aboutsummaryrefslogtreecommitdiff
path: root/lib/std/array_hash_map.zig
diff options
context:
space:
mode:
authorAndrew Kelley <andrew@ziglang.org>2021-06-04 01:12:38 -0400
committerGitHub <noreply@github.com>2021-06-04 01:12:38 -0400
commit7d15a3ac71c5d8dc8c08dfd8ea8ad43d4eae188a (patch)
treeae007106526e300bb7143be003fe8d847ba7230c /lib/std/array_hash_map.zig
parent87dae0ce98fde1957a9290c22866b3101ce419d8 (diff)
parent6953c8544b68c788dca4ed065e4a15eccbd4446b (diff)
downloadzig-7d15a3ac71c5d8dc8c08dfd8ea8ad43d4eae188a.tar.gz
zig-7d15a3ac71c5d8dc8c08dfd8ea8ad43d4eae188a.zip
Merge pull request #8975 from SpexGuy/hash-map-updates
Breaking hash map changes for 0.8.0
Diffstat (limited to 'lib/std/array_hash_map.zig')
-rw-r--r--lib/std/array_hash_map.zig1786
1 files changed, 1286 insertions, 500 deletions
diff --git a/lib/std/array_hash_map.zig b/lib/std/array_hash_map.zig
index 831b21fe19..7acc65c66b 100644
--- a/lib/std/array_hash_map.zig
+++ b/lib/std/array_hash_map.zig
@@ -17,23 +17,36 @@ const Allocator = mem.Allocator;
const builtin = std.builtin;
const hash_map = @This();
+/// An ArrayHashMap with default hash and equal functions.
+/// See AutoContext for a description of the hash and equal implementations.
pub fn AutoArrayHashMap(comptime K: type, comptime V: type) type {
- return ArrayHashMap(K, V, getAutoHashFn(K), getAutoEqlFn(K), !autoEqlIsCheap(K));
+ return ArrayHashMap(K, V, AutoContext(K), !autoEqlIsCheap(K));
}
+/// An ArrayHashMapUnmanaged with default hash and equal functions.
+/// See AutoContext for a description of the hash and equal implementations.
pub fn AutoArrayHashMapUnmanaged(comptime K: type, comptime V: type) type {
- return ArrayHashMapUnmanaged(K, V, getAutoHashFn(K), getAutoEqlFn(K), !autoEqlIsCheap(K));
+ return ArrayHashMapUnmanaged(K, V, AutoContext(K), !autoEqlIsCheap(K));
}
/// Builtin hashmap for strings as keys.
pub fn StringArrayHashMap(comptime V: type) type {
- return ArrayHashMap([]const u8, V, hashString, eqlString, true);
+ return ArrayHashMap([]const u8, V, StringContext, true);
}
pub fn StringArrayHashMapUnmanaged(comptime V: type) type {
- return ArrayHashMapUnmanaged([]const u8, V, hashString, eqlString, true);
+ return ArrayHashMapUnmanaged([]const u8, V, StringContext, true);
}
+pub const StringContext = struct {
+ pub fn hash(self: @This(), s: []const u8) u32 {
+ return hashString(s);
+ }
+ pub fn eql(self: @This(), a: []const u8, b: []const u8) bool {
+ return eqlString(a, b);
+ }
+};
+
pub fn eqlString(a: []const u8, b: []const u8) bool {
return mem.eql(u8, a, b);
}
@@ -54,83 +67,112 @@ pub fn hashString(s: []const u8) u32 {
/// but only has to call `eql` for hash collisions.
/// If typical operations (except iteration over entries) need to be faster, prefer
/// the alternative `std.HashMap`.
+/// Context must be a struct type with two member functions:
+/// hash(self, K) u32
+/// eql(self, K, K) bool
+/// Adapted variants of many functions are provided. These variants
+/// take a pseudo key instead of a key. Their context must have the functions:
+/// hash(self, PseudoKey) u32
+/// eql(self, PseudoKey, K) bool
pub fn ArrayHashMap(
comptime K: type,
comptime V: type,
- comptime hash: fn (key: K) u32,
- comptime eql: fn (a: K, b: K) bool,
+ comptime Context: type,
comptime store_hash: bool,
) type {
+ comptime std.hash_map.verifyContext(Context, K, K, u32);
return struct {
unmanaged: Unmanaged,
allocator: *Allocator,
+ ctx: Context,
+
+ /// The ArrayHashMapUnmanaged type using the same settings as this managed map.
+ pub const Unmanaged = ArrayHashMapUnmanaged(K, V, Context, store_hash);
- pub const Unmanaged = ArrayHashMapUnmanaged(K, V, hash, eql, store_hash);
+ /// Pointers to a key and value in the backing store of this map.
+ /// Modifying the key is allowed only if it does not change the hash.
+ /// Modifying the value is allowed.
+ /// Entry pointers become invalid whenever this ArrayHashMap is modified,
+ /// unless `ensureCapacity` was previously used.
pub const Entry = Unmanaged.Entry;
- pub const Hash = Unmanaged.Hash;
- pub const GetOrPutResult = Unmanaged.GetOrPutResult;
- /// Deprecated. Iterate using `items`.
- pub const Iterator = struct {
- hm: *const Self,
- /// Iterator through the entry array.
- index: usize,
+ /// A KV pair which has been copied out of the backing store
+ pub const KV = Unmanaged.KV;
- pub fn next(it: *Iterator) ?*Entry {
- if (it.index >= it.hm.unmanaged.entries.items.len) return null;
- const result = &it.hm.unmanaged.entries.items[it.index];
- it.index += 1;
- return result;
- }
+ /// The Data type used for the MultiArrayList backing this map
+ pub const Data = Unmanaged.Data;
+ /// The MultiArrayList type backing this map
+ pub const DataList = Unmanaged.DataList;
- /// Reset the iterator to the initial index
- pub fn reset(it: *Iterator) void {
- it.index = 0;
- }
- };
+ /// The stored hash type, either u32 or void.
+ pub const Hash = Unmanaged.Hash;
+
+ /// getOrPut variants return this structure, with pointers
+ /// to the backing store and a flag to indicate whether an
+ /// existing entry was found.
+ /// Modifying the key is allowed only if it does not change the hash.
+ /// Modifying the value is allowed.
+ /// Entry pointers become invalid whenever this ArrayHashMap is modified,
+ /// unless `ensureCapacity` was previously used.
+ pub const GetOrPutResult = Unmanaged.GetOrPutResult;
+
+ /// An Iterator over Entry pointers.
+ pub const Iterator = Unmanaged.Iterator;
const Self = @This();
- const Index = Unmanaged.Index;
+ /// Create an ArrayHashMap instance which will use a specified allocator.
pub fn init(allocator: *Allocator) Self {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call initContext instead.");
+ return initContext(allocator, undefined);
+ }
+ pub fn initContext(allocator: *Allocator, ctx: Context) Self {
return .{
.unmanaged = .{},
.allocator = allocator,
+ .ctx = ctx,
};
}
- /// `ArrayHashMap` takes ownership of the passed in array list. The array list must have
- /// been allocated with `allocator`.
- /// Deinitialize with `deinit`.
- pub fn fromOwnedArrayList(allocator: *Allocator, entries: std.ArrayListUnmanaged(Entry)) !Self {
- return Self{
- .unmanaged = try Unmanaged.fromOwnedArrayList(allocator, entries),
- .allocator = allocator,
- };
- }
-
+ /// Frees the backing allocation and leaves the map in an undefined state.
+ /// Note that this does not free keys or values. You must take care of that
+ /// before calling this function, if it is needed.
pub fn deinit(self: *Self) void {
self.unmanaged.deinit(self.allocator);
self.* = undefined;
}
+ /// Clears the map but retains the backing allocation for future use.
pub fn clearRetainingCapacity(self: *Self) void {
return self.unmanaged.clearRetainingCapacity();
}
+ /// Clears the map and releases the backing allocation
pub fn clearAndFree(self: *Self) void {
return self.unmanaged.clearAndFree(self.allocator);
}
+ /// Returns the number of KV pairs stored in this map.
pub fn count(self: Self) usize {
return self.unmanaged.count();
}
+ /// Returns the backing array of keys in this map.
+ /// Modifying the map may invalidate this array.
+ pub fn keys(self: Self) []K {
+ return self.unmanaged.keys();
+ }
+ /// Returns the backing array of values in this map.
+ /// Modifying the map may invalidate this array.
+ pub fn values(self: Self) []V {
+ return self.unmanaged.values();
+ }
+
+ /// Returns an iterator over the pairs in this map.
+ /// Modifying the map may invalidate this iterator.
pub fn iterator(self: *const Self) Iterator {
- return Iterator{
- .hm = self,
- .index = 0,
- };
+ return self.unmanaged.iterator();
}
/// If key exists this function cannot fail.
@@ -140,7 +182,10 @@ pub fn ArrayHashMap(
/// the `Entry` pointer points to it. Caller should then initialize
/// the value (but not the key).
pub fn getOrPut(self: *Self, key: K) !GetOrPutResult {
- return self.unmanaged.getOrPut(self.allocator, key);
+ return self.unmanaged.getOrPutContext(self.allocator, key, self.ctx);
+ }
+ pub fn getOrPutAdapted(self: *Self, key: anytype, ctx: anytype) !GetOrPutResult {
+ return self.unmanaged.getOrPutContextAdapted(key, ctx, self.ctx);
}
/// If there is an existing item with `key`, then the result
@@ -151,11 +196,13 @@ pub fn ArrayHashMap(
/// If a new entry needs to be stored, this function asserts there
/// is enough capacity to store it.
pub fn getOrPutAssumeCapacity(self: *Self, key: K) GetOrPutResult {
- return self.unmanaged.getOrPutAssumeCapacity(key);
+ return self.unmanaged.getOrPutAssumeCapacityContext(key, self.ctx);
}
-
- pub fn getOrPutValue(self: *Self, key: K, value: V) !*Entry {
- return self.unmanaged.getOrPutValue(self.allocator, key, value);
+ pub fn getOrPutAssumeCapacityAdapted(self: *Self, key: anytype, ctx: anytype) GetOrPutResult {
+ return self.unmanaged.getOrPutAssumeCapacityAdapted(key, ctx);
+ }
+ pub fn getOrPutValue(self: *Self, key: K, value: V) !GetOrPutResult {
+ return self.unmanaged.getOrPutValueContext(self.allocator, key, value, self.ctx);
}
/// Deprecated: call `ensureUnusedCapacity` or `ensureTotalCapacity`.
@@ -164,14 +211,14 @@ pub fn ArrayHashMap(
/// Increases capacity, guaranteeing that insertions up until the
/// `expected_count` will not cause an allocation, and therefore cannot fail.
pub fn ensureTotalCapacity(self: *Self, new_capacity: usize) !void {
- return self.unmanaged.ensureTotalCapacity(self.allocator, new_capacity);
+ return self.unmanaged.ensureTotalCapacityContext(self.allocator, new_capacity, self.ctx);
}
/// Increases capacity, guaranteeing that insertions up until
/// `additional_count` **more** items will not cause an allocation, and
/// therefore cannot fail.
pub fn ensureUnusedCapacity(self: *Self, additional_count: usize) !void {
- return self.unmanaged.ensureUnusedCapacity(self.allocator, additional_count);
+ return self.unmanaged.ensureUnusedCapacityContext(self.allocator, additional_count, self.ctx);
}
/// Returns the number of total elements which may be present before it is
@@ -183,119 +230,187 @@ pub fn ArrayHashMap(
/// Clobbers any existing data. To detect if a put would clobber
/// existing data, see `getOrPut`.
pub fn put(self: *Self, key: K, value: V) !void {
- return self.unmanaged.put(self.allocator, key, value);
+ return self.unmanaged.putContext(self.allocator, key, value, self.ctx);
}
/// Inserts a key-value pair into the hash map, asserting that no previous
/// entry with the same key is already present
pub fn putNoClobber(self: *Self, key: K, value: V) !void {
- return self.unmanaged.putNoClobber(self.allocator, key, value);
+ return self.unmanaged.putNoClobberContext(self.allocator, key, value, self.ctx);
}
/// Asserts there is enough capacity to store the new key-value pair.
/// Clobbers any existing data. To detect if a put would clobber
/// existing data, see `getOrPutAssumeCapacity`.
pub fn putAssumeCapacity(self: *Self, key: K, value: V) void {
- return self.unmanaged.putAssumeCapacity(key, value);
+ return self.unmanaged.putAssumeCapacityContext(key, value, self.ctx);
}
/// Asserts there is enough capacity to store the new key-value pair.
/// Asserts that it does not clobber any existing data.
/// To detect if a put would clobber existing data, see `getOrPutAssumeCapacity`.
pub fn putAssumeCapacityNoClobber(self: *Self, key: K, value: V) void {
- return self.unmanaged.putAssumeCapacityNoClobber(key, value);
+ return self.unmanaged.putAssumeCapacityNoClobberContext(key, value, self.ctx);
}
/// Inserts a new `Entry` into the hash map, returning the previous one, if any.
- pub fn fetchPut(self: *Self, key: K, value: V) !?Entry {
- return self.unmanaged.fetchPut(self.allocator, key, value);
+ pub fn fetchPut(self: *Self, key: K, value: V) !?KV {
+ return self.unmanaged.fetchPutContext(self.allocator, key, value, self.ctx);
}
/// Inserts a new `Entry` into the hash map, returning the previous one, if any.
/// If insertion happuns, asserts there is enough capacity without allocating.
- pub fn fetchPutAssumeCapacity(self: *Self, key: K, value: V) ?Entry {
- return self.unmanaged.fetchPutAssumeCapacity(key, value);
+ pub fn fetchPutAssumeCapacity(self: *Self, key: K, value: V) ?KV {
+ return self.unmanaged.fetchPutAssumeCapacityContext(key, value, self.ctx);
}
- pub fn getEntry(self: Self, key: K) ?*Entry {
- return self.unmanaged.getEntry(key);
+ /// Finds pointers to the key and value storage associated with a key.
+ pub fn getEntry(self: Self, key: K) ?Entry {
+ return self.unmanaged.getEntryContext(key, self.ctx);
+ }
+ pub fn getEntryAdapted(self: Self, key: anytype, ctx: anytype) ?Entry {
+ return self.unmanaged.getEntryAdapted(key, ctx);
}
+ /// Finds the index in the `entries` array where a key is stored
pub fn getIndex(self: Self, key: K) ?usize {
- return self.unmanaged.getIndex(key);
+ return self.unmanaged.getIndexContext(key, self.ctx);
+ }
+ pub fn getIndexAdapted(self: Self, key: anytype, ctx: anytype) ?usize {
+ return self.unmanaged.getIndexAdapted(key, ctx);
}
+ /// Find the value associated with a key
pub fn get(self: Self, key: K) ?V {
- return self.unmanaged.get(key);
+ return self.unmanaged.getContext(key, self.ctx);
+ }
+ pub fn getAdapted(self: Self, key: anytype, ctx: anytype) ?V {
+ return self.unmanaged.getAdapted(key, ctx);
}
+ /// Find a pointer to the value associated with a key
+ pub fn getPtr(self: Self, key: K) ?*V {
+ return self.unmanaged.getPtrContext(key, self.ctx);
+ }
+ pub fn getPtrAdapted(self: Self, key: anytype, ctx: anytype) ?*V {
+ return self.unmanaged.getPtrAdapted(key, ctx);
+ }
+
+ /// Check whether a key is stored in the map
pub fn contains(self: Self, key: K) bool {
- return self.unmanaged.contains(key);
+ return self.unmanaged.containsContext(key, self.ctx);
+ }
+ pub fn containsAdapted(self: Self, key: anytype, ctx: anytype) bool {
+ return self.unmanaged.containsAdapted(key, ctx);
}
/// If there is an `Entry` with a matching key, it is deleted from
/// the hash map, and then returned from this function. The entry is
/// removed from the underlying array by swapping it with the last
/// element.
- pub fn swapRemove(self: *Self, key: K) ?Entry {
- return self.unmanaged.swapRemove(key);
+ pub fn fetchSwapRemove(self: *Self, key: K) ?KV {
+ return self.unmanaged.fetchSwapRemoveContext(key, self.ctx);
+ }
+ pub fn fetchSwapRemoveAdapted(self: *Self, key: anytype, ctx: anytype) ?KV {
+ return self.unmanaged.fetchSwapRemoveContextAdapted(key, ctx, self.ctx);
}
/// If there is an `Entry` with a matching key, it is deleted from
/// the hash map, and then returned from this function. The entry is
/// removed from the underlying array by shifting all elements forward
/// thereby maintaining the current ordering.
- pub fn orderedRemove(self: *Self, key: K) ?Entry {
- return self.unmanaged.orderedRemove(key);
+ pub fn fetchOrderedRemove(self: *Self, key: K) ?KV {
+ return self.unmanaged.fetchOrderedRemoveContext(key, self.ctx);
+ }
+ pub fn fetchOrderedRemoveAdapted(self: *Self, key: anytype, ctx: anytype) ?KV {
+ return self.unmanaged.fetchOrderedRemoveContextAdapted(key, ctx, self.ctx);
}
- /// TODO: deprecated: call swapRemoveAssertDiscard instead.
- pub fn removeAssertDiscard(self: *Self, key: K) void {
- return self.unmanaged.removeAssertDiscard(key);
+ /// If there is an `Entry` with a matching key, it is deleted from
+ /// the hash map. The entry is removed from the underlying array
+ /// by swapping it with the last element. Returns true if an entry
+ /// was removed, false otherwise.
+ pub fn swapRemove(self: *Self, key: K) bool {
+ return self.unmanaged.swapRemoveContext(key, self.ctx);
+ }
+ pub fn swapRemoveAdapted(self: *Self, key: anytype, ctx: anytype) bool {
+ return self.unmanaged.swapRemoveContextAdapted(key, ctx, self.ctx);
}
- /// Asserts there is an `Entry` with matching key, deletes it from the hash map
- /// by swapping it with the last element, and discards it.
- pub fn swapRemoveAssertDiscard(self: *Self, key: K) void {
- return self.unmanaged.swapRemoveAssertDiscard(key);
+ /// If there is an `Entry` with a matching key, it is deleted from
+ /// the hash map. The entry is removed from the underlying array
+ /// by shifting all elements forward, thereby maintaining the
+ /// current ordering. Returns true if an entry was removed, false otherwise.
+ pub fn orderedRemove(self: *Self, key: K) bool {
+ return self.unmanaged.orderedRemoveContext(key, self.ctx);
+ }
+ pub fn orderedRemoveAdapted(self: *Self, key: anytype, ctx: anytype) bool {
+ return self.unmanaged.orderedRemoveContextAdapted(key, ctx, self.ctx);
}
- /// Asserts there is an `Entry` with matching key, deletes it from the hash map
- /// by by shifting all elements forward thereby maintaining the current ordering.
- pub fn orderedRemoveAssertDiscard(self: *Self, key: K) void {
- return self.unmanaged.orderedRemoveAssertDiscard(key);
+ /// Deletes the item at the specified index in `entries` from
+ /// the hash map. The entry is removed from the underlying array
+ /// by swapping it with the last element.
+ pub fn swapRemoveAt(self: *Self, index: usize) void {
+ self.unmanaged.swapRemoveAtContext(index, self.ctx);
}
- pub fn items(self: Self) []Entry {
- return self.unmanaged.items();
+ /// Deletes the item at the specified index in `entries` from
+ /// the hash map. The entry is removed from the underlying array
+ /// by shifting all elements forward, thereby maintaining the
+ /// current ordering.
+ pub fn orderedRemoveAt(self: *Self, index: usize) void {
+ self.unmanaged.orderedRemoveAtContext(index, self.ctx);
}
+ /// Create a copy of the hash map which can be modified separately.
+ /// The copy uses the same context and allocator as this instance.
pub fn clone(self: Self) !Self {
- var other = try self.unmanaged.clone(self.allocator);
- return other.promote(self.allocator);
+ var other = try self.unmanaged.cloneContext(self.allocator, self.ctx);
+ return other.promoteContext(self.allocator, self.ctx);
+ }
+ /// Create a copy of the hash map which can be modified separately.
+ /// The copy uses the same context as this instance, but the specified
+ /// allocator.
+ pub fn cloneWithAllocator(self: Self, allocator: *Allocator) !Self {
+ var other = try self.unmanaged.cloneContext(allocator, self.ctx);
+ return other.promoteContext(allocator, self.ctx);
+ }
+ /// Create a copy of the hash map which can be modified separately.
+ /// The copy uses the same allocator as this instance, but the
+ /// specified context.
+ pub fn cloneWithContext(self: Self, ctx: anytype) !ArrayHashMap(K, V, @TypeOf(ctx), store_hash) {
+ var other = try self.unmanaged.cloneContext(self.allocator, ctx);
+ return other.promoteContext(self.allocator, ctx);
+ }
+ /// Create a copy of the hash map which can be modified separately.
+ /// The copy uses the specified allocator and context.
+ pub fn cloneWithAllocatorAndContext(self: Self, allocator: *Allocator, ctx: anytype) !ArrayHashMap(K, V, @TypeOf(ctx), store_hash) {
+ var other = try self.unmanaged.cloneContext(allocator, ctx);
+ return other.promoteContext(allocator, ctx);
}
/// Rebuilds the key indexes. If the underlying entries has been modified directly, users
/// can call `reIndex` to update the indexes to account for these new entries.
pub fn reIndex(self: *Self) !void {
- return self.unmanaged.reIndex(self.allocator);
+ return self.unmanaged.reIndexContext(self.allocator, self.ctx);
}
/// Shrinks the underlying `Entry` array to `new_len` elements and discards any associated
/// index entries. Keeps capacity the same.
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
- return self.unmanaged.shrinkRetainingCapacity(new_len);
+ return self.unmanaged.shrinkRetainingCapacityContext(new_len, self.ctx);
}
/// Shrinks the underlying `Entry` array to `new_len` elements and discards any associated
/// index entries. Reduces allocated capacity.
pub fn shrinkAndFree(self: *Self, new_len: usize) void {
- return self.unmanaged.shrinkAndFree(self.allocator, new_len);
+ return self.unmanaged.shrinkAndFreeContext(self.allocator, new_len, self.ctx);
}
/// Removes the last inserted `Entry` in the hash map and returns it.
- pub fn pop(self: *Self) Entry {
- return self.unmanaged.pop();
+ pub fn pop(self: *Self) KV {
+ return self.unmanaged.popContext(self.ctx);
}
};
}
@@ -317,16 +432,23 @@ pub fn ArrayHashMap(
/// functions. It does not store each item's hash in the table. Setting `store_hash`
/// to `true` incurs slightly more memory cost by storing each key's hash in the table
/// but guarantees only one call to `eql` per insertion/deletion.
+/// Context must be a struct type with two member functions:
+/// hash(self, K) u32
+/// eql(self, K, K) bool
+/// Adapted variants of many functions are provided. These variants
+/// take a pseudo key instead of a key. Their context must have the functions:
+/// hash(self, PseudoKey) u32
+/// eql(self, PseudoKey, K) bool
pub fn ArrayHashMapUnmanaged(
comptime K: type,
comptime V: type,
- comptime hash: fn (key: K) u32,
- comptime eql: fn (a: K, b: K) bool,
+ comptime Context: type,
comptime store_hash: bool,
) type {
+ comptime std.hash_map.verifyContext(Context, K, K, u32);
return struct {
/// It is permitted to access this field directly.
- entries: std.ArrayListUnmanaged(Entry) = .{},
+ entries: DataList = .{},
/// When entries length is less than `linear_scan_max`, this remains `null`.
/// Once entries length grows big enough, this field is allocated. There is
@@ -334,26 +456,54 @@ pub fn ArrayHashMapUnmanaged(
/// by how many total indexes there are.
index_header: ?*IndexHeader = null,
- /// Modifying the key is illegal behavior.
+ /// Modifying the key is allowed only if it does not change the hash.
/// Modifying the value is allowed.
/// Entry pointers become invalid whenever this ArrayHashMap is modified,
/// unless `ensureCapacity` was previously used.
pub const Entry = struct {
- /// This field is `void` if `store_hash` is `false`.
+ key_ptr: *K,
+ value_ptr: *V,
+ };
+
+ /// A KV pair which has been copied out of the backing store
+ pub const KV = struct {
+ key: K,
+ value: V,
+ };
+
+ /// The Data type used for the MultiArrayList backing this map
+ pub const Data = struct {
hash: Hash,
key: K,
value: V,
};
+ /// The MultiArrayList type backing this map
+ pub const DataList = std.MultiArrayList(Data);
+
+ /// The stored hash type, either u32 or void.
pub const Hash = if (store_hash) u32 else void;
+ /// getOrPut variants return this structure, with pointers
+ /// to the backing store and a flag to indicate whether an
+ /// existing entry was found.
+ /// Modifying the key is allowed only if it does not change the hash.
+ /// Modifying the value is allowed.
+ /// Entry pointers become invalid whenever this ArrayHashMap is modified,
+ /// unless `ensureCapacity` was previously used.
pub const GetOrPutResult = struct {
- entry: *Entry,
+ key_ptr: *K,
+ value_ptr: *V,
found_existing: bool,
index: usize,
};
- pub const Managed = ArrayHashMap(K, V, hash, eql, store_hash);
+ /// The ArrayHashMap type using the same settings as this managed map.
+ pub const Managed = ArrayHashMap(K, V, Context, store_hash);
+
+ /// Some functions require a context only if hashes are not stored.
+ /// To keep the api simple, this type is only used internally.
+ const ByIndexContext = if (store_hash) void else Context;
const Self = @This();
@@ -362,25 +512,26 @@ pub fn ArrayHashMapUnmanaged(
const RemovalType = enum {
swap,
ordered,
- index_only,
};
+ /// Convert from an unmanaged map to a managed map. After calling this,
+ /// the promoted map should no longer be used.
pub fn promote(self: Self, allocator: *Allocator) Managed {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call promoteContext instead.");
+ return self.promoteContext(allocator, undefined);
+ }
+ pub fn promoteContext(self: Self, allocator: *Allocator, ctx: Context) Managed {
return .{
.unmanaged = self,
.allocator = allocator,
+ .ctx = ctx,
};
}
- /// `ArrayHashMapUnmanaged` takes ownership of the passed in array list. The array list must
- /// have been allocated with `allocator`.
- /// Deinitialize with `deinit`.
- pub fn fromOwnedArrayList(allocator: *Allocator, entries: std.ArrayListUnmanaged(Entry)) !Self {
- var array_hash_map = Self{ .entries = entries };
- try array_hash_map.reIndex(allocator);
- return array_hash_map;
- }
-
+ /// Frees the backing allocation and leaves the map in an undefined state.
+ /// Note that this does not free keys or values. You must take care of that
+ /// before calling this function, if it is needed.
pub fn deinit(self: *Self, allocator: *Allocator) void {
self.entries.deinit(allocator);
if (self.index_header) |header| {
@@ -389,19 +540,19 @@ pub fn ArrayHashMapUnmanaged(
self.* = undefined;
}
+ /// Clears the map but retains the backing allocation for future use.
pub fn clearRetainingCapacity(self: *Self) void {
- self.entries.items.len = 0;
+ self.entries.len = 0;
if (self.index_header) |header| {
- header.max_distance_from_start_index = 0;
switch (header.capacityIndexType()) {
.u8 => mem.set(Index(u8), header.indexes(u8), Index(u8).empty),
.u16 => mem.set(Index(u16), header.indexes(u16), Index(u16).empty),
.u32 => mem.set(Index(u32), header.indexes(u32), Index(u32).empty),
- .usize => mem.set(Index(usize), header.indexes(usize), Index(usize).empty),
}
}
}
+ /// Clears the map and releases the backing allocation
pub fn clearAndFree(self: *Self, allocator: *Allocator) void {
self.entries.shrinkAndFree(allocator, 0);
if (self.index_header) |header| {
@@ -410,9 +561,54 @@ pub fn ArrayHashMapUnmanaged(
}
}
+ /// Returns the number of KV pairs stored in this map.
pub fn count(self: Self) usize {
- return self.entries.items.len;
+ return self.entries.len;
+ }
+
+ /// Returns the backing array of keys in this map.
+ /// Modifying the map may invalidate this array.
+ pub fn keys(self: Self) []K {
+ return self.entries.items(.key);
+ }
+ /// Returns the backing array of values in this map.
+ /// Modifying the map may invalidate this array.
+ pub fn values(self: Self) []V {
+ return self.entries.items(.value);
+ }
+
+ /// Returns an iterator over the pairs in this map.
+ /// Modifying the map may invalidate this iterator.
+ pub fn iterator(self: Self) Iterator {
+ const slice = self.entries.slice();
+ return .{
+ .keys = slice.items(.key).ptr,
+ .values = slice.items(.value).ptr,
+ .len = @intCast(u32, slice.len),
+ };
}
+ pub const Iterator = struct {
+ keys: [*]K,
+ values: [*]V,
+ len: u32,
+ index: u32 = 0,
+
+ pub fn next(it: *Iterator) ?Entry {
+ if (it.index >= it.len) return null;
+ const result = Entry{
+ .key_ptr = &it.keys[it.index],
+ // workaround for #6974
+ .value_ptr = if (@sizeOf(*V) == 0) undefined else &it.values[it.index],
+ };
+ it.index += 1;
+ return result;
+ }
+
+ /// Reset the iterator to the initial index
+ pub fn reset(it: *Iterator) void {
+ it.index = 0;
+ }
+ };
/// If key exists this function cannot fail.
/// If there is an existing item with `key`, then the result
@@ -421,16 +617,36 @@ pub fn ArrayHashMapUnmanaged(
/// the `Entry` pointer points to it. Caller should then initialize
/// the value (but not the key).
pub fn getOrPut(self: *Self, allocator: *Allocator, key: K) !GetOrPutResult {
- self.ensureCapacity(allocator, self.entries.items.len + 1) catch |err| {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call getOrPutContext instead.");
+ return self.getOrPutContext(allocator, key, undefined);
+ }
+ pub fn getOrPutContext(self: *Self, allocator: *Allocator, key: K, ctx: Context) !GetOrPutResult {
+ const gop = try self.getOrPutContextAdapted(allocator, key, ctx, ctx);
+ if (!gop.found_existing) {
+ gop.key_ptr.* = key;
+ }
+ return gop;
+ }
+ pub fn getOrPutAdapted(self: *Self, allocator: *Allocator, key: anytype, key_ctx: anytype) !GetOrPutResult {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call getOrPutContextAdapted instead.");
+ return self.getOrPutContextAdapted(allocator, key, key_ctx, undefined);
+ }
+ pub fn getOrPutContextAdapted(self: *Self, allocator: *Allocator, key: anytype, key_ctx: anytype, ctx: Context) !GetOrPutResult {
+ self.ensureTotalCapacityContext(allocator, self.entries.len + 1, ctx) catch |err| {
// "If key exists this function cannot fail."
- const index = self.getIndex(key) orelse return err;
+ const index = self.getIndexAdapted(key, key_ctx) orelse return err;
+ const slice = self.entries.slice();
return GetOrPutResult{
- .entry = &self.entries.items[index],
+ .key_ptr = &slice.items(.key)[index],
+ // workaround for #6974
+ .value_ptr = if (@sizeOf(*V) == 0) undefined else &slice.items(.value)[index],
.found_existing = true,
.index = index,
};
};
- return self.getOrPutAssumeCapacity(key);
+ return self.getOrPutAssumeCapacityAdapted(key, key_ctx);
}
/// If there is an existing item with `key`, then the result
@@ -441,45 +657,75 @@ pub fn ArrayHashMapUnmanaged(
/// If a new entry needs to be stored, this function asserts there
/// is enough capacity to store it.
pub fn getOrPutAssumeCapacity(self: *Self, key: K) GetOrPutResult {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call getOrPutAssumeCapacityContext instead.");
+ return self.getOrPutAssumeCapacityContext(key, undefined);
+ }
+ pub fn getOrPutAssumeCapacityContext(self: *Self, key: K, ctx: Context) GetOrPutResult {
+ const gop = self.getOrPutAssumeCapacityAdapted(key, ctx);
+ if (!gop.found_existing) {
+ gop.key_ptr.* = key;
+ }
+ return gop;
+ }
+ /// If there is an existing item with `key`, then the result
+ /// `Entry` pointers point to it, and found_existing is true.
+ /// Otherwise, puts a new item with undefined key and value, and
+ /// the `Entry` pointers point to it. Caller must then initialize
+ /// both the key and the value.
+ /// If a new entry needs to be stored, this function asserts there
+ /// is enough capacity to store it.
+ pub fn getOrPutAssumeCapacityAdapted(self: *Self, key: anytype, ctx: anytype) GetOrPutResult {
const header = self.index_header orelse {
// Linear scan.
- const h = if (store_hash) hash(key) else {};
- for (self.entries.items) |*item, i| {
- if (item.hash == h and eql(key, item.key)) {
+ const h = if (store_hash) checkedHash(ctx, key) else {};
+ const slice = self.entries.slice();
+ const hashes_array = slice.items(.hash);
+ const keys_array = slice.items(.key);
+ for (keys_array) |*item_key, i| {
+ if (hashes_array[i] == h and checkedEql(ctx, key, item_key.*)) {
return GetOrPutResult{
- .entry = item,
+ .key_ptr = item_key,
+ // workaround for #6974
+ .value_ptr = if (@sizeOf(*V) == 0) undefined else &slice.items(.value)[i],
.found_existing = true,
.index = i,
};
}
}
- const new_entry = self.entries.addOneAssumeCapacity();
- new_entry.* = .{
- .hash = if (store_hash) h else {},
- .key = key,
- .value = undefined,
- };
+
+ const index = self.entries.addOneAssumeCapacity();
+ // unsafe indexing because the length changed
+ if (store_hash) hashes_array.ptr[index] = h;
+
return GetOrPutResult{
- .entry = new_entry,
+ .key_ptr = &keys_array.ptr[index],
+ // workaround for #6974
+ .value_ptr = if (@sizeOf(*V) == 0) undefined else &slice.items(.value).ptr[index],
.found_existing = false,
- .index = self.entries.items.len - 1,
+ .index = index,
};
};
switch (header.capacityIndexType()) {
- .u8 => return self.getOrPutInternal(key, header, u8),
- .u16 => return self.getOrPutInternal(key, header, u16),
- .u32 => return self.getOrPutInternal(key, header, u32),
- .usize => return self.getOrPutInternal(key, header, usize),
+ .u8 => return self.getOrPutInternal(key, ctx, header, u8),
+ .u16 => return self.getOrPutInternal(key, ctx, header, u16),
+ .u32 => return self.getOrPutInternal(key, ctx, header, u32),
}
}
- pub fn getOrPutValue(self: *Self, allocator: *Allocator, key: K, value: V) !*Entry {
- const res = try self.getOrPut(allocator, key);
- if (!res.found_existing)
- res.entry.value = value;
-
- return res.entry;
+ pub fn getOrPutValue(self: *Self, allocator: *Allocator, key: K, value: V) !GetOrPutResult {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call getOrPutValueContext instead.");
+ return self.getOrPutValueContext(allocator, key, value, undefined);
+ }
+ pub fn getOrPutValueContext(self: *Self, allocator: *Allocator, key: K, value: V, ctx: Context) !GetOrPutResult {
+ const res = try self.getOrPutContextAdapted(allocator, key, ctx, ctx);
+ if (!res.found_existing) {
+ res.key_ptr.* = key;
+ res.value_ptr.* = value;
+ }
+ return res;
}
/// Deprecated: call `ensureUnusedCapacity` or `ensureTotalCapacity`.
@@ -488,30 +734,30 @@ pub fn ArrayHashMapUnmanaged(
/// Increases capacity, guaranteeing that insertions up until the
/// `expected_count` will not cause an allocation, and therefore cannot fail.
pub fn ensureTotalCapacity(self: *Self, allocator: *Allocator, new_capacity: usize) !void {
- try self.entries.ensureTotalCapacity(allocator, new_capacity);
- if (new_capacity <= linear_scan_max) return;
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call ensureTotalCapacityContext instead.");
+ return self.ensureTotalCapacityContext(allocator, new_capacity, undefined);
+ }
+ pub fn ensureTotalCapacityContext(self: *Self, allocator: *Allocator, new_capacity: usize, ctx: Context) !void {
+ if (new_capacity <= linear_scan_max) {
+ try self.entries.ensureCapacity(allocator, new_capacity);
+ return;
+ }
- // Ensure that the indexes will be at most 60% full if
- // `new_capacity` items are put into it.
- const needed_len = new_capacity * 5 / 3;
if (self.index_header) |header| {
- if (needed_len > header.indexes_len) {
- // An overflow here would mean the amount of memory required would not
- // be representable in the address space.
- const new_indexes_len = math.ceilPowerOfTwo(usize, needed_len) catch unreachable;
- const new_header = try IndexHeader.alloc(allocator, new_indexes_len);
- self.insertAllEntriesIntoNewHeader(new_header);
- header.free(allocator);
- self.index_header = new_header;
+ if (new_capacity <= header.capacity()) {
+ try self.entries.ensureCapacity(allocator, new_capacity);
+ return;
}
- } else {
- // An overflow here would mean the amount of memory required would not
- // be representable in the address space.
- const new_indexes_len = math.ceilPowerOfTwo(usize, needed_len) catch unreachable;
- const header = try IndexHeader.alloc(allocator, new_indexes_len);
- self.insertAllEntriesIntoNewHeader(header);
- self.index_header = header;
}
+
+ const new_bit_index = try IndexHeader.findBitIndex(new_capacity);
+ const new_header = try IndexHeader.alloc(allocator, new_bit_index);
+ try self.entries.ensureCapacity(allocator, new_capacity);
+
+ if (self.index_header) |old_header| old_header.free(allocator);
+ self.insertAllEntriesIntoNewHeader(if (store_hash) {} else ctx, new_header);
+ self.index_header = new_header;
}
/// Increases capacity, guaranteeing that insertions up until
@@ -522,7 +768,17 @@ pub fn ArrayHashMapUnmanaged(
allocator: *Allocator,
additional_capacity: usize,
) !void {
- return self.ensureTotalCapacity(allocator, self.count() + additional_capacity);
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call ensureTotalCapacityContext instead.");
+ return self.ensureUnusedCapacityContext(allocator, additional_capacity, undefined);
+ }
+ pub fn ensureUnusedCapacityContext(
+ self: *Self,
+ allocator: *Allocator,
+ additional_capacity: usize,
+ ctx: Context,
+ ) !void {
+ return self.ensureTotalCapacityContext(allocator, self.count() + additional_capacity, ctx);
}
/// Returns the number of total elements which may be present before it is
@@ -530,141 +786,321 @@ pub fn ArrayHashMapUnmanaged(
pub fn capacity(self: Self) usize {
const entry_cap = self.entries.capacity;
const header = self.index_header orelse return math.min(linear_scan_max, entry_cap);
- const indexes_cap = (header.indexes_len + 1) * 3 / 4;
+ const indexes_cap = header.capacity();
return math.min(entry_cap, indexes_cap);
}
/// Clobbers any existing data. To detect if a put would clobber
/// existing data, see `getOrPut`.
pub fn put(self: *Self, allocator: *Allocator, key: K, value: V) !void {
- const result = try self.getOrPut(allocator, key);
- result.entry.value = value;
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call putContext instead.");
+ return self.putContext(allocator, key, value, undefined);
+ }
+ pub fn putContext(self: *Self, allocator: *Allocator, key: K, value: V, ctx: Context) !void {
+ const result = try self.getOrPutContext(allocator, key, ctx);
+ result.value_ptr.* = value;
}
/// Inserts a key-value pair into the hash map, asserting that no previous
/// entry with the same key is already present
pub fn putNoClobber(self: *Self, allocator: *Allocator, key: K, value: V) !void {
- const result = try self.getOrPut(allocator, key);
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call putNoClobberContext instead.");
+ return self.putNoClobberContext(allocator, key, value, undefined);
+ }
+ pub fn putNoClobberContext(self: *Self, allocator: *Allocator, key: K, value: V, ctx: Context) !void {
+ const result = try self.getOrPutContext(allocator, key, ctx);
assert(!result.found_existing);
- result.entry.value = value;
+ result.value_ptr.* = value;
}
/// Asserts there is enough capacity to store the new key-value pair.
/// Clobbers any existing data. To detect if a put would clobber
/// existing data, see `getOrPutAssumeCapacity`.
pub fn putAssumeCapacity(self: *Self, key: K, value: V) void {
- const result = self.getOrPutAssumeCapacity(key);
- result.entry.value = value;
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call putAssumeCapacityContext instead.");
+ return self.putAssumeCapacityContext(key, value, undefined);
+ }
+ pub fn putAssumeCapacityContext(self: *Self, key: K, value: V, ctx: Context) void {
+ const result = self.getOrPutAssumeCapacityContext(key, ctx);
+ result.value_ptr.* = value;
}
/// Asserts there is enough capacity to store the new key-value pair.
/// Asserts that it does not clobber any existing data.
/// To detect if a put would clobber existing data, see `getOrPutAssumeCapacity`.
pub fn putAssumeCapacityNoClobber(self: *Self, key: K, value: V) void {
- const result = self.getOrPutAssumeCapacity(key);
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call putAssumeCapacityNoClobberContext instead.");
+ return self.putAssumeCapacityNoClobberContext(key, value, undefined);
+ }
+ pub fn putAssumeCapacityNoClobberContext(self: *Self, key: K, value: V, ctx: Context) void {
+ const result = self.getOrPutAssumeCapacityContext(key, ctx);
assert(!result.found_existing);
- result.entry.value = value;
+ result.value_ptr.* = value;
}
/// Inserts a new `Entry` into the hash map, returning the previous one, if any.
- pub fn fetchPut(self: *Self, allocator: *Allocator, key: K, value: V) !?Entry {
- const gop = try self.getOrPut(allocator, key);
- var result: ?Entry = null;
+ pub fn fetchPut(self: *Self, allocator: *Allocator, key: K, value: V) !?KV {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call fetchPutContext instead.");
+ return self.fetchPutContext(allocator, key, value, undefined);
+ }
+ pub fn fetchPutContext(self: *Self, allocator: *Allocator, key: K, value: V, ctx: Context) !?KV {
+ const gop = try self.getOrPutContext(allocator, key, ctx);
+ var result: ?KV = null;
if (gop.found_existing) {
- result = gop.entry.*;
+ result = KV{
+ .key = gop.key_ptr.*,
+ .value = gop.value_ptr.*,
+ };
}
- gop.entry.value = value;
+ gop.value_ptr.* = value;
return result;
}
/// Inserts a new `Entry` into the hash map, returning the previous one, if any.
/// If insertion happens, asserts there is enough capacity without allocating.
- pub fn fetchPutAssumeCapacity(self: *Self, key: K, value: V) ?Entry {
- const gop = self.getOrPutAssumeCapacity(key);
- var result: ?Entry = null;
+ pub fn fetchPutAssumeCapacity(self: *Self, key: K, value: V) ?KV {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call fetchPutAssumeCapacityContext instead.");
+ return self.fetchPutAssumeCapacityContext(key, value, undefined);
+ }
+ pub fn fetchPutAssumeCapacityContext(self: *Self, key: K, value: V, ctx: Context) ?KV {
+ const gop = self.getOrPutAssumeCapacityContext(key, ctx);
+ var result: ?KV = null;
if (gop.found_existing) {
- result = gop.entry.*;
+ result = KV{
+ .key = gop.key_ptr.*,
+ .value = gop.value_ptr.*,
+ };
}
- gop.entry.value = value;
+ gop.value_ptr.* = value;
return result;
}
- pub fn getEntry(self: Self, key: K) ?*Entry {
- const index = self.getIndex(key) orelse return null;
- return &self.entries.items[index];
+ /// Finds pointers to the key and value storage associated with a key.
+ pub fn getEntry(self: Self, key: K) ?Entry {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call getEntryContext instead.");
+ return self.getEntryContext(key, undefined);
+ }
+ pub fn getEntryContext(self: Self, key: K, ctx: Context) ?Entry {
+ return self.getEntryAdapted(key, ctx);
+ }
+ pub fn getEntryAdapted(self: Self, key: anytype, ctx: anytype) ?Entry {
+ const index = self.getIndexAdapted(key, ctx) orelse return null;
+ const slice = self.entries.slice();
+ return Entry{
+ .key_ptr = &slice.items(.key)[index],
+ // workaround for #6974
+ .value_ptr = if (@sizeOf(*V) == 0) undefined else &slice.items(.value)[index],
+ };
}
+ /// Finds the index in the `entries` array where a key is stored
pub fn getIndex(self: Self, key: K) ?usize {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call getIndexContext instead.");
+ return self.getIndexContext(key, undefined);
+ }
+ pub fn getIndexContext(self: Self, key: K, ctx: Context) ?usize {
+ return self.getIndexAdapted(key, ctx);
+ }
+ pub fn getIndexAdapted(self: Self, key: anytype, ctx: anytype) ?usize {
const header = self.index_header orelse {
// Linear scan.
- const h = if (store_hash) hash(key) else {};
- for (self.entries.items) |*item, i| {
- if (item.hash == h and eql(key, item.key)) {
+ const h = if (store_hash) checkedHash(ctx, key) else {};
+ const slice = self.entries.slice();
+ const hashes_array = slice.items(.hash);
+ const keys_array = slice.items(.key);
+ for (keys_array) |*item_key, i| {
+ if (hashes_array[i] == h and checkedEql(ctx, key, item_key.*)) {
return i;
}
}
return null;
};
switch (header.capacityIndexType()) {
- .u8 => return self.getInternal(key, header, u8),
- .u16 => return self.getInternal(key, header, u16),
- .u32 => return self.getInternal(key, header, u32),
- .usize => return self.getInternal(key, header, usize),
+ .u8 => return self.getIndexWithHeaderGeneric(key, ctx, header, u8),
+ .u16 => return self.getIndexWithHeaderGeneric(key, ctx, header, u16),
+ .u32 => return self.getIndexWithHeaderGeneric(key, ctx, header, u32),
}
}
+ fn getIndexWithHeaderGeneric(self: Self, key: anytype, ctx: anytype, header: *IndexHeader, comptime I: type) ?usize {
+ const indexes = header.indexes(I);
+ const slot = self.getSlotByKey(key, ctx, header, I, indexes) orelse return null;
+ return indexes[slot].entry_index;
+ }
+ /// Find the value associated with a key
pub fn get(self: Self, key: K) ?V {
- return if (self.getEntry(key)) |entry| entry.value else null;
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call getContext instead.");
+ return self.getContext(key, undefined);
+ }
+ pub fn getContext(self: Self, key: K, ctx: Context) ?V {
+ return self.getAdapted(key, ctx);
+ }
+ pub fn getAdapted(self: Self, key: anytype, ctx: anytype) ?V {
+ const index = self.getIndexAdapted(key, ctx) orelse return null;
+ return self.values()[index];
+ }
+
+ /// Find a pointer to the value associated with a key
+ pub fn getPtr(self: Self, key: K) ?*V {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call getPtrContext instead.");
+ return self.getPtrContext(key, undefined);
+ }
+ pub fn getPtrContext(self: Self, key: K, ctx: Context) ?*V {
+ return self.getPtrAdapted(key, ctx);
+ }
+ pub fn getPtrAdapted(self: Self, key: anytype, ctx: anytype) ?*V {
+ const index = self.getIndexAdapted(key, ctx) orelse return null;
+ // workaround for #6974
+ return if (@sizeOf(*V) == 0) @as(*V, undefined) else &self.values()[index];
}
+ /// Check whether a key is stored in the map
pub fn contains(self: Self, key: K) bool {
- return self.getEntry(key) != null;
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call containsContext instead.");
+ return self.containsContext(key, undefined);
+ }
+ pub fn containsContext(self: Self, key: K, ctx: Context) bool {
+ return self.containsAdapted(key, ctx);
+ }
+ pub fn containsAdapted(self: Self, key: anytype, ctx: anytype) bool {
+ return self.getIndexAdapted(key, ctx) != null;
}
/// If there is an `Entry` with a matching key, it is deleted from
/// the hash map, and then returned from this function. The entry is
/// removed from the underlying array by swapping it with the last
/// element.
- pub fn swapRemove(self: *Self, key: K) ?Entry {
- return self.removeInternal(key, .swap);
+ pub fn fetchSwapRemove(self: *Self, key: K) ?KV {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call fetchSwapRemoveContext instead.");
+ return self.fetchSwapRemoveContext(key, undefined);
+ }
+ pub fn fetchSwapRemoveContext(self: *Self, key: K, ctx: Context) ?KV {
+ return self.fetchSwapRemoveContextAdapted(key, ctx, ctx);
+ }
+ pub fn fetchSwapRemoveAdapted(self: *Self, key: anytype, ctx: anytype) ?KV {
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call fetchSwapRemoveContextAdapted instead.");
+ return self.fetchSwapRemoveContextAdapted(key, ctx, undefined);
+ }
+ pub fn fetchSwapRemoveContextAdapted(self: *Self, key: anytype, key_ctx: anytype, ctx: Context) ?KV {
+ return self.fetchRemoveByKey(key, key_ctx, if (store_hash) {} else ctx, .swap);
}
/// If there is an `Entry` with a matching key, it is deleted from
/// the hash map, and then returned from this function. The entry is
/// removed from the underlying array by shifting all elements forward
/// thereby maintaining the current ordering.
- pub fn orderedRemove(self: *Self, key: K) ?Entry {
- return self.removeInternal(key, .ordered);
+ pub fn fetchOrderedRemove(self: *Self, key: K) ?KV {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call fetchOrderedRemoveContext instead.");
+ return self.fetchOrderedRemoveContext(key, undefined);
+ }
+ pub fn fetchOrderedRemoveContext(self: *Self, key: K, ctx: Context) ?KV {
+ return self.fetchOrderedRemoveContextAdapted(key, ctx, ctx);
+ }
+ pub fn fetchOrderedRemoveAdapted(self: *Self, key: anytype, ctx: anytype) ?KV {
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call fetchOrderedRemoveContextAdapted instead.");
+ return self.fetchOrderedRemoveContextAdapted(key, ctx, undefined);
+ }
+ pub fn fetchOrderedRemoveContextAdapted(self: *Self, key: anytype, key_ctx: anytype, ctx: Context) ?KV {
+ return self.fetchRemoveByKey(key, key_ctx, if (store_hash) {} else ctx, .ordered);
}
- /// TODO deprecated: call swapRemoveAssertDiscard instead.
- pub fn removeAssertDiscard(self: *Self, key: K) void {
- return self.swapRemoveAssertDiscard(key);
+ /// If there is an `Entry` with a matching key, it is deleted from
+ /// the hash map. The entry is removed from the underlying array
+ /// by swapping it with the last element. Returns true if an entry
+ /// was removed, false otherwise.
+ pub fn swapRemove(self: *Self, key: K) bool {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call swapRemoveContext instead.");
+ return self.swapRemoveContext(key, undefined);
+ }
+ pub fn swapRemoveContext(self: *Self, key: K, ctx: Context) bool {
+ return self.swapRemoveContextAdapted(key, ctx, ctx);
+ }
+ pub fn swapRemoveAdapted(self: *Self, key: anytype, ctx: anytype) bool {
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call swapRemoveContextAdapted instead.");
+ return self.swapRemoveContextAdapted(key, ctx, undefined);
+ }
+ pub fn swapRemoveContextAdapted(self: *Self, key: anytype, key_ctx: anytype, ctx: Context) bool {
+ return self.removeByKey(key, key_ctx, if (store_hash) {} else ctx, .swap);
}
- /// Asserts there is an `Entry` with matching key, deletes it from the hash map
- /// by swapping it with the last element, and discards it.
- pub fn swapRemoveAssertDiscard(self: *Self, key: K) void {
- assert(self.swapRemove(key) != null);
+ /// If there is an `Entry` with a matching key, it is deleted from
+ /// the hash map. The entry is removed from the underlying array
+ /// by shifting all elements forward, thereby maintaining the
+ /// current ordering. Returns true if an entry was removed, false otherwise.
+ pub fn orderedRemove(self: *Self, key: K) bool {
+ if (@sizeOf(Context) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call orderedRemoveContext instead.");
+ return self.orderedRemoveContext(key, undefined);
+ }
+ pub fn orderedRemoveContext(self: *Self, key: K, ctx: Context) bool {
+ return self.orderedRemoveContextAdapted(key, ctx, ctx);
+ }
+ pub fn orderedRemoveAdapted(self: *Self, key: anytype, ctx: anytype) bool {
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call orderedRemoveContextAdapted instead.");
+ return self.orderedRemoveContextAdapted(key, ctx, undefined);
+ }
+ pub fn orderedRemoveContextAdapted(self: *Self, key: anytype, key_ctx: anytype, ctx: Context) bool {
+ return self.removeByKey(key, key_ctx, if (store_hash) {} else ctx, .ordered);
}
- /// Asserts there is an `Entry` with matching key, deletes it from the hash map
- /// by by shifting all elements forward thereby maintaining the current ordering.
- pub fn orderedRemoveAssertDiscard(self: *Self, key: K) void {
- assert(self.orderedRemove(key) != null);
+ /// Deletes the item at the specified index in `entries` from
+ /// the hash map. The entry is removed from the underlying array
+ /// by swapping it with the last element.
+ pub fn swapRemoveAt(self: *Self, index: usize) void {
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call swapRemoveAtContext instead.");
+ return self.swapRemoveAtContext(index, undefined);
+ }
+ pub fn swapRemoveAtContext(self: *Self, index: usize, ctx: Context) void {
+ self.removeByIndex(index, if (store_hash) {} else ctx, .swap);
}
- pub fn items(self: Self) []Entry {
- return self.entries.items;
+ /// Deletes the item at the specified index in `entries` from
+ /// the hash map. The entry is removed from the underlying array
+ /// by shifting all elements forward, thereby maintaining the
+ /// current ordering.
+ pub fn orderedRemoveAt(self: *Self, index: usize) void {
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call orderedRemoveAtContext instead.");
+ return self.orderedRemoveAtContext(index, undefined);
+ }
+ pub fn orderedRemoveAtContext(self: *Self, index: usize, ctx: Context) void {
+ self.removeByIndex(index, if (store_hash) {} else ctx, .ordered);
}
+ /// Create a copy of the hash map which can be modified separately.
+ /// The copy uses the same context and allocator as this instance.
pub fn clone(self: Self, allocator: *Allocator) !Self {
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call cloneContext instead.");
+ return self.cloneContext(allocator, undefined);
+ }
+ pub fn cloneContext(self: Self, allocator: *Allocator, ctx: Context) !Self {
var other: Self = .{};
- try other.entries.appendSlice(allocator, self.entries.items);
+ other.entries = try self.entries.clone(allocator);
+ errdefer other.entries.deinit(allocator);
if (self.index_header) |header| {
- const new_header = try IndexHeader.alloc(allocator, header.indexes_len);
- other.insertAllEntriesIntoNewHeader(new_header);
+ const new_header = try IndexHeader.alloc(allocator, header.bit_index);
+ other.insertAllEntriesIntoNewHeader(if (store_hash) {} else ctx, new_header);
other.index_header = new_header;
}
return other;
@@ -673,135 +1109,197 @@ pub fn ArrayHashMapUnmanaged(
/// Rebuilds the key indexes. If the underlying entries has been modified directly, users
/// can call `reIndex` to update the indexes to account for these new entries.
pub fn reIndex(self: *Self, allocator: *Allocator) !void {
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call reIndexContext instead.");
+ return self.reIndexContext(allocator, undefined);
+ }
+ pub fn reIndexContext(self: *Self, allocator: *Allocator, ctx: Context) !void {
if (self.entries.capacity <= linear_scan_max) return;
// We're going to rebuild the index header and replace the existing one (if any). The
// indexes should sized such that they will be at most 60% full.
- const needed_len = self.entries.capacity * 5 / 3;
- const new_indexes_len = math.ceilPowerOfTwo(usize, needed_len) catch unreachable;
- const new_header = try IndexHeader.alloc(allocator, new_indexes_len);
- self.insertAllEntriesIntoNewHeader(new_header);
- if (self.index_header) |header|
- header.free(allocator);
+ const bit_index = try IndexHeader.findBitIndex(self.entries.capacity);
+ const new_header = try IndexHeader.alloc(allocator, bit_index);
+ if (self.index_header) |header| header.free(allocator);
+ self.insertAllEntriesIntoNewHeader(if (store_hash) {} else ctx, new_header);
self.index_header = new_header;
}
/// Shrinks the underlying `Entry` array to `new_len` elements and discards any associated
/// index entries. Keeps capacity the same.
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call shrinkRetainingCapacityContext instead.");
+ return self.shrinkRetainingCapacityContext(new_len, undefined);
+ }
+ pub fn shrinkRetainingCapacityContext(self: *Self, new_len: usize, ctx: Context) void {
// Remove index entries from the new length onwards.
// Explicitly choose to ONLY remove index entries and not the underlying array list
// entries as we're going to remove them in the subsequent shrink call.
- var i: usize = new_len;
- while (i < self.entries.items.len) : (i += 1)
- _ = self.removeWithHash(self.entries.items[i].key, self.entries.items[i].hash, .index_only);
+ if (self.index_header) |header| {
+ var i: usize = new_len;
+ while (i < self.entries.len) : (i += 1)
+ self.removeFromIndexByIndex(i, if (store_hash) {} else ctx, header);
+ }
self.entries.shrinkRetainingCapacity(new_len);
}
/// Shrinks the underlying `Entry` array to `new_len` elements and discards any associated
/// index entries. Reduces allocated capacity.
pub fn shrinkAndFree(self: *Self, allocator: *Allocator, new_len: usize) void {
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call shrinkAndFreeContext instead.");
+ return self.shrinkAndFreeContext(allocator, new_len, undefined);
+ }
+ pub fn shrinkAndFreeContext(self: *Self, allocator: *Allocator, new_len: usize, ctx: Context) void {
// Remove index entries from the new length onwards.
// Explicitly choose to ONLY remove index entries and not the underlying array list
// entries as we're going to remove them in the subsequent shrink call.
- var i: usize = new_len;
- while (i < self.entries.items.len) : (i += 1)
- _ = self.removeWithHash(self.entries.items[i].key, self.entries.items[i].hash, .index_only);
+ if (self.index_header) |header| {
+ var i: usize = new_len;
+ while (i < self.entries.len) : (i += 1)
+ self.removeFromIndexByIndex(i, if (store_hash) {} else ctx, header);
+ }
self.entries.shrinkAndFree(allocator, new_len);
}
/// Removes the last inserted `Entry` in the hash map and returns it.
- pub fn pop(self: *Self) Entry {
- const top = self.entries.items[self.entries.items.len - 1];
- _ = self.removeWithHash(top.key, top.hash, .index_only);
- self.entries.items.len -= 1;
- return top;
+ pub fn pop(self: *Self) KV {
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call popContext instead.");
+ return self.popContext(undefined);
}
-
- fn removeInternal(self: *Self, key: K, comptime removal_type: RemovalType) ?Entry {
- const key_hash = if (store_hash) hash(key) else {};
- return self.removeWithHash(key, key_hash, removal_type);
+ pub fn popContext(self: *Self, ctx: Context) KV {
+ const item = self.entries.get(self.entries.len-1);
+ if (self.index_header) |header|
+ self.removeFromIndexByIndex(self.entries.len-1, if (store_hash) {} else ctx, header);
+ self.entries.len -= 1;
+ return .{
+ .key = item.key,
+ .value = item.value,
+ };
}
- fn removeWithHash(self: *Self, key: K, key_hash: Hash, comptime removal_type: RemovalType) ?Entry {
+ // ------------------ No pub fns below this point ------------------
+
+ fn fetchRemoveByKey(self: *Self, key: anytype, key_ctx: anytype, ctx: ByIndexContext, comptime removal_type: RemovalType) ?KV {
const header = self.index_header orelse {
- // If we're only removing index entries and we have no index header, there's no need
- // to continue.
- if (removal_type == .index_only) return null;
// Linear scan.
- for (self.entries.items) |item, i| {
- if (item.hash == key_hash and eql(key, item.key)) {
+ const key_hash = if (store_hash) key_ctx.hash(key) else {};
+ const slice = self.entries.slice();
+ const hashes_array = if (store_hash) slice.items(.hash) else {};
+ const keys_array = slice.items(.key);
+ for (keys_array) |*item_key, i| {
+ const hash_match = if (store_hash) hashes_array[i] == key_hash else true;
+ if (hash_match and key_ctx.eql(key, item_key.*)) {
+ const removed_entry: KV = .{
+ .key = keys_array[i],
+ .value = slice.items(.value)[i],
+ };
switch (removal_type) {
- .swap => return self.entries.swapRemove(i),
- .ordered => return self.entries.orderedRemove(i),
- .index_only => unreachable,
+ .swap => self.entries.swapRemove(i),
+ .ordered => self.entries.orderedRemove(i),
}
+ return removed_entry;
}
}
return null;
};
- switch (header.capacityIndexType()) {
- .u8 => return self.removeWithIndex(key, key_hash, header, u8, removal_type),
- .u16 => return self.removeWithIndex(key, key_hash, header, u16, removal_type),
- .u32 => return self.removeWithIndex(key, key_hash, header, u32, removal_type),
- .usize => return self.removeWithIndex(key, key_hash, header, usize, removal_type),
- }
+ return switch (header.capacityIndexType()) {
+ .u8 => self.fetchRemoveByKeyGeneric(key, key_ctx, ctx, header, u8, removal_type),
+ .u16 => self.fetchRemoveByKeyGeneric(key, key_ctx, ctx, header, u16, removal_type),
+ .u32 => self.fetchRemoveByKeyGeneric(key, key_ctx, ctx, header, u32, removal_type),
+ };
}
-
- fn removeWithIndex(self: *Self, key: K, key_hash: Hash, header: *IndexHeader, comptime I: type, comptime removal_type: RemovalType) ?Entry {
+ fn fetchRemoveByKeyGeneric(self: *Self, key: anytype, key_ctx: anytype, ctx: ByIndexContext, header: *IndexHeader, comptime I: type, comptime removal_type: RemovalType) ?KV {
const indexes = header.indexes(I);
- const h = if (store_hash) key_hash else hash(key);
- const start_index = header.constrainIndex(h);
- var roll_over: usize = 0;
- while (roll_over <= header.max_distance_from_start_index) : (roll_over += 1) {
- const index_index = header.constrainIndex(start_index + roll_over);
- var index = &indexes[index_index];
- if (index.isEmpty())
- return null;
-
- const entry = &self.entries.items[index.entry_index];
-
- const hash_match = if (store_hash) h == entry.hash else true;
- if (!hash_match or !eql(key, entry.key))
- continue;
+ const entry_index = self.removeFromIndexByKey(key, key_ctx, header, I, indexes) orelse return null;
+ const slice = self.entries.slice();
+ const removed_entry: KV = .{
+ .key = slice.items(.key)[entry_index],
+ .value = slice.items(.value)[entry_index],
+ };
+ self.removeFromArrayAndUpdateIndex(entry_index, ctx, header, I, indexes, removal_type);
+ return removed_entry;
+ }
- var removed_entry: ?Entry = undefined;
- switch (removal_type) {
- .swap => {
- removed_entry = self.entries.swapRemove(index.entry_index);
- if (self.entries.items.len > 0 and self.entries.items.len != index.entry_index) {
- // Because of the swap remove, now we need to update the index that was
- // pointing to the last entry and is now pointing to this removed item slot.
- self.updateEntryIndex(header, self.entries.items.len, index.entry_index, I, indexes);
- }
- },
- .ordered => {
- removed_entry = self.entries.orderedRemove(index.entry_index);
- var i: usize = index.entry_index;
- while (i < self.entries.items.len) : (i += 1) {
- // Because of the ordered remove, everything from the entry index onwards has
- // been shifted forward so we'll need to update the index entries.
- self.updateEntryIndex(header, i + 1, i, I, indexes);
+ fn removeByKey(self: *Self, key: anytype, key_ctx: anytype, ctx: ByIndexContext, comptime removal_type: RemovalType) bool {
+ const header = self.index_header orelse {
+ // Linear scan.
+ const key_hash = if (store_hash) key_ctx.hash(key) else {};
+ const slice = self.entries.slice();
+ const hashes_array = if (store_hash) slice.items(.hash) else {};
+ const keys_array = slice.items(.key);
+ for (keys_array) |*item_key, i| {
+ const hash_match = if (store_hash) hashes_array[i] == key_hash else true;
+ if (hash_match and key_ctx.eql(key, item_key.*)) {
+ switch (removal_type) {
+ .swap => self.entries.swapRemove(i),
+ .ordered => self.entries.orderedRemove(i),
}
- },
- .index_only => removed_entry = null,
+ return true;
+ }
}
+ return false;
+ };
+ return switch (header.capacityIndexType()) {
+ .u8 => self.removeByKeyGeneric(key, key_ctx, ctx, header, u8, removal_type),
+ .u16 => self.removeByKeyGeneric(key, key_ctx, ctx, header, u16, removal_type),
+ .u32 => self.removeByKeyGeneric(key, key_ctx, ctx, header, u32, removal_type),
+ };
+ }
+ fn removeByKeyGeneric(self: *Self, key: anytype, key_ctx: anytype, ctx: ByIndexContext, header: *IndexHeader, comptime I: type, comptime removal_type: RemovalType) bool {
+ const indexes = header.indexes(I);
+ const entry_index = self.removeFromIndexByKey(key, key_ctx, header, I, indexes) orelse return false;
+ self.removeFromArrayAndUpdateIndex(entry_index, ctx, header, I, indexes, removal_type);
+ return true;
+ }
- // Now we have to shift over the following indexes.
- roll_over += 1;
- while (roll_over < header.indexes_len) : (roll_over += 1) {
- const next_index_index = header.constrainIndex(start_index + roll_over);
- const next_index = &indexes[next_index_index];
- if (next_index.isEmpty() or next_index.distance_from_start_index == 0) {
- index.setEmpty();
- return removed_entry;
- }
- index.* = next_index.*;
- index.distance_from_start_index -= 1;
- index = next_index;
+ fn removeByIndex(self: *Self, entry_index: usize, ctx: ByIndexContext, comptime removal_type: RemovalType) void {
+ assert(entry_index < self.entries.len);
+ const header = self.index_header orelse {
+ switch (removal_type) {
+ .swap => self.entries.swapRemove(entry_index),
+ .ordered => self.entries.orderedRemove(entry_index),
}
- unreachable;
+ return;
+ };
+ switch (header.capacityIndexType()) {
+ .u8 => self.removeByIndexGeneric(entry_index, ctx, header, u8, removal_type),
+ .u16 => self.removeByIndexGeneric(entry_index, ctx, header, u16, removal_type),
+ .u32 => self.removeByIndexGeneric(entry_index, ctx, header, u32, removal_type),
+ }
+ }
+ fn removeByIndexGeneric(self: *Self, entry_index: usize, ctx: ByIndexContext, header: *IndexHeader, comptime I: type, comptime removal_type: RemovalType) void {
+ const indexes = header.indexes(I);
+ self.removeFromIndexByIndexGeneric(entry_index, ctx, header, I, indexes);
+ self.removeFromArrayAndUpdateIndex(entry_index, ctx, header, I, indexes, removal_type);
+ }
+
+ fn removeFromArrayAndUpdateIndex(self: *Self, entry_index: usize, ctx: ByIndexContext, header: *IndexHeader, comptime I: type, indexes: []Index(I), comptime removal_type: RemovalType) void {
+ const last_index = self.entries.len-1; // overflow => remove from empty map
+ switch (removal_type) {
+ .swap => {
+ if (last_index != entry_index) {
+ // Because of the swap remove, now we need to update the index that was
+ // pointing to the last entry and is now pointing to this removed item slot.
+ self.updateEntryIndex(header, last_index, entry_index, ctx, I, indexes);
+ }
+ // updateEntryIndex reads from the old entry index,
+ // so it needs to run before removal.
+ self.entries.swapRemove(entry_index);
+ },
+ .ordered => {
+ var i: usize = entry_index;
+ while (i < last_index) : (i += 1) {
+ // Because of the ordered remove, everything from the entry index onwards has
+ // been shifted forward so we'll need to update the index entries.
+ self.updateEntryIndex(header, i + 1, i, ctx, I, indexes);
+ }
+ // updateEntryIndex reads from the old entry index,
+ // so it needs to run before removal.
+ self.entries.orderedRemove(entry_index);
+ },
}
- return null;
}
fn updateEntryIndex(
@@ -809,116 +1307,188 @@ pub fn ArrayHashMapUnmanaged(
header: *IndexHeader,
old_entry_index: usize,
new_entry_index: usize,
+ ctx: ByIndexContext,
comptime I: type,
indexes: []Index(I),
) void {
- const h = if (store_hash) self.entries.items[new_entry_index].hash else hash(self.entries.items[new_entry_index].key);
- const start_index = header.constrainIndex(h);
- var roll_over: usize = 0;
- while (roll_over <= header.max_distance_from_start_index) : (roll_over += 1) {
- const index_index = header.constrainIndex(start_index + roll_over);
- const index = &indexes[index_index];
- if (index.entry_index == old_entry_index) {
- index.entry_index = @intCast(I, new_entry_index);
+ const slot = self.getSlotByIndex(old_entry_index, ctx, header, I, indexes);
+ indexes[slot].entry_index = @intCast(I, new_entry_index);
+ }
+
+ fn removeFromIndexByIndex(self: *Self, entry_index: usize, ctx: ByIndexContext, header: *IndexHeader) void {
+ switch (header.capacityIndexType()) {
+ .u8 => self.removeFromIndexByIndexGeneric(entry_index, ctx, header, u8, header.indexes(u8)),
+ .u16 => self.removeFromIndexByIndexGeneric(entry_index, ctx, header, u16, header.indexes(u16)),
+ .u32 => self.removeFromIndexByIndexGeneric(entry_index, ctx, header, u32, header.indexes(u32)),
+ }
+ }
+ fn removeFromIndexByIndexGeneric(self: *Self, entry_index: usize, ctx: ByIndexContext, header: *IndexHeader, comptime I: type, indexes: []Index(I)) void {
+ const slot = self.getSlotByIndex(entry_index, ctx, header, I, indexes);
+ self.removeSlot(slot, header, I, indexes);
+ }
+
+ fn removeFromIndexByKey(self: *Self, key: anytype, ctx: anytype, header: *IndexHeader, comptime I: type, indexes: []Index(I)) ?usize {
+ const slot = self.getSlotByKey(key, ctx, header, I, indexes) orelse return null;
+ const removed_entry_index = indexes[slot].entry_index;
+ self.removeSlot(slot, header, I, indexes);
+ return removed_entry_index;
+ }
+
+ fn removeSlot(self: *Self, removed_slot: usize, header: *IndexHeader, comptime I: type, indexes: []Index(I)) void {
+ const start_index = removed_slot +% 1;
+ const end_index = start_index +% indexes.len;
+
+ var last_slot = removed_slot;
+ var index: usize = start_index;
+ while (index != end_index) : (index +%= 1) {
+ const slot = header.constrainIndex(index);
+ const slot_data = indexes[slot];
+ if (slot_data.isEmpty() or slot_data.distance_from_start_index == 0) {
+ indexes[last_slot].setEmpty();
return;
}
+ indexes[last_slot] = .{
+ .entry_index = slot_data.entry_index,
+ .distance_from_start_index = slot_data.distance_from_start_index - 1,
+ };
+ last_slot = slot;
+ }
+ unreachable;
+ }
+
+ fn getSlotByIndex(self: *Self, entry_index: usize, ctx: ByIndexContext, header: *IndexHeader, comptime I: type, indexes: []Index(I)) usize {
+ const slice = self.entries.slice();
+ const h = if (store_hash) slice.items(.hash)[entry_index]
+ else checkedHash(ctx, slice.items(.key)[entry_index]);
+ const start_index = safeTruncate(usize, h);
+ const end_index = start_index +% indexes.len;
+
+ var index = start_index;
+ var distance_from_start_index: I = 0;
+ while (index != end_index) : ({
+ index +%= 1;
+ distance_from_start_index += 1;
+ }) {
+ const slot = header.constrainIndex(index);
+ const slot_data = indexes[slot];
+
+ // This is the fundamental property of the array hash map index. If this
+ // assert fails, it probably means that the entry was not in the index.
+ assert(!slot_data.isEmpty());
+ assert(slot_data.distance_from_start_index >= distance_from_start_index);
+
+ if (slot_data.entry_index == entry_index) {
+ return slot;
+ }
}
unreachable;
}
/// Must ensureCapacity before calling this.
- fn getOrPutInternal(self: *Self, key: K, header: *IndexHeader, comptime I: type) GetOrPutResult {
+ fn getOrPutInternal(self: *Self, key: anytype, ctx: anytype, header: *IndexHeader, comptime I: type) GetOrPutResult {
+ const slice = self.entries.slice();
+ const hashes_array = if (store_hash) slice.items(.hash) else {};
+ const keys_array = slice.items(.key);
+ const values_array = slice.items(.value);
const indexes = header.indexes(I);
- const h = hash(key);
- const start_index = header.constrainIndex(h);
- var roll_over: usize = 0;
- var distance_from_start_index: usize = 0;
- while (roll_over <= header.indexes_len) : ({
- roll_over += 1;
+
+ const h = checkedHash(ctx, key);
+ const start_index = safeTruncate(usize, h);
+ const end_index = start_index +% indexes.len;
+
+ var index = start_index;
+ var distance_from_start_index: I = 0;
+ while (index != end_index) : ({
+ index +%= 1;
distance_from_start_index += 1;
}) {
- const index_index = header.constrainIndex(start_index + roll_over);
- const index = indexes[index_index];
- if (index.isEmpty()) {
- indexes[index_index] = .{
- .distance_from_start_index = @intCast(I, distance_from_start_index),
- .entry_index = @intCast(I, self.entries.items.len),
- };
- header.maybeBumpMax(distance_from_start_index);
- const new_entry = self.entries.addOneAssumeCapacity();
- new_entry.* = .{
- .hash = if (store_hash) h else {},
- .key = key,
- .value = undefined,
+ var slot = header.constrainIndex(index);
+ var slot_data = indexes[slot];
+
+ // If the slot is empty, there can be no more items in this run.
+ // We didn't find a matching item, so this must be new.
+ // Put it in the empty slot.
+ if (slot_data.isEmpty()) {
+ const new_index = self.entries.addOneAssumeCapacity();
+ indexes[slot] = .{
+ .distance_from_start_index = distance_from_start_index,
+ .entry_index = @intCast(I, new_index),
};
+
+ // update the hash if applicable
+ if (store_hash) hashes_array.ptr[new_index] = h;
+
return .{
.found_existing = false,
- .entry = new_entry,
- .index = self.entries.items.len - 1,
+ .key_ptr = &keys_array.ptr[new_index],
+ // workaround for #6974
+ .value_ptr = if (@sizeOf(*V) == 0) undefined else &values_array.ptr[new_index],
+ .index = new_index,
};
}
// This pointer survives the following append because we call
// entries.ensureCapacity before getOrPutInternal.
- const entry = &self.entries.items[index.entry_index];
- const hash_match = if (store_hash) h == entry.hash else true;
- if (hash_match and eql(key, entry.key)) {
+ const hash_match = if (store_hash) h == hashes_array[slot_data.entry_index] else true;
+ if (hash_match and checkedEql(ctx, key, keys_array[slot_data.entry_index])) {
return .{
.found_existing = true,
- .entry = entry,
- .index = index.entry_index,
+ .key_ptr = &keys_array[slot_data.entry_index],
+ // workaround for #6974
+ .value_ptr = if (@sizeOf(*V) == 0) undefined else &values_array[slot_data.entry_index],
+ .index = slot_data.entry_index,
};
}
- if (index.distance_from_start_index < distance_from_start_index) {
+
+ // If the entry is closer to its target than our current distance,
+ // the entry we are looking for does not exist. It would be in
+ // this slot instead if it was here. So stop looking, and switch
+ // to insert mode.
+ if (slot_data.distance_from_start_index < distance_from_start_index) {
// In this case, we did not find the item. We will put a new entry.
// However, we will use this index for the new entry, and move
- // the previous index down the line, to keep the max_distance_from_start_index
+ // the previous index down the line, to keep the max distance_from_start_index
// as small as possible.
- indexes[index_index] = .{
- .distance_from_start_index = @intCast(I, distance_from_start_index),
- .entry_index = @intCast(I, self.entries.items.len),
+ const new_index = self.entries.addOneAssumeCapacity();
+ if (store_hash) hashes_array.ptr[new_index] = h;
+ indexes[slot] = .{
+ .entry_index = @intCast(I, new_index),
+ .distance_from_start_index = distance_from_start_index,
};
- header.maybeBumpMax(distance_from_start_index);
- const new_entry = self.entries.addOneAssumeCapacity();
- new_entry.* = .{
- .hash = if (store_hash) h else {},
- .key = key,
- .value = undefined,
- };
-
- distance_from_start_index = index.distance_from_start_index;
- var prev_entry_index = index.entry_index;
+ distance_from_start_index = slot_data.distance_from_start_index;
+ var displaced_index = slot_data.entry_index;
// Find somewhere to put the index we replaced by shifting
// following indexes backwards.
- roll_over += 1;
+ index +%= 1;
distance_from_start_index += 1;
- while (roll_over < header.indexes_len) : ({
- roll_over += 1;
+ while (index != end_index) : ({
+ index +%= 1;
distance_from_start_index += 1;
}) {
- const next_index_index = header.constrainIndex(start_index + roll_over);
- const next_index = indexes[next_index_index];
- if (next_index.isEmpty()) {
- header.maybeBumpMax(distance_from_start_index);
- indexes[next_index_index] = .{
- .entry_index = prev_entry_index,
- .distance_from_start_index = @intCast(I, distance_from_start_index),
+ slot = header.constrainIndex(index);
+ slot_data = indexes[slot];
+ if (slot_data.isEmpty()) {
+ indexes[slot] = .{
+ .entry_index = displaced_index,
+ .distance_from_start_index = distance_from_start_index,
};
return .{
.found_existing = false,
- .entry = new_entry,
- .index = self.entries.items.len - 1,
+ .key_ptr = &keys_array.ptr[new_index],
+ // workaround for #6974
+ .value_ptr = if (@sizeOf(*V) == 0) undefined else &values_array.ptr[new_index],
+ .index = new_index,
};
}
- if (next_index.distance_from_start_index < distance_from_start_index) {
- header.maybeBumpMax(distance_from_start_index);
- indexes[next_index_index] = .{
- .entry_index = prev_entry_index,
- .distance_from_start_index = @intCast(I, distance_from_start_index),
+
+ if (slot_data.distance_from_start_index < distance_from_start_index) {
+ indexes[slot] = .{
+ .entry_index = displaced_index,
+ .distance_from_start_index = distance_from_start_index,
};
- distance_from_start_index = next_index.distance_from_start_index;
- prev_entry_index = next_index.entry_index;
+ displaced_index = slot_data.entry_index;
+ distance_from_start_index = slot_data.distance_from_start_index;
}
}
unreachable;
@@ -927,61 +1497,69 @@ pub fn ArrayHashMapUnmanaged(
unreachable;
}
- fn getInternal(self: Self, key: K, header: *IndexHeader, comptime I: type) ?usize {
- const indexes = header.indexes(I);
- const h = hash(key);
- const start_index = header.constrainIndex(h);
- var roll_over: usize = 0;
- while (roll_over <= header.max_distance_from_start_index) : (roll_over += 1) {
- const index_index = header.constrainIndex(start_index + roll_over);
- const index = indexes[index_index];
- if (index.isEmpty())
+ fn getSlotByKey(self: Self, key: anytype, ctx: anytype, header: *IndexHeader, comptime I: type, indexes: []Index(I)) ?usize {
+ const slice = self.entries.slice();
+ const hashes_array = if (store_hash) slice.items(.hash) else {};
+ const keys_array = slice.items(.key);
+ const h = checkedHash(ctx, key);
+
+ const start_index = safeTruncate(usize, h);
+ const end_index = start_index +% indexes.len;
+
+ var index = start_index;
+ var distance_from_start_index: I = 0;
+ while (index != end_index) : ({
+ index +%= 1;
+ distance_from_start_index += 1;
+ }) {
+ const slot = header.constrainIndex(index);
+ const slot_data = indexes[slot];
+ if (slot_data.isEmpty() or slot_data.distance_from_start_index < distance_from_start_index)
return null;
- const entry = &self.entries.items[index.entry_index];
- const hash_match = if (store_hash) h == entry.hash else true;
- if (hash_match and eql(key, entry.key))
- return index.entry_index;
+ const hash_match = if (store_hash) h == hashes_array[slot_data.entry_index] else true;
+ if (hash_match and checkedEql(ctx, key, keys_array[slot_data.entry_index]))
+ return slot;
}
- return null;
+ unreachable;
}
- fn insertAllEntriesIntoNewHeader(self: *Self, header: *IndexHeader) void {
+ fn insertAllEntriesIntoNewHeader(self: *Self, ctx: ByIndexContext, header: *IndexHeader) void {
switch (header.capacityIndexType()) {
- .u8 => return self.insertAllEntriesIntoNewHeaderGeneric(header, u8),
- .u16 => return self.insertAllEntriesIntoNewHeaderGeneric(header, u16),
- .u32 => return self.insertAllEntriesIntoNewHeaderGeneric(header, u32),
- .usize => return self.insertAllEntriesIntoNewHeaderGeneric(header, usize),
+ .u8 => return self.insertAllEntriesIntoNewHeaderGeneric(ctx, header, u8),
+ .u16 => return self.insertAllEntriesIntoNewHeaderGeneric(ctx, header, u16),
+ .u32 => return self.insertAllEntriesIntoNewHeaderGeneric(ctx, header, u32),
}
}
-
- fn insertAllEntriesIntoNewHeaderGeneric(self: *Self, header: *IndexHeader, comptime I: type) void {
+ fn insertAllEntriesIntoNewHeaderGeneric(self: *Self, ctx: ByIndexContext, header: *IndexHeader, comptime I: type) void {
+ const slice = self.entries.slice();
+ const items = if (store_hash) slice.items(.hash) else slice.items(.key);
const indexes = header.indexes(I);
- entry_loop: for (self.entries.items) |entry, i| {
- const h = if (store_hash) entry.hash else hash(entry.key);
- const start_index = header.constrainIndex(h);
- var entry_index = i;
- var roll_over: usize = 0;
- var distance_from_start_index: usize = 0;
- while (roll_over < header.indexes_len) : ({
- roll_over += 1;
+
+ entry_loop: for (items) |key, i| {
+ const h = if (store_hash) key else checkedHash(ctx, key);
+ const start_index = safeTruncate(usize, h);
+ const end_index = start_index +% indexes.len;
+ var index = start_index;
+ var entry_index = @intCast(I, i);
+ var distance_from_start_index: I = 0;
+ while (index != end_index) : ({
+ index +%= 1;
distance_from_start_index += 1;
}) {
- const index_index = header.constrainIndex(start_index + roll_over);
- const next_index = indexes[index_index];
+ const slot = header.constrainIndex(index);
+ const next_index = indexes[slot];
if (next_index.isEmpty()) {
- header.maybeBumpMax(distance_from_start_index);
- indexes[index_index] = .{
- .distance_from_start_index = @intCast(I, distance_from_start_index),
- .entry_index = @intCast(I, entry_index),
+ indexes[slot] = .{
+ .distance_from_start_index = distance_from_start_index,
+ .entry_index = entry_index,
};
continue :entry_loop;
}
if (next_index.distance_from_start_index < distance_from_start_index) {
- header.maybeBumpMax(distance_from_start_index);
- indexes[index_index] = .{
- .distance_from_start_index = @intCast(I, distance_from_start_index),
- .entry_index = @intCast(I, entry_index),
+ indexes[slot] = .{
+ .distance_from_start_index = distance_from_start_index,
+ .entry_index = entry_index,
};
distance_from_start_index = next_index.distance_from_start_index;
entry_index = next_index.entry_index;
@@ -990,98 +1568,255 @@ pub fn ArrayHashMapUnmanaged(
unreachable;
}
}
+
+ fn checkedHash(ctx: anytype, key: anytype) callconv(.Inline) u32 {
+ comptime std.hash_map.verifyContext(@TypeOf(ctx), @TypeOf(key), K, u32);
+ // If you get a compile error on the next line, it means that
+ const hash = ctx.hash(key); // your generic hash function doesn't accept your key
+ if (@TypeOf(hash) != u32) {
+ @compileError("Context "++@typeName(@TypeOf(ctx))++" has a generic hash function that returns the wrong type!\n"++
+ @typeName(u32)++" was expected, but found "++@typeName(@TypeOf(hash)));
+ }
+ return hash;
+ }
+ fn checkedEql(ctx: anytype, a: anytype, b: K) callconv(.Inline) bool {
+ comptime std.hash_map.verifyContext(@TypeOf(ctx), @TypeOf(a), K, u32);
+ // If you get a compile error on the next line, it means that
+ const eql = ctx.eql(a, b); // your generic eql function doesn't accept (self, adapt key, K)
+ if (@TypeOf(eql) != bool) {
+ @compileError("Context "++@typeName(@TypeOf(ctx))++" has a generic eql function that returns the wrong type!\n"++
+ @typeName(bool)++" was expected, but found "++@typeName(@TypeOf(eql)));
+ }
+ return eql;
+ }
+
+ fn dumpState(self: Self, comptime keyFmt: []const u8, comptime valueFmt: []const u8) void {
+ if (@sizeOf(ByIndexContext) != 0)
+ @compileError("Cannot infer context "++@typeName(Context)++", call dumpStateContext instead.");
+ self.dumpStateContext(keyFmt, valueFmt, undefined);
+ }
+ fn dumpStateContext(self: Self, comptime keyFmt: []const u8, comptime valueFmt: []const u8, ctx: Context) void {
+ const p = std.debug.print;
+ p("{s}:\n", .{@typeName(Self)});
+ const slice = self.entries.slice();
+ const hash_status = if (store_hash) "stored" else "computed";
+ p(" len={} capacity={} hashes {s}\n", .{slice.len, slice.capacity, hash_status});
+ var i: usize = 0;
+ const mask: u32 = if (self.index_header) |header| header.mask() else ~@as(u32, 0);
+ while (i < slice.len) : (i += 1) {
+ const hash = if (store_hash) slice.items(.hash)[i]
+ else checkedHash(ctx, slice.items(.key)[i]);
+ if (store_hash) {
+ p(
+ " [{}]: key="++keyFmt++" value="++valueFmt++" hash=0x{x} slot=[0x{x}]\n",
+ .{i, slice.items(.key)[i], slice.items(.value)[i], hash, hash & mask},
+ );
+ } else {
+ p(
+ " [{}]: key="++keyFmt++" value="++valueFmt++" slot=[0x{x}]\n",
+ .{i, slice.items(.key)[i], slice.items(.value)[i], hash & mask},
+ );
+ }
+ }
+ if (self.index_header) |header| {
+ p("\n", .{});
+ switch (header.capacityIndexType()) {
+ .u8 => self.dumpIndex(header, u8),
+ .u16 => self.dumpIndex(header, u16),
+ .u32 => self.dumpIndex(header, u32),
+ }
+ }
+ }
+ fn dumpIndex(self: Self, header: *IndexHeader, comptime I: type) void {
+ const p = std.debug.print;
+ p(" index len=0x{x} type={}\n", .{header.length(), header.capacityIndexType()});
+ const indexes = header.indexes(I);
+ if (indexes.len == 0) return;
+ var is_empty = false;
+ for (indexes) |idx, i| {
+ if (idx.isEmpty()) {
+ is_empty = true;
+ } else {
+ if (is_empty) {
+ is_empty = false;
+ p(" ...\n", .{});
+ }
+ p(" [0x{x}]: [{}] +{}\n", .{i, idx.entry_index, idx.distance_from_start_index});
+ }
+ }
+ if (is_empty) {
+ p(" ...\n", .{});
+ }
+ }
};
}
-const CapacityIndexType = enum { u8, u16, u32, usize };
+const CapacityIndexType = enum { u8, u16, u32 };
-fn capacityIndexType(indexes_len: usize) CapacityIndexType {
- if (indexes_len < math.maxInt(u8))
+fn capacityIndexType(bit_index: u8) CapacityIndexType {
+ if (bit_index <= 8)
return .u8;
- if (indexes_len < math.maxInt(u16))
+ if (bit_index <= 16)
return .u16;
- if (indexes_len < math.maxInt(u32))
- return .u32;
- return .usize;
+ assert(bit_index <= 32);
+ return .u32;
}
-fn capacityIndexSize(indexes_len: usize) usize {
- switch (capacityIndexType(indexes_len)) {
+fn capacityIndexSize(bit_index: u8) usize {
+ switch (capacityIndexType(bit_index)) {
.u8 => return @sizeOf(Index(u8)),
.u16 => return @sizeOf(Index(u16)),
.u32 => return @sizeOf(Index(u32)),
- .usize => return @sizeOf(Index(usize)),
}
}
+/// @truncate fails if the target type is larger than the
+/// target value. This causes problems when one of the types
+/// is usize, which may be larger or smaller than u32 on different
+/// systems. This version of truncate is safe to use if either
+/// parameter has dynamic size, and will perform widening conversion
+/// when needed. Both arguments must have the same signedness.
+fn safeTruncate(comptime T: type, val: anytype) T {
+ if (@bitSizeOf(T) >= @bitSizeOf(@TypeOf(val)))
+ return val;
+ return @truncate(T, val);
+}
+
+/// A single entry in the lookup acceleration structure. These structs
+/// are found in an array after the IndexHeader. Hashes index into this
+/// array, and linear probing is used for collisions.
fn Index(comptime I: type) type {
return extern struct {
+ const Self = @This();
+
+ /// The index of this entry in the backing store. If the index is
+ /// empty, this is empty_sentinel.
entry_index: I,
+
+ /// The distance between this slot and its ideal placement. This is
+ /// used to keep maximum scan length small. This value is undefined
+ /// if the index is empty.
distance_from_start_index: I,
- const Self = @This();
+ /// The special entry_index value marking an empty slot.
+ const empty_sentinel = ~@as(I, 0);
+ /// A constant empty index
const empty = Self{
- .entry_index = math.maxInt(I),
+ .entry_index = empty_sentinel,
.distance_from_start_index = undefined,
};
+ /// Checks if a slot is empty
fn isEmpty(idx: Self) bool {
- return idx.entry_index == math.maxInt(I);
+ return idx.entry_index == empty_sentinel;
}
+ /// Sets a slot to empty
fn setEmpty(idx: *Self) void {
- idx.entry_index = math.maxInt(I);
+ idx.entry_index = empty_sentinel;
+ idx.distance_from_start_index = undefined;
}
};
}
-/// This struct is trailed by an array of `Index(I)`, where `I`
-/// and the array length are determined by `indexes_len`.
+/// the byte size of the index must fit in a usize. This is a power of two
+/// length * the size of an Index(u32). The index is 8 bytes (3 bits repr)
+/// and max_usize + 1 is not representable, so we need to subtract out 4 bits.
+const max_representable_index_len = @bitSizeOf(usize) - 4;
+const max_bit_index = math.min(32, max_representable_index_len);
+const min_bit_index = 5;
+const max_capacity = (1 << max_bit_index) - 1;
+const index_capacities = blk: {
+ var caps: [max_bit_index + 1]u32 = undefined;
+ for (caps[0..max_bit_index]) |*item, i| {
+ item.* = (1<<i) * 3 / 5;
+ }
+ caps[max_bit_index] = max_capacity;
+ break :blk caps;
+};
+
+/// This struct is trailed by two arrays of length indexes_len
+/// of integers, whose integer size is determined by indexes_len.
+/// These arrays are indexed by constrainIndex(hash). The
+/// entryIndexes array contains the index in the dense backing store
+/// where the entry's data can be found. Entries which are not in
+/// use have their index value set to emptySentinel(I).
+/// The entryDistances array stores the distance between an entry
+/// and its ideal hash bucket. This is used when adding elements
+/// to balance the maximum scan length.
const IndexHeader = struct {
- max_distance_from_start_index: usize,
- indexes_len: usize,
+ /// This field tracks the total number of items in the arrays following
+ /// this header. It is the bit index of the power of two number of indices.
+ /// This value is between min_bit_index and max_bit_index, inclusive.
+ bit_index: u8 align(@alignOf(u32)),
+ /// Map from an incrementing index to an index slot in the attached arrays.
fn constrainIndex(header: IndexHeader, i: usize) usize {
// This is an optimization for modulo of power of two integers;
// it requires `indexes_len` to always be a power of two.
- return i & (header.indexes_len - 1);
+ return @intCast(usize, i & header.mask());
}
+ /// Returns the attached array of indexes. I must match the type
+ /// returned by capacityIndexType.
fn indexes(header: *IndexHeader, comptime I: type) []Index(I) {
- const start = @ptrCast([*]Index(I), @ptrCast([*]u8, header) + @sizeOf(IndexHeader));
- return start[0..header.indexes_len];
+ const start_ptr = @ptrCast([*]Index(I), @ptrCast([*]u8, header) + @sizeOf(IndexHeader));
+ return start_ptr[0..header.length()];
}
+ /// Returns the type used for the index arrays.
fn capacityIndexType(header: IndexHeader) CapacityIndexType {
- return hash_map.capacityIndexType(header.indexes_len);
+ return hash_map.capacityIndexType(header.bit_index);
}
- fn maybeBumpMax(header: *IndexHeader, distance_from_start_index: usize) void {
- if (distance_from_start_index > header.max_distance_from_start_index) {
- header.max_distance_from_start_index = distance_from_start_index;
- }
+ fn capacity(self: IndexHeader) u32 {
+ return index_capacities[self.bit_index];
+ }
+ fn length(self: IndexHeader) usize {
+ return @as(usize, 1) << @intCast(math.Log2Int(usize), self.bit_index);
+ }
+ fn mask(self: IndexHeader) u32 {
+ return @intCast(u32, self.length() - 1);
+ }
+
+ fn findBitIndex(desired_capacity: usize) !u8 {
+ if (desired_capacity > max_capacity) return error.OutOfMemory;
+ var new_bit_index = @intCast(u8, std.math.log2_int_ceil(usize, desired_capacity));
+ if (desired_capacity > index_capacities[new_bit_index]) new_bit_index += 1;
+ if (new_bit_index < min_bit_index) new_bit_index = min_bit_index;
+ assert(desired_capacity <= index_capacities[new_bit_index]);
+ return new_bit_index;
}
- fn alloc(allocator: *Allocator, len: usize) !*IndexHeader {
- const index_size = hash_map.capacityIndexSize(len);
+ /// Allocates an index header, and fills the entryIndexes array with empty.
+ /// The distance array contents are undefined.
+ fn alloc(allocator: *Allocator, new_bit_index: u8) !*IndexHeader {
+ const len = @as(usize, 1) << @intCast(math.Log2Int(usize), new_bit_index);
+ const index_size = hash_map.capacityIndexSize(new_bit_index);
const nbytes = @sizeOf(IndexHeader) + index_size * len;
const bytes = try allocator.allocAdvanced(u8, @alignOf(IndexHeader), nbytes, .exact);
@memset(bytes.ptr + @sizeOf(IndexHeader), 0xff, bytes.len - @sizeOf(IndexHeader));
const result = @ptrCast(*IndexHeader, bytes.ptr);
result.* = .{
- .max_distance_from_start_index = 0,
- .indexes_len = len,
+ .bit_index = new_bit_index,
};
return result;
}
+ /// Releases the memory for a header and its associated arrays.
fn free(header: *IndexHeader, allocator: *Allocator) void {
- const index_size = hash_map.capacityIndexSize(header.indexes_len);
- const ptr = @ptrCast([*]u8, header);
- const slice = ptr[0 .. @sizeOf(IndexHeader) + header.indexes_len * index_size];
+ const index_size = hash_map.capacityIndexSize(header.bit_index);
+ const ptr = @ptrCast([*]align(@alignOf(IndexHeader)) u8, header);
+ const slice = ptr[0 .. @sizeOf(IndexHeader) + header.length() * index_size];
allocator.free(slice);
}
+
+ // Verify that the header has sufficient alignment to produce aligned arrays.
+ comptime {
+ if (@alignOf(u32) > @alignOf(IndexHeader))
+ @compileError("IndexHeader must have a larger alignment than its indexes!");
+ }
};
test "basic hash map usage" {
@@ -1099,31 +1834,32 @@ test "basic hash map usage" {
const gop1 = try map.getOrPut(5);
try testing.expect(gop1.found_existing == true);
- try testing.expect(gop1.entry.value == 55);
+ try testing.expect(gop1.value_ptr.* == 55);
try testing.expect(gop1.index == 4);
- gop1.entry.value = 77;
- try testing.expect(map.getEntry(5).?.value == 77);
+ gop1.value_ptr.* = 77;
+ try testing.expect(map.getEntry(5).?.value_ptr.* == 77);
const gop2 = try map.getOrPut(99);
try testing.expect(gop2.found_existing == false);
try testing.expect(gop2.index == 5);
- gop2.entry.value = 42;
- try testing.expect(map.getEntry(99).?.value == 42);
+ gop2.value_ptr.* = 42;
+ try testing.expect(map.getEntry(99).?.value_ptr.* == 42);
const gop3 = try map.getOrPutValue(5, 5);
- try testing.expect(gop3.value == 77);
+ try testing.expect(gop3.value_ptr.* == 77);
const gop4 = try map.getOrPutValue(100, 41);
- try testing.expect(gop4.value == 41);
+ try testing.expect(gop4.value_ptr.* == 41);
try testing.expect(map.contains(2));
- try testing.expect(map.getEntry(2).?.value == 22);
+ try testing.expect(map.getEntry(2).?.value_ptr.* == 22);
try testing.expect(map.get(2).? == 22);
- const rmv1 = map.swapRemove(2);
+ const rmv1 = map.fetchSwapRemove(2);
try testing.expect(rmv1.?.key == 2);
try testing.expect(rmv1.?.value == 22);
- try testing.expect(map.swapRemove(2) == null);
+ try testing.expect(map.fetchSwapRemove(2) == null);
+ try testing.expect(map.swapRemove(2) == false);
try testing.expect(map.getEntry(2) == null);
try testing.expect(map.get(2) == null);
@@ -1131,22 +1867,23 @@ test "basic hash map usage" {
try testing.expect(map.getIndex(100).? == 1);
const gop5 = try map.getOrPut(5);
try testing.expect(gop5.found_existing == true);
- try testing.expect(gop5.entry.value == 77);
+ try testing.expect(gop5.value_ptr.* == 77);
try testing.expect(gop5.index == 4);
// Whereas, if we do an `orderedRemove`, it should move the index forward one spot.
- const rmv2 = map.orderedRemove(100);
+ const rmv2 = map.fetchOrderedRemove(100);
try testing.expect(rmv2.?.key == 100);
try testing.expect(rmv2.?.value == 41);
- try testing.expect(map.orderedRemove(100) == null);
+ try testing.expect(map.fetchOrderedRemove(100) == null);
+ try testing.expect(map.orderedRemove(100) == false);
try testing.expect(map.getEntry(100) == null);
try testing.expect(map.get(100) == null);
const gop6 = try map.getOrPut(5);
try testing.expect(gop6.found_existing == true);
- try testing.expect(gop6.entry.value == 77);
+ try testing.expect(gop6.value_ptr.* == 77);
try testing.expect(gop6.index == 3);
- map.removeAssertDiscard(3);
+ try testing.expect(map.swapRemove(3));
}
test "iterator hash map" {
@@ -1154,7 +1891,7 @@ test "iterator hash map" {
defer reset_map.deinit();
// test ensureCapacity with a 0 parameter
- try reset_map.ensureCapacity(0);
+ try reset_map.ensureTotalCapacity(0);
try reset_map.putNoClobber(0, 11);
try reset_map.putNoClobber(1, 22);
@@ -1178,7 +1915,7 @@ test "iterator hash map" {
var count: usize = 0;
while (it.next()) |entry| : (count += 1) {
- buffer[@intCast(usize, entry.key)] = entry.value;
+ buffer[@intCast(usize, entry.key_ptr.*)] = entry.value_ptr.*;
}
try testing.expect(count == 3);
try testing.expect(it.next() == null);
@@ -1190,7 +1927,7 @@ test "iterator hash map" {
it.reset();
count = 0;
while (it.next()) |entry| {
- buffer[@intCast(usize, entry.key)] = entry.value;
+ buffer[@intCast(usize, entry.key_ptr.*)] = entry.value_ptr.*;
count += 1;
if (count >= 2) break;
}
@@ -1201,15 +1938,15 @@ test "iterator hash map" {
it.reset();
var entry = it.next().?;
- try testing.expect(entry.key == first_entry.key);
- try testing.expect(entry.value == first_entry.value);
+ try testing.expect(entry.key_ptr.* == first_entry.key_ptr.*);
+ try testing.expect(entry.value_ptr.* == first_entry.value_ptr.*);
}
test "ensure capacity" {
var map = AutoArrayHashMap(i32, i32).init(std.testing.allocator);
defer map.deinit();
- try map.ensureCapacity(20);
+ try map.ensureTotalCapacity(20);
const initial_capacity = map.capacity();
try testing.expect(initial_capacity >= 20);
var i: i32 = 0;
@@ -1220,6 +1957,59 @@ test "ensure capacity" {
try testing.expect(initial_capacity == map.capacity());
}
+test "big map" {
+ var map = AutoArrayHashMap(i32, i32).init(std.testing.allocator);
+ defer map.deinit();
+
+ var i: i32 = 0;
+ while (i < 8) : (i += 1) {
+ try map.put(i, i + 10);
+ }
+
+ i = 0;
+ while (i < 8) : (i += 1) {
+ try testing.expectEqual(@as(?i32, i + 10), map.get(i));
+ }
+ while (i < 16) : (i += 1) {
+ try testing.expectEqual(@as(?i32, null), map.get(i));
+ }
+
+ i = 4;
+ while (i < 12) : (i += 1) {
+ try map.put(i, i + 12);
+ }
+
+ i = 0;
+ while (i < 4) : (i += 1) {
+ try testing.expectEqual(@as(?i32, i + 10), map.get(i));
+ }
+ while (i < 12) : (i += 1) {
+ try testing.expectEqual(@as(?i32, i + 12), map.get(i));
+ }
+ while (i < 16) : (i += 1) {
+ try testing.expectEqual(@as(?i32, null), map.get(i));
+ }
+
+ i = 0;
+ while (i < 4) : (i += 1) {
+ try testing.expect(map.orderedRemove(i));
+ }
+ while (i < 8) : (i += 1) {
+ try testing.expect(map.swapRemove(i));
+ }
+
+ i = 0;
+ while (i < 8) : (i += 1) {
+ try testing.expectEqual(@as(?i32, null), map.get(i));
+ }
+ while (i < 12) : (i += 1) {
+ try testing.expectEqual(@as(?i32, i + 12), map.get(i));
+ }
+ while (i < 16) : (i += 1) {
+ try testing.expectEqual(@as(?i32, null), map.get(i));
+ }
+}
+
test "clone" {
var original = AutoArrayHashMap(i32, i32).init(std.testing.allocator);
defer original.deinit();
@@ -1235,7 +2025,14 @@ test "clone" {
i = 0;
while (i < 10) : (i += 1) {
+ try testing.expect(original.get(i).? == i * 10);
try testing.expect(copy.get(i).? == i * 10);
+ try testing.expect(original.getPtr(i).? != copy.getPtr(i).?);
+ }
+
+ while (i < 20) : (i += 1) {
+ try testing.expect(original.get(i) == null);
+ try testing.expect(copy.get(i) == null);
}
}
@@ -1261,7 +2058,7 @@ test "shrink" {
const gop = try map.getOrPut(i);
if (i < 17) {
try testing.expect(gop.found_existing == true);
- try testing.expect(gop.entry.value == i * 10);
+ try testing.expect(gop.value_ptr.* == i * 10);
} else try testing.expect(gop.found_existing == false);
}
@@ -1274,7 +2071,7 @@ test "shrink" {
const gop = try map.getOrPut(i);
if (i < 15) {
try testing.expect(gop.found_existing == true);
- try testing.expect(gop.entry.value == i * 10);
+ try testing.expect(gop.value_ptr.* == i * 10);
} else try testing.expect(gop.found_existing == false);
}
}
@@ -1298,7 +2095,7 @@ test "pop" {
}
test "reIndex" {
- var map = AutoArrayHashMap(i32, i32).init(std.testing.allocator);
+ var map = ArrayHashMap(i32, i32, AutoContext(i32), true).init(std.testing.allocator);
defer map.deinit();
// Populate via the API.
@@ -1312,13 +2109,13 @@ test "reIndex" {
// Now write to the underlying array list directly.
const num_unindexed_entries = 20;
- const hash = getAutoHashFn(i32);
+ const hash = getAutoHashFn(i32, void);
var al = &map.unmanaged.entries;
while (i < num_indexed_entries + num_unindexed_entries) : (i += 1) {
try al.append(std.testing.allocator, .{
.key = i,
.value = i * 10,
- .hash = {},
+ .hash = hash({}, i),
});
}
@@ -1328,36 +2125,7 @@ test "reIndex" {
while (i < num_indexed_entries + num_unindexed_entries) : (i += 1) {
const gop = try map.getOrPut(i);
try testing.expect(gop.found_existing == true);
- try testing.expect(gop.entry.value == i * 10);
- try testing.expect(gop.index == i);
- }
-}
-
-test "fromOwnedArrayList" {
- const array_hash_map_type = AutoArrayHashMap(i32, i32);
- var al = std.ArrayListUnmanaged(array_hash_map_type.Entry){};
- const hash = getAutoHashFn(i32);
-
- // Populate array list.
- const num_entries = 20;
- var i: i32 = 0;
- while (i < num_entries) : (i += 1) {
- try al.append(std.testing.allocator, .{
- .key = i,
- .value = i * 10,
- .hash = {},
- });
- }
-
- // Now instantiate using `fromOwnedArrayList`.
- var map = try array_hash_map_type.fromOwnedArrayList(std.testing.allocator, al);
- defer map.deinit();
-
- i = 0;
- while (i < num_entries) : (i += 1) {
- const gop = try map.getOrPut(i);
- try testing.expect(gop.found_existing == true);
- try testing.expect(gop.entry.value == i * 10);
+ try testing.expect(gop.value_ptr.* == i * 10);
try testing.expect(gop.index == i);
}
}
@@ -1365,34 +2133,52 @@ test "fromOwnedArrayList" {
test "auto store_hash" {
const HasCheapEql = AutoArrayHashMap(i32, i32);
const HasExpensiveEql = AutoArrayHashMap([32]i32, i32);
- try testing.expect(meta.fieldInfo(HasCheapEql.Entry, .hash).field_type == void);
- try testing.expect(meta.fieldInfo(HasExpensiveEql.Entry, .hash).field_type != void);
+ try testing.expect(meta.fieldInfo(HasCheapEql.Data, .hash).field_type == void);
+ try testing.expect(meta.fieldInfo(HasExpensiveEql.Data, .hash).field_type != void);
const HasCheapEqlUn = AutoArrayHashMapUnmanaged(i32, i32);
const HasExpensiveEqlUn = AutoArrayHashMapUnmanaged([32]i32, i32);
- try testing.expect(meta.fieldInfo(HasCheapEqlUn.Entry, .hash).field_type == void);
- try testing.expect(meta.fieldInfo(HasExpensiveEqlUn.Entry, .hash).field_type != void);
+ try testing.expect(meta.fieldInfo(HasCheapEqlUn.Data, .hash).field_type == void);
+ try testing.expect(meta.fieldInfo(HasExpensiveEqlUn.Data, .hash).field_type != void);
+}
+
+test "compile everything" {
+ std.testing.refAllDecls(AutoArrayHashMap(i32, i32));
+ std.testing.refAllDecls(StringArrayHashMap([]const u8));
+ std.testing.refAllDecls(AutoArrayHashMap(i32, void));
+ std.testing.refAllDecls(StringArrayHashMap(u0));
+ std.testing.refAllDecls(AutoArrayHashMapUnmanaged(i32, i32));
+ std.testing.refAllDecls(StringArrayHashMapUnmanaged([]const u8));
+ std.testing.refAllDecls(AutoArrayHashMapUnmanaged(i32, void));
+ std.testing.refAllDecls(StringArrayHashMapUnmanaged(u0));
}
-pub fn getHashPtrAddrFn(comptime K: type) (fn (K) u32) {
+pub fn getHashPtrAddrFn(comptime K: type, comptime Context: type) (fn (Context, K) u32) {
return struct {
- fn hash(key: K) u32 {
- return getAutoHashFn(usize)(@ptrToInt(key));
+ fn hash(ctx: Context, key: K) u32 {
+ return getAutoHashFn(usize, void)({}, @ptrToInt(key));
}
}.hash;
}
-pub fn getTrivialEqlFn(comptime K: type) (fn (K, K) bool) {
+pub fn getTrivialEqlFn(comptime K: type, comptime Context: type) (fn (Context, K, K) bool) {
return struct {
- fn eql(a: K, b: K) bool {
+ fn eql(ctx: Context, a: K, b: K) bool {
return a == b;
}
}.eql;
}
-pub fn getAutoHashFn(comptime K: type) (fn (K) u32) {
+pub fn AutoContext(comptime K: type) type {
+ return struct {
+ pub const hash = getAutoHashFn(K, @This());
+ pub const eql = getAutoEqlFn(K, @This());
+ };
+}
+
+pub fn getAutoHashFn(comptime K: type, comptime Context: type) (fn (Context, K) u32) {
return struct {
- fn hash(key: K) u32 {
+ fn hash(ctx: Context, key: K) u32 {
if (comptime trait.hasUniqueRepresentation(K)) {
return @truncate(u32, Wyhash.hash(0, std.mem.asBytes(&key)));
} else {
@@ -1404,9 +2190,9 @@ pub fn getAutoHashFn(comptime K: type) (fn (K) u32) {
}.hash;
}
-pub fn getAutoEqlFn(comptime K: type) (fn (K, K) bool) {
+pub fn getAutoEqlFn(comptime K: type, comptime Context: type) (fn (Context, K, K) bool) {
return struct {
- fn eql(a: K, b: K) bool {
+ fn eql(ctx: Context, a: K, b: K) bool {
return meta.eql(a, b);
}
}.eql;
@@ -1430,9 +2216,9 @@ pub fn autoEqlIsCheap(comptime K: type) bool {
};
}
-pub fn getAutoHashStratFn(comptime K: type, comptime strategy: std.hash.Strategy) (fn (K) u32) {
+pub fn getAutoHashStratFn(comptime K: type, comptime Context: type, comptime strategy: std.hash.Strategy) (fn (Context, K) u32) {
return struct {
- fn hash(key: K) u32 {
+ fn hash(ctx: Context, key: K) u32 {
var hasher = Wyhash.init(0);
std.hash.autoHashStrat(&hasher, key, strategy);
return @truncate(u32, hasher.final());