Limb = 0; + for (fe.v.limbs.constSlice()[new_len..]) |limb| { + acc |= limb; + } + if (acc != 0) return error.Overflow; + try fe.v.limbs.resize(new_len); + } + + // Computes R^2 for the Montgomery representation. + fn computeRR(self: *Self) void { + self.rr = self.zero; + const n = self.rr.limbs_count(); + self.rr.v.limbs.set(n - 1, 1); + for ((n - 1)..(2 * n)) |_| { + self.shiftIn(&self.rr, 0); + } + self.shrink(&self.rr) catch unreachable; + } + + /// Computes x << t_bits + y (mod m) + fn shiftIn(self: Self, x: *Fe, y: Limb) void { + var d = self.zero; + const x_limbs = x.v.limbs.slice(); + const d_limbs = d.v.limbs.slice(); + const m_limbs = self.v.limbs.constSlice(); + + var need_sub = false; + var i: usize = t_bits - 1; + while (true) : (i -= 1) { + var carry = @truncate(u1, math.shr(Limb, y, i)); + var borrow: u1 = 0; + for (0..self.limbs_count()) |j| { + const l = ct.select(need_sub, d_limbs[j], x_limbs[j]); + var res = (l << 1) + carry; + x_limbs[j] = @truncate(TLimb, res); + carry = @truncate(u1, res >> t_bits); + + res = x_limbs[j] -% m_limbs[j] -% borrow; + d_limbs[j] = @truncate(TLimb, res); + + borrow = @truncate(u1, res >> t_bits); + } + need_sub = ct.eql(carry, borrow); + if (i == 0) break; + } + x.v.cmov(need_sub, d.v); + } + + /// Adds two field elements (mod m). + pub fn add(self: Self, x: Fe, y: Fe) Fe { + var out = x; + const overflow = out.v.addWithOverflow(y.v); + const underflow = @bitCast(u1, ct.limbsCmpLt(out.v, self.v)); + const need_sub = ct.eql(overflow, underflow); + _ = out.v.conditionalSubWithOverflow(need_sub, self.v); + return out; + } + + /// Subtracts two field elements (mod m). + pub fn sub(self: Self, x: Fe, y: Fe) Fe { + var out = x; + const underflow = @bitCast(bool, out.v.subWithOverflow(y.v)); + _ = out.v.conditionalAddWithOverflow(underflow, self.v); + return out; + } + + /// Converts a field element to the Montgomery form. + pub fn toMontgomery(self: Self, x: *Fe) RepresentationError!void { + if (x.montgomery) { + return error.UnexpectedRepresentation; + } + self.shrink(x) catch unreachable; + x.* = self.montgomeryMul(x.*, self.rr); + x.montgomery = true; + } + + /// Takes a field element out of the Montgomery form. + pub fn fromMontgomery(self: Self, x: *Fe) RepresentationError!void { + if (!x.montgomery) { + return error.UnexpectedRepresentation; + } + self.shrink(x) catch unreachable; + x.* = self.montgomeryMul(x.*, self.one()); + x.montgomery = false; + } + + /// Reduces an arbitrary `Uint`, converting it to a field element. + pub fn reduce(self: Self, x: anytype) Fe { + var out = self.zero; + var i = x.limbs_count() - 1; + if (self.limbs_count() >= 2) { + const start = @min(i, self.limbs_count() - 2); + var j = start; + while (true) : (j -= 1) { + out.v.limbs.set(j, x.limbs.get(i)); + i -= 1; + if (j == 0) break; + } + } + while (true) : (i -= 1) { + self.shiftIn(&out, x.limbs.get(i)); + if (i == 0) break; + } + return out; + } + + fn montgomeryLoop(self: Self, d: *Fe, x: Fe, y: Fe) u1 { + assert(d.limbs_count() == x.limbs_count()); + assert(d.limbs_count() == y.limbs_count()); + assert(d.limbs_count() == self.limbs_count()); + + const a_limbs = x.v.limbs.constSlice(); + const b_limbs = y.v.limbs.constSlice(); + const d_limbs = d.v.limbs.slice(); + const m_limbs = self.v.limbs.constSlice(); + + var overflow: u1 = 0; + for (0..self.limbs_count()) |i| { + var carry: Limb = 0; + + var wide = ct.mulWide(a_limbs[i], b_limbs[0]); + var z_lo = @addWithOverflow(d_limbs[0], wide.lo); + const f = @truncate(TLimb, z_lo[0] *% self.m0inv); + var z_hi = wide.hi +% z_lo[1]; + wide = ct.mulWide(f, m_limbs[0]); + z_lo = @addWithOverflow(z_lo[0], wide.lo); + z_hi +%= z_lo[1]; + z_hi +%= wide.hi; + carry = (z_hi << 1) | (z_lo[0] >> t_bits); + + for (1..self.limbs_count()) |j| { + wide = ct.mulWide(a_limbs[i], b_limbs[j]); + z_lo = @addWithOverflow(d_limbs[j], wide.lo); + z_hi = wide.hi +% z_lo[1]; + wide = ct.mulWide(f, m_limbs[j]); + z_lo = @addWithOverflow(z_lo[0], wide.lo); + z_hi +%= z_lo[1]; + z_hi +%= wide.hi; + z_lo = @addWithOverflow(z_lo[0], carry); + z_hi +%= z_lo[1]; + if (j > 0) { + d_limbs[j - 1] = @truncate(TLimb, z_lo[0]); + } + carry = (z_hi << 1) | (z_lo[0] >> t_bits); + } + const z = overflow + carry; + d_limbs[self.limbs_count() - 1] = @truncate(TLimb, z); + overflow = @truncate(u1, z >> t_bits); + } + return overflow; + } + + // Montgomery multiplication. + fn montgomeryMul(self: Self, x: Fe, y: Fe) Fe { + var d = self.zero; + assert(x.limbs_count() == self.limbs_count()); + assert(y.limbs_count() == self.limbs_count()); + const overflow = self.montgomeryLoop(&d, x, y); + const underflow = 1 -% @boolToInt(ct.limbsCmpGeq(d.v, self.v)); + const need_sub = ct.eql(overflow, underflow); + _ = d.v.conditionalSubWithOverflow(need_sub, self.v); + d.montgomery = x.montgomery == y.montgomery; + return d; + } + + // Montgomery squaring. + fn montgomerySq(self: Self, x: Fe) Fe { + var d = self.zero; + assert(x.limbs_count() == self.limbs_count()); + const overflow = self.montgomeryLoop(&d, x, x); + const underflow = 1 -% @boolToInt(ct.limbsCmpGeq(d.v, self.v)); + const need_sub = ct.eql(overflow, underflow); + _ = d.v.conditionalSubWithOverflow(need_sub, self.v); + d.montgomery = true; + return d; + } + + /// Multiplies two field elements. + pub fn mul(self: Self, x: Fe, y: Fe) Fe { + if (x.montgomery != y.montgomery) { + return self.montgomeryMul(x, y); + } + var a_ = x; + if (x.montgomery == false) { + self.toMontgomery(&a_) catch unreachable; + } else { + self.fromMontgomery(&a_) catch unreachable; + } + return self.montgomeryMul(a_, y); + } + + /// Squares a field element. + pub fn sq(self: Self, x: Fe) Fe { + var out = x; + if (x.montgomery == true) { + self.fromMontgomery(&out) catch unreachable; + } + out = self.montgomerySq(out); + out.montgomery = false; + self.toMontgomery(&out) catch unreachable; + return out; + } + + /// Returns x^e (mod m) in constant time. + pub fn pow(self: Self, x: Fe, e: Fe) NullExponentError!Fe { + var buf: [Fe.encoded_bytes]u8 = undefined; + e.toBytes(&buf, native_endian) catch unreachable; + return self.powWithEncodedExponent(x, &buf, native_endian); + } + + /// Returns x^e (mod m), assuming that the exponent is public. + /// The function remains constant time with respect to `x`. + pub fn powPublic(self: Self, x: Fe, e: Fe) NullExponentError!Fe { + var e_normalized = Fe{ .v = e.v.normalize() }; + var buf_: [Fe.encoded_bytes]u8 = undefined; + var buf = buf_[0 .. math.divCeil(usize, e_normalized.v.limbs_count() * t_bits, 8) catch unreachable]; + e_normalized.toBytes(buf, .Little) catch unreachable; + const leading = @clz(e_normalized.v.limbs.get(e_normalized.v.limbs_count() - carry_bits)); + buf = buf[0 .. buf.len - leading / 8]; + return self.powWithEncodedExponent(x, buf, .Little); + } + + /// Returns x^e (mod m), assuming that the exponent is public, and provided as a byte string. + /// Exponents are usually small, so this function is faster than `powPublic` as a field element + /// doesn't have to be created if a serialized representation is already available. + pub fn powWithEncodedExponent(self: Self, x: Fe, e: []const u8, endian: builtin.Endian) NullExponentError!Fe { + var acc: u8 = 0; + for (e) |b| acc |= b; + if (acc == 0) return error.NullExponent; + + var pc = [1]Fe{x} ++ [_]Fe{self.zero} ** 14; + if (x.montgomery == false) { + self.toMontgomery(&pc[0]) catch unreachable; + } + for (1..pc.len) |i| { + pc[i] = self.montgomeryMul(pc[i - 1], pc[0]); + } + var out = self.one(); + self.toMontgomery(&out) catch unreachable; + var t0 = self.zero; + var s = switch (endian) { + .Big => 0, + .Little => e.len - 1, + }; + while (true) { + const b = e[s]; + for ([_]u3{ 4, 0 }) |j| { + for (0..4) |_| { + out = self.montgomerySq(out); + } + const k = (b >> j) & 0b1111; + if (std.options.side_channels_mitigations == .none) { + if (k == 0) continue; + t0 = pc[k - 1]; + } else { + for (pc, 0..) |t, i| { + t0.v.cmov(ct.eql(k, @truncate(u8, i + 1)), t.v); + } + } + const t1 = self.montgomeryMul(out, t0); + out.v.cmov(!ct.eql(k, 0), t1.v); + } + switch (endian) { + .Big => { + s += 1; + if (s == e.len) break; + }, + .Little => { + if (s == 0) break; + s -= 1; + }, + } + } + self.fromMontgomery(&out) catch unreachable; + return out; + } + }; +} + +const ct = if (std.options.side_channels_mitigations == .none) ct_unprotected else ct_protected; + +const ct_protected = struct { + // Returns x if on is true, otherwise y. + fn select(on: bool, x: Limb, y: Limb) Limb { + const mask = @as(Limb, 0) -% @boolToInt(on); + return y ^ (mask & (y ^ x)); + } + + // Compares two values in constant time. + fn eql(x: anytype, y: @TypeOf(x)) bool { + const c1 = @subWithOverflow(x, y)[1]; + const c2 = @subWithOverflow(y, x)[1]; + return @bitCast(bool, 1 - (c1 | c2)); + } + + // Compares two big integers in constant time, returning true if x < y. + fn limbsCmpLt(x: anytype, y: @TypeOf(x)) bool { + assert(x.limbs_count() == y.limbs_count()); + const x_limbs = x.limbs.constSlice(); + const y_limbs = y.limbs.constSlice(); + + var c: u1 = 0; + for (0..x.limbs_count()) |i| { + c = @truncate(u1, (x_limbs[i] -% y_limbs[i] -% c) >> t_bits); + } + return @bitCast(bool, c); + } + + // Compares two big integers in constant time, returning true if x >= y. + fn limbsCmpGeq(x: anytype, y: @TypeOf(x)) bool { + return @bitCast(bool, 1 - @boolToInt(ct.limbsCmpLt(x, y))); + } + + // Multiplies two limbs and returns the result as a wide limb. + fn mulWide(x: Limb, y: Limb) WideLimb { + const half_bits = @typeInfo(Limb).Int.bits / 2; + const Half = meta.Int(.unsigned, half_bits); + const x0 = @truncate(Half, x); + const x1 = @truncate(Half, x >> half_bits); + const y0 = @truncate(Half, y); + const y1 = @truncate(Half, y >> half_bits); + const w0 = math.mulWide(Half, x0, y0); + const t = math.mulWide(Half, x1, y0) + (w0 >> half_bits); + var w1: Limb = @truncate(Half, t); + const w2 = @truncate(Half, t >> half_bits); + w1 += math.mulWide(Half, x0, y1); + const hi = math.mulWide(Half, x1, y1) + w2 + (w1 >> half_bits); + const lo = x *% y; + return .{ .hi = hi, .lo = lo }; + } +}; + +const ct_unprotected = struct { + // Returns x if on is true, otherwise y. + fn select(on: bool, x: Limb, y: Limb) Limb { + return if (on) x else y; + } + + // Compares two values in constant time. + fn eql(x: anytype, y: @TypeOf(x)) bool { + return x == y; + } + + // Compares two big integers in constant time, returning true if x < y. + fn limbsCmpLt(x: anytype, y: @TypeOf(x)) bool { + assert(x.limbs_count() == y.limbs_count()); + const x_limbs = x.limbs.constSlice(); + const y_limbs = y.limbs.constSlice(); + + var i = x.limbs_count(); + while (i != 0) { + i -= 1; + if (x_limbs[i] != y_limbs[i]) { + return x_limbs[i] < y_limbs[i]; + } + } + return false; + } + + // Compares two big integers in constant time, returning true if x >= y. + fn limbsCmpGeq(x: anytype, y: @TypeOf(x)) bool { + return !ct.limbsCmpLt(x, y); + } + + // Multiplies two limbs and returns the result as a wide limb. + fn mulWide(x: Limb, y: Limb) WideLimb { + const wide = math.mulWide(Limb, x, y); + return .{ + .hi = @truncate(Limb, wide >> @typeInfo(Limb).Int.bits), + .lo = @truncate(Limb, wide), + }; + } +}; + +test { + if (@import("builtin").zig_backend == .stage2_c) return error.SkipZigTest; + + const M = Modulus(256); + const m = try M.fromPrimitive(u256, 3429938563481314093726330772853735541133072814650493833233); + var x = try M.Fe.fromPrimitive(u256, m, 80169837251094269539116136208111827396136208141182357733); + var y = try M.Fe.fromPrimitive(u256, m, 24620149608466364616251608466389896540098571); + + const x_ = try x.toPrimitive(u256); + try testing.expect((try M.Fe.fromPrimitive(@TypeOf(x_), m, x_)).eql(x)); + try testing.expectError(error.Overflow, x.toPrimitive(u50)); + + const bits = m.bits(); + try testing.expectEqual(bits, 192); + + var x_y = m.mul(x, y); + try testing.expectEqual(x_y.toPrimitive(u256), 1666576607955767413750776202132407807424848069716933450241); + + try m.toMontgomery(&x); + x_y = m.mul(x, y); + try testing.expectEqual(x_y.toPrimitive(u256), 1666576607955767413750776202132407807424848069716933450241); + try m.fromMontgomery(&x); + + x = m.add(x, y); + try testing.expectEqual(x.toPrimitive(u256), 80169837251118889688724602572728079004602598037722456304); + x = m.sub(x, y); + try testing.expectEqual(x.toPrimitive(u256), 80169837251094269539116136208111827396136208141182357733); + + const big = try Uint(512).fromPrimitive(u495, 77285373554113307281465049383342993856348131409372633077285373554113307281465049383323332333429938563481314093726330772853735541133072814650493833233); + const reduced = m.reduce(big); + try testing.expectEqual(reduced.toPrimitive(u495), 858047099884257670294681641776170038885500210968322054970); + + const x_pow_y = try m.powPublic(x, y); + try testing.expectEqual(x_pow_y.toPrimitive(u256), 1631933139300737762906024873185789093007782131928298618473); + try m.toMontgomery(&x); + const x_pow_y2 = try m.powPublic(x, y); + try m.fromMontgomery(&x); + try testing.expect(x_pow_y2.eql(x_pow_y)); + try testing.expectError(error.NullExponent, m.powPublic(x, m.zero)); + + try testing.expect(!x.isZero()); + try testing.expect(!y.isZero()); + try testing.expect(m.v.isOdd()); + + const x_sq = m.sq(x); + const x_sq2 = m.mul(x, x); + try testing.expect(x_sq.eql(x_sq2)); + try m.toMontgomery(&x); + const x_sq3 = m.sq(x); + const x_sq4 = m.mul(x, x); + try testing.expect(x_sq.eql(x_sq3)); + try testing.expect(x_sq3.eql(x_sq4)); + try m.fromMontgomery(&x); +} |
