aboutsummaryrefslogtreecommitdiff
path: root/deps/lld/ELF/Writer.cpp
diff options
context:
space:
mode:
authorAndrew Kelley <andrew@ziglang.org>2020-01-16 13:09:45 -0500
committerAndrew Kelley <andrew@ziglang.org>2020-01-16 13:09:45 -0500
commitba4cc03b4f0d71ac3e0147aa3dde449299ce8cd5 (patch)
tree88e0c274db5c1c943944c565833bea103692a556 /deps/lld/ELF/Writer.cpp
parentfbe6af81fdb1b964bb0c28f51de2458800b8274c (diff)
downloadzig-ba4cc03b4f0d71ac3e0147aa3dde449299ce8cd5.tar.gz
zig-ba4cc03b4f0d71ac3e0147aa3dde449299ce8cd5.zip
remove embedded LLD
we no longer have any patches against upstream LLD
Diffstat (limited to 'deps/lld/ELF/Writer.cpp')
-rw-r--r--deps/lld/ELF/Writer.cpp2691
1 files changed, 0 insertions, 2691 deletions
diff --git a/deps/lld/ELF/Writer.cpp b/deps/lld/ELF/Writer.cpp
deleted file mode 100644
index 10b171e8c0..0000000000
--- a/deps/lld/ELF/Writer.cpp
+++ /dev/null
@@ -1,2691 +0,0 @@
-//===- Writer.cpp ---------------------------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#include "Writer.h"
-#include "AArch64ErrataFix.h"
-#include "CallGraphSort.h"
-#include "Config.h"
-#include "LinkerScript.h"
-#include "MapFile.h"
-#include "OutputSections.h"
-#include "Relocations.h"
-#include "SymbolTable.h"
-#include "Symbols.h"
-#include "SyntheticSections.h"
-#include "Target.h"
-#include "lld/Common/Filesystem.h"
-#include "lld/Common/Memory.h"
-#include "lld/Common/Strings.h"
-#include "lld/Common/Threads.h"
-#include "llvm/ADT/StringMap.h"
-#include "llvm/ADT/StringSwitch.h"
-#include "llvm/Support/RandomNumberGenerator.h"
-#include "llvm/Support/SHA1.h"
-#include "llvm/Support/xxhash.h"
-#include <climits>
-
-using namespace llvm;
-using namespace llvm::ELF;
-using namespace llvm::object;
-using namespace llvm::support;
-using namespace llvm::support::endian;
-
-using namespace lld;
-using namespace lld::elf;
-
-namespace {
-// The writer writes a SymbolTable result to a file.
-template <class ELFT> class Writer {
-public:
- Writer() : buffer(errorHandler().outputBuffer) {}
- using Elf_Shdr = typename ELFT::Shdr;
- using Elf_Ehdr = typename ELFT::Ehdr;
- using Elf_Phdr = typename ELFT::Phdr;
-
- void run();
-
-private:
- void copyLocalSymbols();
- void addSectionSymbols();
- void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
- void sortSections();
- void resolveShfLinkOrder();
- void finalizeAddressDependentContent();
- void sortInputSections();
- void finalizeSections();
- void checkExecuteOnly();
- void setReservedSymbolSections();
-
- std::vector<PhdrEntry *> createPhdrs(Partition &part);
- void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrEntry);
- void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
- unsigned pFlags);
- void assignFileOffsets();
- void assignFileOffsetsBinary();
- void setPhdrs(Partition &part);
- void checkSections();
- void fixSectionAlignments();
- void openFile();
- void writeTrapInstr();
- void writeHeader();
- void writeSections();
- void writeSectionsBinary();
- void writeBuildId();
-
- std::unique_ptr<FileOutputBuffer> &buffer;
-
- void addRelIpltSymbols();
- void addStartEndSymbols();
- void addStartStopSymbols(OutputSection *sec);
-
- uint64_t fileSize;
- uint64_t sectionHeaderOff;
-};
-} // anonymous namespace
-
-static bool isSectionPrefix(StringRef prefix, StringRef name) {
- return name.startswith(prefix) || name == prefix.drop_back();
-}
-
-StringRef elf::getOutputSectionName(const InputSectionBase *s) {
- if (config->relocatable)
- return s->name;
-
- // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
- // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
- // technically required, but not doing it is odd). This code guarantees that.
- if (auto *isec = dyn_cast<InputSection>(s)) {
- if (InputSectionBase *rel = isec->getRelocatedSection()) {
- OutputSection *out = rel->getOutputSection();
- if (s->type == SHT_RELA)
- return saver.save(".rela" + out->name);
- return saver.save(".rel" + out->name);
- }
- }
-
- // This check is for -z keep-text-section-prefix. This option separates text
- // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or
- // ".text.exit".
- // When enabled, this allows identifying the hot code region (.text.hot) in
- // the final binary which can be selectively mapped to huge pages or mlocked,
- // for instance.
- if (config->zKeepTextSectionPrefix)
- for (StringRef v :
- {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."})
- if (isSectionPrefix(v, s->name))
- return v.drop_back();
-
- for (StringRef v :
- {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
- ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
- ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
- if (isSectionPrefix(v, s->name))
- return v.drop_back();
-
- // CommonSection is identified as "COMMON" in linker scripts.
- // By default, it should go to .bss section.
- if (s->name == "COMMON")
- return ".bss";
-
- return s->name;
-}
-
-static bool needsInterpSection() {
- return !sharedFiles.empty() && !config->dynamicLinker.empty() &&
- script->needsInterpSection();
-}
-
-template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); }
-
-template <class ELFT>
-void Writer<ELFT>::removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
- llvm::erase_if(phdrs, [&](const PhdrEntry *p) {
- if (p->p_type != PT_LOAD)
- return false;
- if (!p->firstSec)
- return true;
- uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
- return size == 0;
- });
-}
-
-template <class ELFT> static void copySectionsIntoPartitions() {
- std::vector<InputSectionBase *> newSections;
- for (unsigned part = 2; part != partitions.size() + 1; ++part) {
- for (InputSectionBase *s : inputSections) {
- if (!(s->flags & SHF_ALLOC) || !s->isLive())
- continue;
- InputSectionBase *copy;
- if (s->type == SHT_NOTE)
- copy = make<InputSection>(cast<InputSection>(*s));
- else if (auto *es = dyn_cast<EhInputSection>(s))
- copy = make<EhInputSection>(*es);
- else
- continue;
- copy->partition = part;
- newSections.push_back(copy);
- }
- }
-
- inputSections.insert(inputSections.end(), newSections.begin(),
- newSections.end());
-}
-
-template <class ELFT> static void combineEhSections() {
- for (InputSectionBase *&s : inputSections) {
- // Ignore dead sections and the partition end marker (.part.end),
- // whose partition number is out of bounds.
- if (!s->isLive() || s->partition == 255)
- continue;
-
- Partition &part = s->getPartition();
- if (auto *es = dyn_cast<EhInputSection>(s)) {
- part.ehFrame->addSection<ELFT>(es);
- s = nullptr;
- } else if (s->kind() == SectionBase::Regular && part.armExidx &&
- part.armExidx->addSection(cast<InputSection>(s))) {
- s = nullptr;
- }
- }
-
- std::vector<InputSectionBase *> &v = inputSections;
- v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
-}
-
-static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
- uint64_t val, uint8_t stOther = STV_HIDDEN,
- uint8_t binding = STB_GLOBAL) {
- Symbol *s = symtab->find(name);
- if (!s || s->isDefined())
- return nullptr;
-
- s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
- /*size=*/0, sec});
- return cast<Defined>(s);
-}
-
-static Defined *addAbsolute(StringRef name) {
- Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
- STT_NOTYPE, 0, 0, nullptr});
- return cast<Defined>(sym);
-}
-
-// The linker is expected to define some symbols depending on
-// the linking result. This function defines such symbols.
-void elf::addReservedSymbols() {
- if (config->emachine == EM_MIPS) {
- // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
- // so that it points to an absolute address which by default is relative
- // to GOT. Default offset is 0x7ff0.
- // See "Global Data Symbols" in Chapter 6 in the following document:
- // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
- ElfSym::mipsGp = addAbsolute("_gp");
-
- // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
- // start of function and 'gp' pointer into GOT.
- if (symtab->find("_gp_disp"))
- ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
-
- // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
- // pointer. This symbol is used in the code generated by .cpload pseudo-op
- // in case of using -mno-shared option.
- // https://sourceware.org/ml/binutils/2004-12/msg00094.html
- if (symtab->find("__gnu_local_gp"))
- ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
- } else if (config->emachine == EM_PPC) {
- // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
- // support Small Data Area, define it arbitrarily as 0.
- addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
- }
-
- // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
- // combines the typical ELF GOT with the small data sections. It commonly
- // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
- // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
- // represent the TOC base which is offset by 0x8000 bytes from the start of
- // the .got section.
- // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
- // correctness of some relocations depends on its value.
- StringRef gotSymName =
- (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
-
- if (Symbol *s = symtab->find(gotSymName)) {
- if (s->isDefined()) {
- error(toString(s->file) + " cannot redefine linker defined symbol '" +
- gotSymName + "'");
- return;
- }
-
- uint64_t gotOff = 0;
- if (config->emachine == EM_PPC64)
- gotOff = 0x8000;
-
- s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
- STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
- ElfSym::globalOffsetTable = cast<Defined>(s);
- }
-
- // __ehdr_start is the location of ELF file headers. Note that we define
- // this symbol unconditionally even when using a linker script, which
- // differs from the behavior implemented by GNU linker which only define
- // this symbol if ELF headers are in the memory mapped segment.
- addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
-
- // __executable_start is not documented, but the expectation of at
- // least the Android libc is that it points to the ELF header.
- addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
-
- // __dso_handle symbol is passed to cxa_finalize as a marker to identify
- // each DSO. The address of the symbol doesn't matter as long as they are
- // different in different DSOs, so we chose the start address of the DSO.
- addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
-
- // If linker script do layout we do not need to create any standart symbols.
- if (script->hasSectionsCommand)
- return;
-
- auto add = [](StringRef s, int64_t pos) {
- return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
- };
-
- ElfSym::bss = add("__bss_start", 0);
- ElfSym::end1 = add("end", -1);
- ElfSym::end2 = add("_end", -1);
- ElfSym::etext1 = add("etext", -1);
- ElfSym::etext2 = add("_etext", -1);
- ElfSym::edata1 = add("edata", -1);
- ElfSym::edata2 = add("_edata", -1);
-}
-
-static OutputSection *findSection(StringRef name, unsigned partition = 1) {
- for (BaseCommand *base : script->sectionCommands)
- if (auto *sec = dyn_cast<OutputSection>(base))
- if (sec->name == name && sec->partition == partition)
- return sec;
- return nullptr;
-}
-
-// Initialize Out members.
-template <class ELFT> static void createSyntheticSections() {
- // Initialize all pointers with NULL. This is needed because
- // you can call lld::elf::main more than once as a library.
- memset(&Out::first, 0, sizeof(Out));
-
- auto add = [](InputSectionBase *sec) { inputSections.push_back(sec); };
-
- in.shStrTab = make<StringTableSection>(".shstrtab", false);
-
- Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
- Out::programHeaders->alignment = config->wordsize;
-
- if (config->strip != StripPolicy::All) {
- in.strTab = make<StringTableSection>(".strtab", false);
- in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
- in.symTabShndx = make<SymtabShndxSection>();
- }
-
- in.bss = make<BssSection>(".bss", 0, 1);
- add(in.bss);
-
- // If there is a SECTIONS command and a .data.rel.ro section name use name
- // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
- // This makes sure our relro is contiguous.
- bool hasDataRelRo =
- script->hasSectionsCommand && findSection(".data.rel.ro", 0);
- in.bssRelRo =
- make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
- add(in.bssRelRo);
-
- // Add MIPS-specific sections.
- if (config->emachine == EM_MIPS) {
- if (!config->shared && config->hasDynSymTab) {
- in.mipsRldMap = make<MipsRldMapSection>();
- add(in.mipsRldMap);
- }
- if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
- add(sec);
- if (auto *sec = MipsOptionsSection<ELFT>::create())
- add(sec);
- if (auto *sec = MipsReginfoSection<ELFT>::create())
- add(sec);
- }
-
- for (Partition &part : partitions) {
- auto add = [&](InputSectionBase *sec) {
- sec->partition = part.getNumber();
- inputSections.push_back(sec);
- };
-
- if (!part.name.empty()) {
- part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
- part.elfHeader->name = part.name;
- add(part.elfHeader);
-
- part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
- add(part.programHeaders);
- }
-
- if (config->buildId != BuildIdKind::None) {
- part.buildId = make<BuildIdSection>();
- add(part.buildId);
- }
-
- part.dynStrTab = make<StringTableSection>(".dynstr", true);
- part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
- part.dynamic = make<DynamicSection<ELFT>>();
- if (config->androidPackDynRelocs) {
- part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(
- config->isRela ? ".rela.dyn" : ".rel.dyn");
- } else {
- part.relaDyn = make<RelocationSection<ELFT>>(
- config->isRela ? ".rela.dyn" : ".rel.dyn", config->zCombreloc);
- }
-
- if (needsInterpSection())
- add(createInterpSection());
-
- if (config->hasDynSymTab) {
- part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
- add(part.dynSymTab);
-
- part.verSym = make<VersionTableSection>();
- add(part.verSym);
-
- if (!config->versionDefinitions.empty()) {
- part.verDef = make<VersionDefinitionSection>();
- add(part.verDef);
- }
-
- part.verNeed = make<VersionNeedSection<ELFT>>();
- add(part.verNeed);
-
- if (config->gnuHash) {
- part.gnuHashTab = make<GnuHashTableSection>();
- add(part.gnuHashTab);
- }
-
- if (config->sysvHash) {
- part.hashTab = make<HashTableSection>();
- add(part.hashTab);
- }
-
- add(part.dynamic);
- add(part.dynStrTab);
- add(part.relaDyn);
- }
-
- if (config->relrPackDynRelocs) {
- part.relrDyn = make<RelrSection<ELFT>>();
- add(part.relrDyn);
- }
-
- if (!config->relocatable) {
- if (config->ehFrameHdr) {
- part.ehFrameHdr = make<EhFrameHeader>();
- add(part.ehFrameHdr);
- }
- part.ehFrame = make<EhFrameSection>();
- add(part.ehFrame);
- }
-
- if (config->emachine == EM_ARM && !config->relocatable) {
- // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
- // InputSections.
- part.armExidx = make<ARMExidxSyntheticSection>();
- add(part.armExidx);
- }
- }
-
- if (partitions.size() != 1) {
- // Create the partition end marker. This needs to be in partition number 255
- // so that it is sorted after all other partitions. It also has other
- // special handling (see createPhdrs() and combineEhSections()).
- in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
- in.partEnd->partition = 255;
- add(in.partEnd);
-
- in.partIndex = make<PartitionIndexSection>();
- addOptionalRegular("__part_index_begin", in.partIndex, 0);
- addOptionalRegular("__part_index_end", in.partIndex,
- in.partIndex->getSize());
- add(in.partIndex);
- }
-
- // Add .got. MIPS' .got is so different from the other archs,
- // it has its own class.
- if (config->emachine == EM_MIPS) {
- in.mipsGot = make<MipsGotSection>();
- add(in.mipsGot);
- } else {
- in.got = make<GotSection>();
- add(in.got);
- }
-
- if (config->emachine == EM_PPC) {
- in.ppc32Got2 = make<PPC32Got2Section>();
- add(in.ppc32Got2);
- }
-
- if (config->emachine == EM_PPC64) {
- in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
- add(in.ppc64LongBranchTarget);
- }
-
- if (config->emachine == EM_RISCV) {
- in.riscvSdata = make<RISCVSdataSection>();
- add(in.riscvSdata);
- }
-
- in.gotPlt = make<GotPltSection>();
- add(in.gotPlt);
- in.igotPlt = make<IgotPltSection>();
- add(in.igotPlt);
-
- // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
- // it as a relocation and ensure the referenced section is created.
- if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
- if (target->gotBaseSymInGotPlt)
- in.gotPlt->hasGotPltOffRel = true;
- else
- in.got->hasGotOffRel = true;
- }
-
- if (config->gdbIndex)
- add(GdbIndexSection::create<ELFT>());
-
- // We always need to add rel[a].plt to output if it has entries.
- // Even for static linking it can contain R_[*]_IRELATIVE relocations.
- in.relaPlt = make<RelocationSection<ELFT>>(
- config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
- add(in.relaPlt);
-
- // The relaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure
- // that the IRelative relocations are processed last by the dynamic loader.
- // We cannot place the iplt section in .rel.dyn when Android relocation
- // packing is enabled because that would cause a section type mismatch.
- // However, because the Android dynamic loader reads .rel.plt after .rel.dyn,
- // we can get the desired behaviour by placing the iplt section in .rel.plt.
- in.relaIplt = make<RelocationSection<ELFT>>(
- (config->emachine == EM_ARM && !config->androidPackDynRelocs)
- ? ".rel.dyn"
- : in.relaPlt->name,
- /*sort=*/false);
- add(in.relaIplt);
-
- in.plt = make<PltSection>(false);
- add(in.plt);
- in.iplt = make<PltSection>(true);
- add(in.iplt);
-
- if (config->andFeatures)
- add(make<GnuPropertySection>());
-
- // .note.GNU-stack is always added when we are creating a re-linkable
- // object file. Other linkers are using the presence of this marker
- // section to control the executable-ness of the stack area, but that
- // is irrelevant these days. Stack area should always be non-executable
- // by default. So we emit this section unconditionally.
- if (config->relocatable)
- add(make<GnuStackSection>());
-
- if (in.symTab)
- add(in.symTab);
- if (in.symTabShndx)
- add(in.symTabShndx);
- add(in.shStrTab);
- if (in.strTab)
- add(in.strTab);
-}
-
-// The main function of the writer.
-template <class ELFT> void Writer<ELFT>::run() {
- // Make copies of any input sections that need to be copied into each
- // partition.
- copySectionsIntoPartitions<ELFT>();
-
- // Create linker-synthesized sections such as .got or .plt.
- // Such sections are of type input section.
- createSyntheticSections<ELFT>();
-
- // Some input sections that are used for exception handling need to be moved
- // into synthetic sections. Do that now so that they aren't assigned to
- // output sections in the usual way.
- if (!config->relocatable)
- combineEhSections<ELFT>();
-
- // We want to process linker script commands. When SECTIONS command
- // is given we let it create sections.
- script->processSectionCommands();
-
- // Linker scripts controls how input sections are assigned to output sections.
- // Input sections that were not handled by scripts are called "orphans", and
- // they are assigned to output sections by the default rule. Process that.
- script->addOrphanSections();
-
- if (config->discard != DiscardPolicy::All)
- copyLocalSymbols();
-
- if (config->copyRelocs)
- addSectionSymbols();
-
- // Now that we have a complete set of output sections. This function
- // completes section contents. For example, we need to add strings
- // to the string table, and add entries to .got and .plt.
- // finalizeSections does that.
- finalizeSections();
- checkExecuteOnly();
- if (errorCount())
- return;
-
- script->assignAddresses();
-
- // If -compressed-debug-sections is specified, we need to compress
- // .debug_* sections. Do it right now because it changes the size of
- // output sections.
- for (OutputSection *sec : outputSections)
- sec->maybeCompress<ELFT>();
-
- script->allocateHeaders(mainPart->phdrs);
-
- // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
- // 0 sized region. This has to be done late since only after assignAddresses
- // we know the size of the sections.
- for (Partition &part : partitions)
- removeEmptyPTLoad(part.phdrs);
-
- if (!config->oFormatBinary)
- assignFileOffsets();
- else
- assignFileOffsetsBinary();
-
- for (Partition &part : partitions)
- setPhdrs(part);
-
- if (config->relocatable)
- for (OutputSection *sec : outputSections)
- sec->addr = 0;
-
- if (config->checkSections)
- checkSections();
-
- // It does not make sense try to open the file if we have error already.
- if (errorCount())
- return;
- // Write the result down to a file.
- openFile();
- if (errorCount())
- return;
-
- if (!config->oFormatBinary) {
- writeTrapInstr();
- writeHeader();
- writeSections();
- } else {
- writeSectionsBinary();
- }
-
- // Backfill .note.gnu.build-id section content. This is done at last
- // because the content is usually a hash value of the entire output file.
- writeBuildId();
- if (errorCount())
- return;
-
- // Handle -Map and -cref options.
- writeMapFile();
- writeCrossReferenceTable();
- if (errorCount())
- return;
-
- if (auto e = buffer->commit())
- error("failed to write to the output file: " + toString(std::move(e)));
-}
-
-static bool shouldKeepInSymtab(const Defined &sym) {
- if (sym.isSection())
- return false;
-
- if (config->discard == DiscardPolicy::None)
- return true;
-
- // If -emit-reloc is given, all symbols including local ones need to be
- // copied because they may be referenced by relocations.
- if (config->emitRelocs)
- return true;
-
- // In ELF assembly .L symbols are normally discarded by the assembler.
- // If the assembler fails to do so, the linker discards them if
- // * --discard-locals is used.
- // * The symbol is in a SHF_MERGE section, which is normally the reason for
- // the assembler keeping the .L symbol.
- StringRef name = sym.getName();
- bool isLocal = name.startswith(".L") || name.empty();
- if (!isLocal)
- return true;
-
- if (config->discard == DiscardPolicy::Locals)
- return false;
-
- SectionBase *sec = sym.section;
- return !sec || !(sec->flags & SHF_MERGE);
-}
-
-static bool includeInSymtab(const Symbol &b) {
- if (!b.isLocal() && !b.isUsedInRegularObj)
- return false;
-
- if (auto *d = dyn_cast<Defined>(&b)) {
- // Always include absolute symbols.
- SectionBase *sec = d->section;
- if (!sec)
- return true;
- sec = sec->repl;
-
- // Exclude symbols pointing to garbage-collected sections.
- if (isa<InputSectionBase>(sec) && !sec->isLive())
- return false;
-
- if (auto *s = dyn_cast<MergeInputSection>(sec))
- if (!s->getSectionPiece(d->value)->live)
- return false;
- return true;
- }
- return b.used;
-}
-
-// Local symbols are not in the linker's symbol table. This function scans
-// each object file's symbol table to copy local symbols to the output.
-template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
- if (!in.symTab)
- return;
- for (InputFile *file : objectFiles) {
- ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
- for (Symbol *b : f->getLocalSymbols()) {
- if (!b->isLocal())
- fatal(toString(f) +
- ": broken object: getLocalSymbols returns a non-local symbol");
- auto *dr = dyn_cast<Defined>(b);
-
- // No reason to keep local undefined symbol in symtab.
- if (!dr)
- continue;
- if (!includeInSymtab(*b))
- continue;
- if (!shouldKeepInSymtab(*dr))
- continue;
- in.symTab->addSymbol(b);
- }
- }
-}
-
-// Create a section symbol for each output section so that we can represent
-// relocations that point to the section. If we know that no relocation is
-// referring to a section (that happens if the section is a synthetic one), we
-// don't create a section symbol for that section.
-template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
- for (BaseCommand *base : script->sectionCommands) {
- auto *sec = dyn_cast<OutputSection>(base);
- if (!sec)
- continue;
- auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
- if (auto *isd = dyn_cast<InputSectionDescription>(base))
- return !isd->sections.empty();
- return false;
- });
- if (i == sec->sectionCommands.end())
- continue;
- InputSection *isec = cast<InputSectionDescription>(*i)->sections[0];
-
- // Relocations are not using REL[A] section symbols.
- if (isec->type == SHT_REL || isec->type == SHT_RELA)
- continue;
-
- // Unlike other synthetic sections, mergeable output sections contain data
- // copied from input sections, and there may be a relocation pointing to its
- // contents if -r or -emit-reloc are given.
- if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
- continue;
-
- auto *sym =
- make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
- /*value=*/0, /*size=*/0, isec);
- in.symTab->addSymbol(sym);
- }
-}
-
-// Today's loaders have a feature to make segments read-only after
-// processing dynamic relocations to enhance security. PT_GNU_RELRO
-// is defined for that.
-//
-// This function returns true if a section needs to be put into a
-// PT_GNU_RELRO segment.
-static bool isRelroSection(const OutputSection *sec) {
- if (!config->zRelro)
- return false;
-
- uint64_t flags = sec->flags;
-
- // Non-allocatable or non-writable sections don't need RELRO because
- // they are not writable or not even mapped to memory in the first place.
- // RELRO is for sections that are essentially read-only but need to
- // be writable only at process startup to allow dynamic linker to
- // apply relocations.
- if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
- return false;
-
- // Once initialized, TLS data segments are used as data templates
- // for a thread-local storage. For each new thread, runtime
- // allocates memory for a TLS and copy templates there. No thread
- // are supposed to use templates directly. Thus, it can be in RELRO.
- if (flags & SHF_TLS)
- return true;
-
- // .init_array, .preinit_array and .fini_array contain pointers to
- // functions that are executed on process startup or exit. These
- // pointers are set by the static linker, and they are not expected
- // to change at runtime. But if you are an attacker, you could do
- // interesting things by manipulating pointers in .fini_array, for
- // example. So they are put into RELRO.
- uint32_t type = sec->type;
- if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
- type == SHT_PREINIT_ARRAY)
- return true;
-
- // .got contains pointers to external symbols. They are resolved by
- // the dynamic linker when a module is loaded into memory, and after
- // that they are not expected to change. So, it can be in RELRO.
- if (in.got && sec == in.got->getParent())
- return true;
-
- // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
- // through r2 register, which is reserved for that purpose. Since r2 is used
- // for accessing .got as well, .got and .toc need to be close enough in the
- // virtual address space. Usually, .toc comes just after .got. Since we place
- // .got into RELRO, .toc needs to be placed into RELRO too.
- if (sec->name.equals(".toc"))
- return true;
-
- // .got.plt contains pointers to external function symbols. They are
- // by default resolved lazily, so we usually cannot put it into RELRO.
- // However, if "-z now" is given, the lazy symbol resolution is
- // disabled, which enables us to put it into RELRO.
- if (sec == in.gotPlt->getParent())
- return config->zNow;
-
- // .dynamic section contains data for the dynamic linker, and
- // there's no need to write to it at runtime, so it's better to put
- // it into RELRO.
- if (sec->name == ".dynamic")
- return true;
-
- // Sections with some special names are put into RELRO. This is a
- // bit unfortunate because section names shouldn't be significant in
- // ELF in spirit. But in reality many linker features depend on
- // magic section names.
- StringRef s = sec->name;
- return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
- s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
- s == ".openbsd.randomdata";
-}
-
-// We compute a rank for each section. The rank indicates where the
-// section should be placed in the file. Instead of using simple
-// numbers (0,1,2...), we use a series of flags. One for each decision
-// point when placing the section.
-// Using flags has two key properties:
-// * It is easy to check if a give branch was taken.
-// * It is easy two see how similar two ranks are (see getRankProximity).
-enum RankFlags {
- RF_NOT_ADDR_SET = 1 << 27,
- RF_NOT_ALLOC = 1 << 26,
- RF_PARTITION = 1 << 18, // Partition number (8 bits)
- RF_NOT_PART_EHDR = 1 << 17,
- RF_NOT_PART_PHDR = 1 << 16,
- RF_NOT_INTERP = 1 << 15,
- RF_NOT_NOTE = 1 << 14,
- RF_WRITE = 1 << 13,
- RF_EXEC_WRITE = 1 << 12,
- RF_EXEC = 1 << 11,
- RF_RODATA = 1 << 10,
- RF_NOT_RELRO = 1 << 9,
- RF_NOT_TLS = 1 << 8,
- RF_BSS = 1 << 7,
- RF_PPC_NOT_TOCBSS = 1 << 6,
- RF_PPC_TOCL = 1 << 5,
- RF_PPC_TOC = 1 << 4,
- RF_PPC_GOT = 1 << 3,
- RF_PPC_BRANCH_LT = 1 << 2,
- RF_MIPS_GPREL = 1 << 1,
- RF_MIPS_NOT_GOT = 1 << 0
-};
-
-static unsigned getSectionRank(const OutputSection *sec) {
- unsigned rank = sec->partition * RF_PARTITION;
-
- // We want to put section specified by -T option first, so we
- // can start assigning VA starting from them later.
- if (config->sectionStartMap.count(sec->name))
- return rank;
- rank |= RF_NOT_ADDR_SET;
-
- // Allocatable sections go first to reduce the total PT_LOAD size and
- // so debug info doesn't change addresses in actual code.
- if (!(sec->flags & SHF_ALLOC))
- return rank | RF_NOT_ALLOC;
-
- if (sec->type == SHT_LLVM_PART_EHDR)
- return rank;
- rank |= RF_NOT_PART_EHDR;
-
- if (sec->type == SHT_LLVM_PART_PHDR)
- return rank;
- rank |= RF_NOT_PART_PHDR;
-
- // Put .interp first because some loaders want to see that section
- // on the first page of the executable file when loaded into memory.
- if (sec->name == ".interp")
- return rank;
- rank |= RF_NOT_INTERP;
-
- // Put .note sections (which make up one PT_NOTE) at the beginning so that
- // they are likely to be included in a core file even if core file size is
- // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
- // included in a core to match core files with executables.
- if (sec->type == SHT_NOTE)
- return rank;
- rank |= RF_NOT_NOTE;
-
- // Sort sections based on their access permission in the following
- // order: R, RX, RWX, RW. This order is based on the following
- // considerations:
- // * Read-only sections come first such that they go in the
- // PT_LOAD covering the program headers at the start of the file.
- // * Read-only, executable sections come next.
- // * Writable, executable sections follow such that .plt on
- // architectures where it needs to be writable will be placed
- // between .text and .data.
- // * Writable sections come last, such that .bss lands at the very
- // end of the last PT_LOAD.
- bool isExec = sec->flags & SHF_EXECINSTR;
- bool isWrite = sec->flags & SHF_WRITE;
-
- if (isExec) {
- if (isWrite)
- rank |= RF_EXEC_WRITE;
- else
- rank |= RF_EXEC;
- } else if (isWrite) {
- rank |= RF_WRITE;
- } else if (sec->type == SHT_PROGBITS) {
- // Make non-executable and non-writable PROGBITS sections (e.g .rodata
- // .eh_frame) closer to .text. They likely contain PC or GOT relative
- // relocations and there could be relocation overflow if other huge sections
- // (.dynstr .dynsym) were placed in between.
- rank |= RF_RODATA;
- }
-
- // Place RelRo sections first. After considering SHT_NOBITS below, the
- // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
- // where | marks where page alignment happens. An alternative ordering is
- // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
- // waste more bytes due to 2 alignment places.
- if (!isRelroSection(sec))
- rank |= RF_NOT_RELRO;
-
- // If we got here we know that both A and B are in the same PT_LOAD.
-
- // The TLS initialization block needs to be a single contiguous block in a R/W
- // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
- // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
- // after PROGBITS.
- if (!(sec->flags & SHF_TLS))
- rank |= RF_NOT_TLS;
-
- // Within TLS sections, or within other RelRo sections, or within non-RelRo
- // sections, place non-NOBITS sections first.
- if (sec->type == SHT_NOBITS)
- rank |= RF_BSS;
-
- // Some architectures have additional ordering restrictions for sections
- // within the same PT_LOAD.
- if (config->emachine == EM_PPC64) {
- // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
- // that we would like to make sure appear is a specific order to maximize
- // their coverage by a single signed 16-bit offset from the TOC base
- // pointer. Conversely, the special .tocbss section should be first among
- // all SHT_NOBITS sections. This will put it next to the loaded special
- // PPC64 sections (and, thus, within reach of the TOC base pointer).
- StringRef name = sec->name;
- if (name != ".tocbss")
- rank |= RF_PPC_NOT_TOCBSS;
-
- if (name == ".toc1")
- rank |= RF_PPC_TOCL;
-
- if (name == ".toc")
- rank |= RF_PPC_TOC;
-
- if (name == ".got")
- rank |= RF_PPC_GOT;
-
- if (name == ".branch_lt")
- rank |= RF_PPC_BRANCH_LT;
- }
-
- if (config->emachine == EM_MIPS) {
- // All sections with SHF_MIPS_GPREL flag should be grouped together
- // because data in these sections is addressable with a gp relative address.
- if (sec->flags & SHF_MIPS_GPREL)
- rank |= RF_MIPS_GPREL;
-
- if (sec->name != ".got")
- rank |= RF_MIPS_NOT_GOT;
- }
-
- return rank;
-}
-
-static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
- const OutputSection *a = cast<OutputSection>(aCmd);
- const OutputSection *b = cast<OutputSection>(bCmd);
-
- if (a->sortRank != b->sortRank)
- return a->sortRank < b->sortRank;
-
- if (!(a->sortRank & RF_NOT_ADDR_SET))
- return config->sectionStartMap.lookup(a->name) <
- config->sectionStartMap.lookup(b->name);
- return false;
-}
-
-void PhdrEntry::add(OutputSection *sec) {
- lastSec = sec;
- if (!firstSec)
- firstSec = sec;
- p_align = std::max(p_align, sec->alignment);
- if (p_type == PT_LOAD)
- sec->ptLoad = this;
-}
-
-// The beginning and the ending of .rel[a].plt section are marked
-// with __rel[a]_iplt_{start,end} symbols if it is a statically linked
-// executable. The runtime needs these symbols in order to resolve
-// all IRELATIVE relocs on startup. For dynamic executables, we don't
-// need these symbols, since IRELATIVE relocs are resolved through GOT
-// and PLT. For details, see http://www.airs.com/blog/archives/403.
-template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
- if (config->relocatable || needsInterpSection())
- return;
-
- // By default, __rela_iplt_{start,end} belong to a dummy section 0
- // because .rela.plt might be empty and thus removed from output.
- // We'll override Out::elfHeader with In.relaIplt later when we are
- // sure that .rela.plt exists in output.
- ElfSym::relaIpltStart = addOptionalRegular(
- config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
- Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
-
- ElfSym::relaIpltEnd = addOptionalRegular(
- config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
- Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
-}
-
-template <class ELFT>
-void Writer<ELFT>::forEachRelSec(
- llvm::function_ref<void(InputSectionBase &)> fn) {
- // Scan all relocations. Each relocation goes through a series
- // of tests to determine if it needs special treatment, such as
- // creating GOT, PLT, copy relocations, etc.
- // Note that relocations for non-alloc sections are directly
- // processed by InputSection::relocateNonAlloc.
- for (InputSectionBase *isec : inputSections)
- if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
- fn(*isec);
- for (Partition &part : partitions) {
- for (EhInputSection *es : part.ehFrame->sections)
- fn(*es);
- if (part.armExidx && part.armExidx->isLive())
- for (InputSection *ex : part.armExidx->exidxSections)
- fn(*ex);
- }
-}
-
-// This function generates assignments for predefined symbols (e.g. _end or
-// _etext) and inserts them into the commands sequence to be processed at the
-// appropriate time. This ensures that the value is going to be correct by the
-// time any references to these symbols are processed and is equivalent to
-// defining these symbols explicitly in the linker script.
-template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
- if (ElfSym::globalOffsetTable) {
- // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
- // to the start of the .got or .got.plt section.
- InputSection *gotSection = in.gotPlt;
- if (!target->gotBaseSymInGotPlt)
- gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
- : cast<InputSection>(in.got);
- ElfSym::globalOffsetTable->section = gotSection;
- }
-
- // .rela_iplt_{start,end} mark the start and the end of .rela.plt section.
- if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
- ElfSym::relaIpltStart->section = in.relaIplt;
- ElfSym::relaIpltEnd->section = in.relaIplt;
- ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
- }
-
- PhdrEntry *last = nullptr;
- PhdrEntry *lastRO = nullptr;
-
- for (Partition &part : partitions) {
- for (PhdrEntry *p : part.phdrs) {
- if (p->p_type != PT_LOAD)
- continue;
- last = p;
- if (!(p->p_flags & PF_W))
- lastRO = p;
- }
- }
-
- if (lastRO) {
- // _etext is the first location after the last read-only loadable segment.
- if (ElfSym::etext1)
- ElfSym::etext1->section = lastRO->lastSec;
- if (ElfSym::etext2)
- ElfSym::etext2->section = lastRO->lastSec;
- }
-
- if (last) {
- // _edata points to the end of the last mapped initialized section.
- OutputSection *edata = nullptr;
- for (OutputSection *os : outputSections) {
- if (os->type != SHT_NOBITS)
- edata = os;
- if (os == last->lastSec)
- break;
- }
-
- if (ElfSym::edata1)
- ElfSym::edata1->section = edata;
- if (ElfSym::edata2)
- ElfSym::edata2->section = edata;
-
- // _end is the first location after the uninitialized data region.
- if (ElfSym::end1)
- ElfSym::end1->section = last->lastSec;
- if (ElfSym::end2)
- ElfSym::end2->section = last->lastSec;
- }
-
- if (ElfSym::bss)
- ElfSym::bss->section = findSection(".bss");
-
- // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
- // be equal to the _gp symbol's value.
- if (ElfSym::mipsGp) {
- // Find GP-relative section with the lowest address
- // and use this address to calculate default _gp value.
- for (OutputSection *os : outputSections) {
- if (os->flags & SHF_MIPS_GPREL) {
- ElfSym::mipsGp->section = os;
- ElfSym::mipsGp->value = 0x7ff0;
- break;
- }
- }
- }
-}
-
-// We want to find how similar two ranks are.
-// The more branches in getSectionRank that match, the more similar they are.
-// Since each branch corresponds to a bit flag, we can just use
-// countLeadingZeros.
-static int getRankProximityAux(OutputSection *a, OutputSection *b) {
- return countLeadingZeros(a->sortRank ^ b->sortRank);
-}
-
-static int getRankProximity(OutputSection *a, BaseCommand *b) {
- auto *sec = dyn_cast<OutputSection>(b);
- return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
-}
-
-// When placing orphan sections, we want to place them after symbol assignments
-// so that an orphan after
-// begin_foo = .;
-// foo : { *(foo) }
-// end_foo = .;
-// doesn't break the intended meaning of the begin/end symbols.
-// We don't want to go over sections since findOrphanPos is the
-// one in charge of deciding the order of the sections.
-// We don't want to go over changes to '.', since doing so in
-// rx_sec : { *(rx_sec) }
-// . = ALIGN(0x1000);
-// /* The RW PT_LOAD starts here*/
-// rw_sec : { *(rw_sec) }
-// would mean that the RW PT_LOAD would become unaligned.
-static bool shouldSkip(BaseCommand *cmd) {
- if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
- return assign->name != ".";
- return false;
-}
-
-// We want to place orphan sections so that they share as much
-// characteristics with their neighbors as possible. For example, if
-// both are rw, or both are tls.
-static std::vector<BaseCommand *>::iterator
-findOrphanPos(std::vector<BaseCommand *>::iterator b,
- std::vector<BaseCommand *>::iterator e) {
- OutputSection *sec = cast<OutputSection>(*e);
-
- // Find the first element that has as close a rank as possible.
- auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
- return getRankProximity(sec, a) < getRankProximity(sec, b);
- });
- if (i == e)
- return e;
-
- // Consider all existing sections with the same proximity.
- int proximity = getRankProximity(sec, *i);
- for (; i != e; ++i) {
- auto *curSec = dyn_cast<OutputSection>(*i);
- if (!curSec || !curSec->hasInputSections)
- continue;
- if (getRankProximity(sec, curSec) != proximity ||
- sec->sortRank < curSec->sortRank)
- break;
- }
-
- auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
- auto *os = dyn_cast<OutputSection>(cmd);
- return os && os->hasInputSections;
- };
- auto j = std::find_if(llvm::make_reverse_iterator(i),
- llvm::make_reverse_iterator(b),
- isOutputSecWithInputSections);
- i = j.base();
-
- // As a special case, if the orphan section is the last section, put
- // it at the very end, past any other commands.
- // This matches bfd's behavior and is convenient when the linker script fully
- // specifies the start of the file, but doesn't care about the end (the non
- // alloc sections for example).
- auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
- if (nextSec == e)
- return e;
-
- while (i != e && shouldSkip(*i))
- ++i;
- return i;
-}
-
-// Builds section order for handling --symbol-ordering-file.
-static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
- DenseMap<const InputSectionBase *, int> sectionOrder;
- // Use the rarely used option -call-graph-ordering-file to sort sections.
- if (!config->callGraphProfile.empty())
- return computeCallGraphProfileOrder();
-
- if (config->symbolOrderingFile.empty())
- return sectionOrder;
-
- struct SymbolOrderEntry {
- int priority;
- bool present;
- };
-
- // Build a map from symbols to their priorities. Symbols that didn't
- // appear in the symbol ordering file have the lowest priority 0.
- // All explicitly mentioned symbols have negative (higher) priorities.
- DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
- int priority = -config->symbolOrderingFile.size();
- for (StringRef s : config->symbolOrderingFile)
- symbolOrder.insert({s, {priority++, false}});
-
- // Build a map from sections to their priorities.
- auto addSym = [&](Symbol &sym) {
- auto it = symbolOrder.find(sym.getName());
- if (it == symbolOrder.end())
- return;
- SymbolOrderEntry &ent = it->second;
- ent.present = true;
-
- maybeWarnUnorderableSymbol(&sym);
-
- if (auto *d = dyn_cast<Defined>(&sym)) {
- if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
- int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
- priority = std::min(priority, ent.priority);
- }
- }
- };
-
- // We want both global and local symbols. We get the global ones from the
- // symbol table and iterate the object files for the local ones.
- symtab->forEachSymbol([&](Symbol *sym) {
- if (!sym->isLazy())
- addSym(*sym);
- });
-
- for (InputFile *file : objectFiles)
- for (Symbol *sym : file->getSymbols())
- if (sym->isLocal())
- addSym(*sym);
-
- if (config->warnSymbolOrdering)
- for (auto orderEntry : symbolOrder)
- if (!orderEntry.second.present)
- warn("symbol ordering file: no such symbol: " + orderEntry.first);
-
- return sectionOrder;
-}
-
-// Sorts the sections in ISD according to the provided section order.
-static void
-sortISDBySectionOrder(InputSectionDescription *isd,
- const DenseMap<const InputSectionBase *, int> &order) {
- std::vector<InputSection *> unorderedSections;
- std::vector<std::pair<InputSection *, int>> orderedSections;
- uint64_t unorderedSize = 0;
-
- for (InputSection *isec : isd->sections) {
- auto i = order.find(isec);
- if (i == order.end()) {
- unorderedSections.push_back(isec);
- unorderedSize += isec->getSize();
- continue;
- }
- orderedSections.push_back({isec, i->second});
- }
- llvm::sort(orderedSections, [&](std::pair<InputSection *, int> a,
- std::pair<InputSection *, int> b) {
- return a.second < b.second;
- });
-
- // Find an insertion point for the ordered section list in the unordered
- // section list. On targets with limited-range branches, this is the mid-point
- // of the unordered section list. This decreases the likelihood that a range
- // extension thunk will be needed to enter or exit the ordered region. If the
- // ordered section list is a list of hot functions, we can generally expect
- // the ordered functions to be called more often than the unordered functions,
- // making it more likely that any particular call will be within range, and
- // therefore reducing the number of thunks required.
- //
- // For example, imagine that you have 8MB of hot code and 32MB of cold code.
- // If the layout is:
- //
- // 8MB hot
- // 32MB cold
- //
- // only the first 8-16MB of the cold code (depending on which hot function it
- // is actually calling) can call the hot code without a range extension thunk.
- // However, if we use this layout:
- //
- // 16MB cold
- // 8MB hot
- // 16MB cold
- //
- // both the last 8-16MB of the first block of cold code and the first 8-16MB
- // of the second block of cold code can call the hot code without a thunk. So
- // we effectively double the amount of code that could potentially call into
- // the hot code without a thunk.
- size_t insPt = 0;
- if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
- uint64_t unorderedPos = 0;
- for (; insPt != unorderedSections.size(); ++insPt) {
- unorderedPos += unorderedSections[insPt]->getSize();
- if (unorderedPos > unorderedSize / 2)
- break;
- }
- }
-
- isd->sections.clear();
- for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
- isd->sections.push_back(isec);
- for (std::pair<InputSection *, int> p : orderedSections)
- isd->sections.push_back(p.first);
- for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
- isd->sections.push_back(isec);
-}
-
-static void sortSection(OutputSection *sec,
- const DenseMap<const InputSectionBase *, int> &order) {
- StringRef name = sec->name;
-
- // Sort input sections by section name suffixes for
- // __attribute__((init_priority(N))).
- if (name == ".init_array" || name == ".fini_array") {
- if (!script->hasSectionsCommand)
- sec->sortInitFini();
- return;
- }
-
- // Sort input sections by the special rule for .ctors and .dtors.
- if (name == ".ctors" || name == ".dtors") {
- if (!script->hasSectionsCommand)
- sec->sortCtorsDtors();
- return;
- }
-
- // Never sort these.
- if (name == ".init" || name == ".fini")
- return;
-
- // .toc is allocated just after .got and is accessed using GOT-relative
- // relocations. Object files compiled with small code model have an
- // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
- // To reduce the risk of relocation overflow, .toc contents are sorted so that
- // sections having smaller relocation offsets are at beginning of .toc
- if (config->emachine == EM_PPC64 && name == ".toc") {
- if (script->hasSectionsCommand)
- return;
- assert(sec->sectionCommands.size() == 1);
- auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
- llvm::stable_sort(isd->sections,
- [](const InputSection *a, const InputSection *b) -> bool {
- return a->file->ppc64SmallCodeModelTocRelocs &&
- !b->file->ppc64SmallCodeModelTocRelocs;
- });
- return;
- }
-
- // Sort input sections by priority using the list provided
- // by --symbol-ordering-file.
- if (!order.empty())
- for (BaseCommand *b : sec->sectionCommands)
- if (auto *isd = dyn_cast<InputSectionDescription>(b))
- sortISDBySectionOrder(isd, order);
-}
-
-// If no layout was provided by linker script, we want to apply default
-// sorting for special input sections. This also handles --symbol-ordering-file.
-template <class ELFT> void Writer<ELFT>::sortInputSections() {
- // Build the order once since it is expensive.
- DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
- for (BaseCommand *base : script->sectionCommands)
- if (auto *sec = dyn_cast<OutputSection>(base))
- sortSection(sec, order);
-}
-
-template <class ELFT> void Writer<ELFT>::sortSections() {
- script->adjustSectionsBeforeSorting();
-
- // Don't sort if using -r. It is not necessary and we want to preserve the
- // relative order for SHF_LINK_ORDER sections.
- if (config->relocatable)
- return;
-
- sortInputSections();
-
- for (BaseCommand *base : script->sectionCommands) {
- auto *os = dyn_cast<OutputSection>(base);
- if (!os)
- continue;
- os->sortRank = getSectionRank(os);
-
- // We want to assign rude approximation values to outSecOff fields
- // to know the relative order of the input sections. We use it for
- // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
- uint64_t i = 0;
- for (InputSection *sec : getInputSections(os))
- sec->outSecOff = i++;
- }
-
- if (!script->hasSectionsCommand) {
- // We know that all the OutputSections are contiguous in this case.
- auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
- std::stable_sort(
- llvm::find_if(script->sectionCommands, isSection),
- llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
- compareSections);
- return;
- }
-
- // Orphan sections are sections present in the input files which are
- // not explicitly placed into the output file by the linker script.
- //
- // The sections in the linker script are already in the correct
- // order. We have to figuere out where to insert the orphan
- // sections.
- //
- // The order of the sections in the script is arbitrary and may not agree with
- // compareSections. This means that we cannot easily define a strict weak
- // ordering. To see why, consider a comparison of a section in the script and
- // one not in the script. We have a two simple options:
- // * Make them equivalent (a is not less than b, and b is not less than a).
- // The problem is then that equivalence has to be transitive and we can
- // have sections a, b and c with only b in a script and a less than c
- // which breaks this property.
- // * Use compareSectionsNonScript. Given that the script order doesn't have
- // to match, we can end up with sections a, b, c, d where b and c are in the
- // script and c is compareSectionsNonScript less than b. In which case d
- // can be equivalent to c, a to b and d < a. As a concrete example:
- // .a (rx) # not in script
- // .b (rx) # in script
- // .c (ro) # in script
- // .d (ro) # not in script
- //
- // The way we define an order then is:
- // * Sort only the orphan sections. They are in the end right now.
- // * Move each orphan section to its preferred position. We try
- // to put each section in the last position where it can share
- // a PT_LOAD.
- //
- // There is some ambiguity as to where exactly a new entry should be
- // inserted, because Commands contains not only output section
- // commands but also other types of commands such as symbol assignment
- // expressions. There's no correct answer here due to the lack of the
- // formal specification of the linker script. We use heuristics to
- // determine whether a new output command should be added before or
- // after another commands. For the details, look at shouldSkip
- // function.
-
- auto i = script->sectionCommands.begin();
- auto e = script->sectionCommands.end();
- auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
- if (auto *sec = dyn_cast<OutputSection>(base))
- return sec->sectionIndex == UINT32_MAX;
- return false;
- });
-
- // Sort the orphan sections.
- std::stable_sort(nonScriptI, e, compareSections);
-
- // As a horrible special case, skip the first . assignment if it is before any
- // section. We do this because it is common to set a load address by starting
- // the script with ". = 0xabcd" and the expectation is that every section is
- // after that.
- auto firstSectionOrDotAssignment =
- std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
- if (firstSectionOrDotAssignment != e &&
- isa<SymbolAssignment>(**firstSectionOrDotAssignment))
- ++firstSectionOrDotAssignment;
- i = firstSectionOrDotAssignment;
-
- while (nonScriptI != e) {
- auto pos = findOrphanPos(i, nonScriptI);
- OutputSection *orphan = cast<OutputSection>(*nonScriptI);
-
- // As an optimization, find all sections with the same sort rank
- // and insert them with one rotate.
- unsigned rank = orphan->sortRank;
- auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
- return cast<OutputSection>(cmd)->sortRank != rank;
- });
- std::rotate(pos, nonScriptI, end);
- nonScriptI = end;
- }
-
- script->adjustSectionsAfterSorting();
-}
-
-static bool compareByFilePosition(InputSection *a, InputSection *b) {
- InputSection *la = a->getLinkOrderDep();
- InputSection *lb = b->getLinkOrderDep();
- OutputSection *aOut = la->getParent();
- OutputSection *bOut = lb->getParent();
-
- if (aOut != bOut)
- return aOut->sectionIndex < bOut->sectionIndex;
- return la->outSecOff < lb->outSecOff;
-}
-
-template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
- for (OutputSection *sec : outputSections) {
- if (!(sec->flags & SHF_LINK_ORDER))
- continue;
-
- // Link order may be distributed across several InputSectionDescriptions
- // but sort must consider them all at once.
- std::vector<InputSection **> scriptSections;
- std::vector<InputSection *> sections;
- for (BaseCommand *base : sec->sectionCommands) {
- if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
- for (InputSection *&isec : isd->sections) {
- scriptSections.push_back(&isec);
- sections.push_back(isec);
- }
- }
- }
-
- // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
- // this processing inside the ARMExidxsyntheticsection::finalizeContents().
- if (!config->relocatable && config->emachine == EM_ARM &&
- sec->type == SHT_ARM_EXIDX)
- continue;
-
- llvm::stable_sort(sections, compareByFilePosition);
-
- for (int i = 0, n = sections.size(); i < n; ++i)
- *scriptSections[i] = sections[i];
- }
-}
-
-// We need to generate and finalize the content that depends on the address of
-// InputSections. As the generation of the content may also alter InputSection
-// addresses we must converge to a fixed point. We do that here. See the comment
-// in Writer<ELFT>::finalizeSections().
-template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
- ThunkCreator tc;
- AArch64Err843419Patcher a64p;
-
- // For some targets, like x86, this loop iterates only once.
- for (;;) {
- bool changed = false;
-
- script->assignAddresses();
-
- if (target->needsThunks)
- changed |= tc.createThunks(outputSections);
-
- if (config->fixCortexA53Errata843419) {
- if (changed)
- script->assignAddresses();
- changed |= a64p.createFixes();
- }
-
- if (in.mipsGot)
- in.mipsGot->updateAllocSize();
-
- for (Partition &part : partitions) {
- changed |= part.relaDyn->updateAllocSize();
- if (part.relrDyn)
- changed |= part.relrDyn->updateAllocSize();
- }
-
- if (!changed)
- return;
- }
-}
-
-static void finalizeSynthetic(SyntheticSection *sec) {
- if (sec && sec->isNeeded() && sec->getParent())
- sec->finalizeContents();
-}
-
-// In order to allow users to manipulate linker-synthesized sections,
-// we had to add synthetic sections to the input section list early,
-// even before we make decisions whether they are needed. This allows
-// users to write scripts like this: ".mygot : { .got }".
-//
-// Doing it has an unintended side effects. If it turns out that we
-// don't need a .got (for example) at all because there's no
-// relocation that needs a .got, we don't want to emit .got.
-//
-// To deal with the above problem, this function is called after
-// scanRelocations is called to remove synthetic sections that turn
-// out to be empty.
-static void removeUnusedSyntheticSections() {
- // All input synthetic sections that can be empty are placed after
- // all regular ones. We iterate over them all and exit at first
- // non-synthetic.
- for (InputSectionBase *s : llvm::reverse(inputSections)) {
- SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
- if (!ss)
- return;
- OutputSection *os = ss->getParent();
- if (!os || ss->isNeeded())
- continue;
-
- // If we reach here, then SS is an unused synthetic section and we want to
- // remove it from corresponding input section description of output section.
- for (BaseCommand *b : os->sectionCommands)
- if (auto *isd = dyn_cast<InputSectionDescription>(b))
- llvm::erase_if(isd->sections,
- [=](InputSection *isec) { return isec == ss; });
- }
-}
-
-// Returns true if a symbol can be replaced at load-time by a symbol
-// with the same name defined in other ELF executable or DSO.
-static bool computeIsPreemptible(const Symbol &b) {
- assert(!b.isLocal());
-
- // Only symbols that appear in dynsym can be preempted.
- if (!b.includeInDynsym())
- return false;
-
- // Only default visibility symbols can be preempted.
- if (b.visibility != STV_DEFAULT)
- return false;
-
- // At this point copy relocations have not been created yet, so any
- // symbol that is not defined locally is preemptible.
- if (!b.isDefined())
- return true;
-
- // If we have a dynamic list it specifies which local symbols are preemptible.
- if (config->hasDynamicList)
- return false;
-
- if (!config->shared)
- return false;
-
- // -Bsymbolic means that definitions are not preempted.
- if (config->bsymbolic || (config->bsymbolicFunctions && b.isFunc()))
- return false;
- return true;
-}
-
-// Create output section objects and add them to OutputSections.
-template <class ELFT> void Writer<ELFT>::finalizeSections() {
- Out::preinitArray = findSection(".preinit_array");
- Out::initArray = findSection(".init_array");
- Out::finiArray = findSection(".fini_array");
-
- // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
- // symbols for sections, so that the runtime can get the start and end
- // addresses of each section by section name. Add such symbols.
- if (!config->relocatable) {
- addStartEndSymbols();
- for (BaseCommand *base : script->sectionCommands)
- if (auto *sec = dyn_cast<OutputSection>(base))
- addStartStopSymbols(sec);
- }
-
- // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
- // It should be okay as no one seems to care about the type.
- // Even the author of gold doesn't remember why gold behaves that way.
- // https://sourceware.org/ml/binutils/2002-03/msg00360.html
- if (mainPart->dynamic->parent)
- symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
- STV_HIDDEN, STT_NOTYPE,
- /*value=*/0, /*size=*/0, mainPart->dynamic});
-
- // Define __rel[a]_iplt_{start,end} symbols if needed.
- addRelIpltSymbols();
-
- // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined.
- // This symbol should only be defined in an executable.
- if (config->emachine == EM_RISCV && !config->shared)
- ElfSym::riscvGlobalPointer =
- addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800,
- STV_DEFAULT, STB_GLOBAL);
-
- if (config->emachine == EM_X86_64) {
- // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
- // way that:
- //
- // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
- // computes 0.
- // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
- // the TLS block).
- //
- // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
- // an absolute symbol of zero. This is different from GNU linkers which
- // define _TLS_MODULE_BASE_ relative to the first TLS section.
- Symbol *s = symtab->find("_TLS_MODULE_BASE_");
- if (s && s->isUndefined()) {
- s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
- STT_TLS, /*value=*/0, 0,
- /*section=*/nullptr});
- ElfSym::tlsModuleBase = cast<Defined>(s);
- }
- }
-
- // This responsible for splitting up .eh_frame section into
- // pieces. The relocation scan uses those pieces, so this has to be
- // earlier.
- for (Partition &part : partitions)
- finalizeSynthetic(part.ehFrame);
-
- symtab->forEachSymbol([](Symbol *s) {
- if (!s->isPreemptible)
- s->isPreemptible = computeIsPreemptible(*s);
- });
-
- // Scan relocations. This must be done after every symbol is declared so that
- // we can correctly decide if a dynamic relocation is needed.
- if (!config->relocatable) {
- forEachRelSec(scanRelocations<ELFT>);
- reportUndefinedSymbols<ELFT>();
- }
-
- addIRelativeRelocs();
-
- if (in.plt && in.plt->isNeeded())
- in.plt->addSymbols();
- if (in.iplt && in.iplt->isNeeded())
- in.iplt->addSymbols();
-
- if (!config->allowShlibUndefined) {
- // Error on undefined symbols in a shared object, if all of its DT_NEEDED
- // entires are seen. These cases would otherwise lead to runtime errors
- // reported by the dynamic linker.
- //
- // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
- // catch more cases. That is too much for us. Our approach resembles the one
- // used in ld.gold, achieves a good balance to be useful but not too smart.
- for (SharedFile *file : sharedFiles)
- file->allNeededIsKnown =
- llvm::all_of(file->dtNeeded, [&](StringRef needed) {
- return symtab->soNames.count(needed);
- });
-
- symtab->forEachSymbol([](Symbol *sym) {
- if (sym->isUndefined() && !sym->isWeak())
- if (auto *f = dyn_cast_or_null<SharedFile>(sym->file))
- if (f->allNeededIsKnown)
- error(toString(f) + ": undefined reference to " + toString(*sym));
- });
- }
-
- // Now that we have defined all possible global symbols including linker-
- // synthesized ones. Visit all symbols to give the finishing touches.
- symtab->forEachSymbol([](Symbol *sym) {
- if (!includeInSymtab(*sym))
- return;
- if (in.symTab)
- in.symTab->addSymbol(sym);
-
- if (sym->includeInDynsym()) {
- partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
- if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
- if (file->isNeeded && !sym->isUndefined())
- addVerneed(sym);
- }
- });
-
- // We also need to scan the dynamic relocation tables of the other partitions
- // and add any referenced symbols to the partition's dynsym.
- for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
- DenseSet<Symbol *> syms;
- for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
- syms.insert(e.sym);
- for (DynamicReloc &reloc : part.relaDyn->relocs)
- if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second)
- part.dynSymTab->addSymbol(reloc.sym);
- }
-
- // Do not proceed if there was an undefined symbol.
- if (errorCount())
- return;
-
- if (in.mipsGot)
- in.mipsGot->build();
-
- removeUnusedSyntheticSections();
-
- sortSections();
-
- // Now that we have the final list, create a list of all the
- // OutputSections for convenience.
- for (BaseCommand *base : script->sectionCommands)
- if (auto *sec = dyn_cast<OutputSection>(base))
- outputSections.push_back(sec);
-
- // Prefer command line supplied address over other constraints.
- for (OutputSection *sec : outputSections) {
- auto i = config->sectionStartMap.find(sec->name);
- if (i != config->sectionStartMap.end())
- sec->addrExpr = [=] { return i->second; };
- }
-
- // This is a bit of a hack. A value of 0 means undef, so we set it
- // to 1 to make __ehdr_start defined. The section number is not
- // particularly relevant.
- Out::elfHeader->sectionIndex = 1;
-
- for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
- OutputSection *sec = outputSections[i];
- sec->sectionIndex = i + 1;
- sec->shName = in.shStrTab->addString(sec->name);
- }
-
- // Binary and relocatable output does not have PHDRS.
- // The headers have to be created before finalize as that can influence the
- // image base and the dynamic section on mips includes the image base.
- if (!config->relocatable && !config->oFormatBinary) {
- for (Partition &part : partitions) {
- part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
- : createPhdrs(part);
- if (config->emachine == EM_ARM) {
- // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
- addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
- }
- if (config->emachine == EM_MIPS) {
- // Add separate segments for MIPS-specific sections.
- addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
- addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
- addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
- }
- }
- Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
-
- // Find the TLS segment. This happens before the section layout loop so that
- // Android relocation packing can look up TLS symbol addresses. We only need
- // to care about the main partition here because all TLS symbols were moved
- // to the main partition (see MarkLive.cpp).
- for (PhdrEntry *p : mainPart->phdrs)
- if (p->p_type == PT_TLS)
- Out::tlsPhdr = p;
- }
-
- // Some symbols are defined in term of program headers. Now that we
- // have the headers, we can find out which sections they point to.
- setReservedSymbolSections();
-
- finalizeSynthetic(in.bss);
- finalizeSynthetic(in.bssRelRo);
- finalizeSynthetic(in.symTabShndx);
- finalizeSynthetic(in.shStrTab);
- finalizeSynthetic(in.strTab);
- finalizeSynthetic(in.got);
- finalizeSynthetic(in.mipsGot);
- finalizeSynthetic(in.igotPlt);
- finalizeSynthetic(in.gotPlt);
- finalizeSynthetic(in.relaIplt);
- finalizeSynthetic(in.relaPlt);
- finalizeSynthetic(in.plt);
- finalizeSynthetic(in.iplt);
- finalizeSynthetic(in.ppc32Got2);
- finalizeSynthetic(in.riscvSdata);
- finalizeSynthetic(in.partIndex);
-
- // Dynamic section must be the last one in this list and dynamic
- // symbol table section (dynSymTab) must be the first one.
- for (Partition &part : partitions) {
- finalizeSynthetic(part.armExidx);
- finalizeSynthetic(part.dynSymTab);
- finalizeSynthetic(part.gnuHashTab);
- finalizeSynthetic(part.hashTab);
- finalizeSynthetic(part.verDef);
- finalizeSynthetic(part.relaDyn);
- finalizeSynthetic(part.relrDyn);
- finalizeSynthetic(part.ehFrameHdr);
- finalizeSynthetic(part.verSym);
- finalizeSynthetic(part.verNeed);
- finalizeSynthetic(part.dynamic);
- }
-
- if (!script->hasSectionsCommand && !config->relocatable)
- fixSectionAlignments();
-
- // SHFLinkOrder processing must be processed after relative section placements are
- // known but before addresses are allocated.
- resolveShfLinkOrder();
-
- // This is used to:
- // 1) Create "thunks":
- // Jump instructions in many ISAs have small displacements, and therefore
- // they cannot jump to arbitrary addresses in memory. For example, RISC-V
- // JAL instruction can target only +-1 MiB from PC. It is a linker's
- // responsibility to create and insert small pieces of code between
- // sections to extend the ranges if jump targets are out of range. Such
- // code pieces are called "thunks".
- //
- // We add thunks at this stage. We couldn't do this before this point
- // because this is the earliest point where we know sizes of sections and
- // their layouts (that are needed to determine if jump targets are in
- // range).
- //
- // 2) Update the sections. We need to generate content that depends on the
- // address of InputSections. For example, MIPS GOT section content or
- // android packed relocations sections content.
- //
- // 3) Assign the final values for the linker script symbols. Linker scripts
- // sometimes using forward symbol declarations. We want to set the correct
- // values. They also might change after adding the thunks.
- finalizeAddressDependentContent();
-
- // finalizeAddressDependentContent may have added local symbols to the static symbol table.
- finalizeSynthetic(in.symTab);
- finalizeSynthetic(in.ppc64LongBranchTarget);
-
- // Fill other section headers. The dynamic table is finalized
- // at the end because some tags like RELSZ depend on result
- // of finalizing other sections.
- for (OutputSection *sec : outputSections)
- sec->finalize();
-}
-
-// Ensure data sections are not mixed with executable sections when
-// -execute-only is used. -execute-only is a feature to make pages executable
-// but not readable, and the feature is currently supported only on AArch64.
-template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
- if (!config->executeOnly)
- return;
-
- for (OutputSection *os : outputSections)
- if (os->flags & SHF_EXECINSTR)
- for (InputSection *isec : getInputSections(os))
- if (!(isec->flags & SHF_EXECINSTR))
- error("cannot place " + toString(isec) + " into " + toString(os->name) +
- ": -execute-only does not support intermingling data and code");
-}
-
-// The linker is expected to define SECNAME_start and SECNAME_end
-// symbols for a few sections. This function defines them.
-template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
- // If a section does not exist, there's ambiguity as to how we
- // define _start and _end symbols for an init/fini section. Since
- // the loader assume that the symbols are always defined, we need to
- // always define them. But what value? The loader iterates over all
- // pointers between _start and _end to run global ctors/dtors, so if
- // the section is empty, their symbol values don't actually matter
- // as long as _start and _end point to the same location.
- //
- // That said, we don't want to set the symbols to 0 (which is
- // probably the simplest value) because that could cause some
- // program to fail to link due to relocation overflow, if their
- // program text is above 2 GiB. We use the address of the .text
- // section instead to prevent that failure.
- //
- // In a rare sitaution, .text section may not exist. If that's the
- // case, use the image base address as a last resort.
- OutputSection *Default = findSection(".text");
- if (!Default)
- Default = Out::elfHeader;
-
- auto define = [=](StringRef start, StringRef end, OutputSection *os) {
- if (os) {
- addOptionalRegular(start, os, 0);
- addOptionalRegular(end, os, -1);
- } else {
- addOptionalRegular(start, Default, 0);
- addOptionalRegular(end, Default, 0);
- }
- };
-
- define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
- define("__init_array_start", "__init_array_end", Out::initArray);
- define("__fini_array_start", "__fini_array_end", Out::finiArray);
-
- if (OutputSection *sec = findSection(".ARM.exidx"))
- define("__exidx_start", "__exidx_end", sec);
-}
-
-// If a section name is valid as a C identifier (which is rare because of
-// the leading '.'), linkers are expected to define __start_<secname> and
-// __stop_<secname> symbols. They are at beginning and end of the section,
-// respectively. This is not requested by the ELF standard, but GNU ld and
-// gold provide the feature, and used by many programs.
-template <class ELFT>
-void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
- StringRef s = sec->name;
- if (!isValidCIdentifier(s))
- return;
- addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED);
- addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED);
-}
-
-static bool needsPtLoad(OutputSection *sec) {
- if (!(sec->flags & SHF_ALLOC) || sec->noload)
- return false;
-
- // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
- // responsible for allocating space for them, not the PT_LOAD that
- // contains the TLS initialization image.
- if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
- return false;
- return true;
-}
-
-// Linker scripts are responsible for aligning addresses. Unfortunately, most
-// linker scripts are designed for creating two PT_LOADs only, one RX and one
-// RW. This means that there is no alignment in the RO to RX transition and we
-// cannot create a PT_LOAD there.
-static uint64_t computeFlags(uint64_t flags) {
- if (config->omagic)
- return PF_R | PF_W | PF_X;
- if (config->executeOnly && (flags & PF_X))
- return flags & ~PF_R;
- if (config->singleRoRx && !(flags & PF_W))
- return flags | PF_X;
- return flags;
-}
-
-// Decide which program headers to create and which sections to include in each
-// one.
-template <class ELFT>
-std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
- std::vector<PhdrEntry *> ret;
- auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
- ret.push_back(make<PhdrEntry>(type, flags));
- return ret.back();
- };
-
- unsigned partNo = part.getNumber();
- bool isMain = partNo == 1;
-
- // The first phdr entry is PT_PHDR which describes the program header itself.
- if (isMain)
- addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
- else
- addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
-
- // PT_INTERP must be the second entry if exists.
- if (OutputSection *cmd = findSection(".interp", partNo))
- addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
-
- // Add the first PT_LOAD segment for regular output sections.
- uint64_t flags = computeFlags(PF_R);
- PhdrEntry *load = nullptr;
-
- // Add the headers. We will remove them if they don't fit.
- // In the other partitions the headers are ordinary sections, so they don't
- // need to be added here.
- if (isMain) {
- load = addHdr(PT_LOAD, flags);
- load->add(Out::elfHeader);
- load->add(Out::programHeaders);
- }
-
- // PT_GNU_RELRO includes all sections that should be marked as
- // read-only by dynamic linker after proccessing relocations.
- // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
- // an error message if more than one PT_GNU_RELRO PHDR is required.
- PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
- bool inRelroPhdr = false;
- OutputSection *relroEnd = nullptr;
- for (OutputSection *sec : outputSections) {
- if (sec->partition != partNo || !needsPtLoad(sec))
- continue;
- if (isRelroSection(sec)) {
- inRelroPhdr = true;
- if (!relroEnd)
- relRo->add(sec);
- else
- error("section: " + sec->name + " is not contiguous with other relro" +
- " sections");
- } else if (inRelroPhdr) {
- inRelroPhdr = false;
- relroEnd = sec;
- }
- }
-
- for (OutputSection *sec : outputSections) {
- if (!(sec->flags & SHF_ALLOC))
- break;
- if (!needsPtLoad(sec))
- continue;
-
- // Normally, sections in partitions other than the current partition are
- // ignored. But partition number 255 is a special case: it contains the
- // partition end marker (.part.end). It needs to be added to the main
- // partition so that a segment is created for it in the main partition,
- // which will cause the dynamic loader to reserve space for the other
- // partitions.
- if (sec->partition != partNo) {
- if (isMain && sec->partition == 255)
- addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
- continue;
- }
-
- // Segments are contiguous memory regions that has the same attributes
- // (e.g. executable or writable). There is one phdr for each segment.
- // Therefore, we need to create a new phdr when the next section has
- // different flags or is loaded at a discontiguous address or memory
- // region using AT or AT> linker script command, respectively. At the same
- // time, we don't want to create a separate load segment for the headers,
- // even if the first output section has an AT or AT> attribute.
- uint64_t newFlags = computeFlags(sec->getPhdrFlags());
- if (!load ||
- ((sec->lmaExpr ||
- (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) &&
- load->lastSec != Out::programHeaders) ||
- sec->memRegion != load->firstSec->memRegion || flags != newFlags ||
- sec == relroEnd) {
- load = addHdr(PT_LOAD, newFlags);
- flags = newFlags;
- }
-
- load->add(sec);
- }
-
- // Add a TLS segment if any.
- PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
- for (OutputSection *sec : outputSections)
- if (sec->partition == partNo && sec->flags & SHF_TLS)
- tlsHdr->add(sec);
- if (tlsHdr->firstSec)
- ret.push_back(tlsHdr);
-
- // Add an entry for .dynamic.
- if (OutputSection *sec = part.dynamic->getParent())
- addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
-
- if (relRo->firstSec)
- ret.push_back(relRo);
-
- // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
- if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
- part.ehFrame->getParent() && part.ehFrameHdr->getParent())
- addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
- ->add(part.ehFrameHdr->getParent());
-
- // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
- // the dynamic linker fill the segment with random data.
- if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
- addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
-
- // PT_GNU_STACK is a special section to tell the loader to make the
- // pages for the stack non-executable. If you really want an executable
- // stack, you can pass -z execstack, but that's not recommended for
- // security reasons.
- unsigned perm = PF_R | PF_W;
- if (config->zExecstack)
- perm |= PF_X;
- addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
-
- // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
- // is expected to perform W^X violations, such as calling mprotect(2) or
- // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
- // OpenBSD.
- if (config->zWxneeded)
- addHdr(PT_OPENBSD_WXNEEDED, PF_X);
-
- // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
- // same alignment.
- PhdrEntry *note = nullptr;
- for (OutputSection *sec : outputSections) {
- if (sec->partition != partNo)
- continue;
- if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
- if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
- note = addHdr(PT_NOTE, PF_R);
- note->add(sec);
- } else {
- note = nullptr;
- }
- }
- return ret;
-}
-
-template <class ELFT>
-void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
- unsigned pType, unsigned pFlags) {
- unsigned partNo = part.getNumber();
- auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
- return cmd->partition == partNo && cmd->type == shType;
- });
- if (i == outputSections.end())
- return;
-
- PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
- entry->add(*i);
- part.phdrs.push_back(entry);
-}
-
-// The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the
-// first section after PT_GNU_RELRO have to be page aligned so that the dynamic
-// linker can set the permissions.
-template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
- auto pageAlign = [](OutputSection *cmd) {
- if (cmd && !cmd->addrExpr)
- cmd->addrExpr = [=] {
- return alignTo(script->getDot(), config->maxPageSize);
- };
- };
-
- for (Partition &part : partitions) {
- for (const PhdrEntry *p : part.phdrs)
- if (p->p_type == PT_LOAD && p->firstSec)
- pageAlign(p->firstSec);
- }
-}
-
-// Compute an in-file position for a given section. The file offset must be the
-// same with its virtual address modulo the page size, so that the loader can
-// load executables without any address adjustment.
-static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
- // The first section in a PT_LOAD has to have congruent offset and address
- // module the page size.
- if (os->ptLoad && os->ptLoad->firstSec == os) {
- uint64_t alignment =
- std::max<uint64_t>(os->ptLoad->p_align, config->maxPageSize);
- return alignTo(off, alignment, os->addr);
- }
-
- // File offsets are not significant for .bss sections other than the first one
- // in a PT_LOAD. By convention, we keep section offsets monotonically
- // increasing rather than setting to zero.
- if (os->type == SHT_NOBITS)
- return off;
-
- // If the section is not in a PT_LOAD, we just have to align it.
- if (!os->ptLoad)
- return alignTo(off, os->alignment);
-
- // If two sections share the same PT_LOAD the file offset is calculated
- // using this formula: Off2 = Off1 + (VA2 - VA1).
- OutputSection *first = os->ptLoad->firstSec;
- return first->offset + os->addr - first->addr;
-}
-
-// Set an in-file position to a given section and returns the end position of
-// the section.
-static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
- off = computeFileOffset(os, off);
- os->offset = off;
-
- if (os->type == SHT_NOBITS)
- return off;
- return off + os->size;
-}
-
-template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
- uint64_t off = 0;
- for (OutputSection *sec : outputSections)
- if (sec->flags & SHF_ALLOC)
- off = setFileOffset(sec, off);
- fileSize = alignTo(off, config->wordsize);
-}
-
-static std::string rangeToString(uint64_t addr, uint64_t len) {
- return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
-}
-
-// Assign file offsets to output sections.
-template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
- uint64_t off = 0;
- off = setFileOffset(Out::elfHeader, off);
- off = setFileOffset(Out::programHeaders, off);
-
- PhdrEntry *lastRX = nullptr;
- for (Partition &part : partitions)
- for (PhdrEntry *p : part.phdrs)
- if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
- lastRX = p;
-
- for (OutputSection *sec : outputSections) {
- off = setFileOffset(sec, off);
- if (script->hasSectionsCommand)
- continue;
-
- // If this is a last section of the last executable segment and that
- // segment is the last loadable segment, align the offset of the
- // following section to avoid loading non-segments parts of the file.
- if (lastRX && lastRX->lastSec == sec)
- off = alignTo(off, config->commonPageSize);
- }
-
- sectionHeaderOff = alignTo(off, config->wordsize);
- fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
-
- // Our logic assumes that sections have rising VA within the same segment.
- // With use of linker scripts it is possible to violate this rule and get file
- // offset overlaps or overflows. That should never happen with a valid script
- // which does not move the location counter backwards and usually scripts do
- // not do that. Unfortunately, there are apps in the wild, for example, Linux
- // kernel, which control segment distribution explicitly and move the counter
- // backwards, so we have to allow doing that to support linking them. We
- // perform non-critical checks for overlaps in checkSectionOverlap(), but here
- // we want to prevent file size overflows because it would crash the linker.
- for (OutputSection *sec : outputSections) {
- if (sec->type == SHT_NOBITS)
- continue;
- if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
- error("unable to place section " + sec->name + " at file offset " +
- rangeToString(sec->offset, sec->size) +
- "; check your linker script for overflows");
- }
-}
-
-// Finalize the program headers. We call this function after we assign
-// file offsets and VAs to all sections.
-template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
- for (PhdrEntry *p : part.phdrs) {
- OutputSection *first = p->firstSec;
- OutputSection *last = p->lastSec;
-
- if (first) {
- p->p_filesz = last->offset - first->offset;
- if (last->type != SHT_NOBITS)
- p->p_filesz += last->size;
-
- p->p_memsz = last->addr + last->size - first->addr;
- p->p_offset = first->offset;
- p->p_vaddr = first->addr;
-
- // File offsets in partitions other than the main partition are relative
- // to the offset of the ELF headers. Perform that adjustment now.
- if (part.elfHeader)
- p->p_offset -= part.elfHeader->getParent()->offset;
-
- if (!p->hasLMA)
- p->p_paddr = first->getLMA();
- }
-
- if (p->p_type == PT_LOAD) {
- p->p_align = std::max<uint64_t>(p->p_align, config->maxPageSize);
- } else if (p->p_type == PT_GNU_RELRO) {
- p->p_align = 1;
- // The glibc dynamic loader rounds the size down, so we need to round up
- // to protect the last page. This is a no-op on FreeBSD which always
- // rounds up.
- p->p_memsz = alignTo(p->p_memsz, config->commonPageSize);
- }
- }
-}
-
-// A helper struct for checkSectionOverlap.
-namespace {
-struct SectionOffset {
- OutputSection *sec;
- uint64_t offset;
-};
-} // namespace
-
-// Check whether sections overlap for a specific address range (file offsets,
-// load and virtual adresses).
-static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
- bool isVirtualAddr) {
- llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
- return a.offset < b.offset;
- });
-
- // Finding overlap is easy given a vector is sorted by start position.
- // If an element starts before the end of the previous element, they overlap.
- for (size_t i = 1, end = sections.size(); i < end; ++i) {
- SectionOffset a = sections[i - 1];
- SectionOffset b = sections[i];
- if (b.offset >= a.offset + a.sec->size)
- continue;
-
- // If both sections are in OVERLAY we allow the overlapping of virtual
- // addresses, because it is what OVERLAY was designed for.
- if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
- continue;
-
- errorOrWarn("section " + a.sec->name + " " + name +
- " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
- " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
- b.sec->name + " range is " +
- rangeToString(b.offset, b.sec->size));
- }
-}
-
-// Check for overlapping sections and address overflows.
-//
-// In this function we check that none of the output sections have overlapping
-// file offsets. For SHF_ALLOC sections we also check that the load address
-// ranges and the virtual address ranges don't overlap
-template <class ELFT> void Writer<ELFT>::checkSections() {
- // First, check that section's VAs fit in available address space for target.
- for (OutputSection *os : outputSections)
- if ((os->addr + os->size < os->addr) ||
- (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
- errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
- " of size 0x" + utohexstr(os->size) +
- " exceeds available address space");
-
- // Check for overlapping file offsets. In this case we need to skip any
- // section marked as SHT_NOBITS. These sections don't actually occupy space in
- // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
- // binary is specified only add SHF_ALLOC sections are added to the output
- // file so we skip any non-allocated sections in that case.
- std::vector<SectionOffset> fileOffs;
- for (OutputSection *sec : outputSections)
- if (sec->size > 0 && sec->type != SHT_NOBITS &&
- (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
- fileOffs.push_back({sec, sec->offset});
- checkOverlap("file", fileOffs, false);
-
- // When linking with -r there is no need to check for overlapping virtual/load
- // addresses since those addresses will only be assigned when the final
- // executable/shared object is created.
- if (config->relocatable)
- return;
-
- // Checking for overlapping virtual and load addresses only needs to take
- // into account SHF_ALLOC sections since others will not be loaded.
- // Furthermore, we also need to skip SHF_TLS sections since these will be
- // mapped to other addresses at runtime and can therefore have overlapping
- // ranges in the file.
- std::vector<SectionOffset> vmas;
- for (OutputSection *sec : outputSections)
- if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
- vmas.push_back({sec, sec->addr});
- checkOverlap("virtual address", vmas, true);
-
- // Finally, check that the load addresses don't overlap. This will usually be
- // the same as the virtual addresses but can be different when using a linker
- // script with AT().
- std::vector<SectionOffset> lmas;
- for (OutputSection *sec : outputSections)
- if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
- lmas.push_back({sec, sec->getLMA()});
- checkOverlap("load address", lmas, false);
-}
-
-// The entry point address is chosen in the following ways.
-//
-// 1. the '-e' entry command-line option;
-// 2. the ENTRY(symbol) command in a linker control script;
-// 3. the value of the symbol _start, if present;
-// 4. the number represented by the entry symbol, if it is a number;
-// 5. the address of the first byte of the .text section, if present;
-// 6. the address 0.
-static uint64_t getEntryAddr() {
- // Case 1, 2 or 3
- if (Symbol *b = symtab->find(config->entry))
- return b->getVA();
-
- // Case 4
- uint64_t addr;
- if (to_integer(config->entry, addr))
- return addr;
-
- // Case 5
- if (OutputSection *sec = findSection(".text")) {
- if (config->warnMissingEntry)
- warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
- utohexstr(sec->addr));
- return sec->addr;
- }
-
- // Case 6
- if (config->warnMissingEntry)
- warn("cannot find entry symbol " + config->entry +
- "; not setting start address");
- return 0;
-}
-
-static uint16_t getELFType() {
- if (config->isPic)
- return ET_DYN;
- if (config->relocatable)
- return ET_REL;
- return ET_EXEC;
-}
-
-template <class ELFT> void Writer<ELFT>::writeHeader() {
- writeEhdr<ELFT>(Out::bufferStart, *mainPart);
- writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
-
- auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
- eHdr->e_type = getELFType();
- eHdr->e_entry = getEntryAddr();
- eHdr->e_shoff = sectionHeaderOff;
-
- // Write the section header table.
- //
- // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
- // and e_shstrndx fields. When the value of one of these fields exceeds
- // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
- // use fields in the section header at index 0 to store
- // the value. The sentinel values and fields are:
- // e_shnum = 0, SHdrs[0].sh_size = number of sections.
- // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
- auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
- size_t num = outputSections.size() + 1;
- if (num >= SHN_LORESERVE)
- sHdrs->sh_size = num;
- else
- eHdr->e_shnum = num;
-
- uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
- if (strTabIndex >= SHN_LORESERVE) {
- sHdrs->sh_link = strTabIndex;
- eHdr->e_shstrndx = SHN_XINDEX;
- } else {
- eHdr->e_shstrndx = strTabIndex;
- }
-
- for (OutputSection *sec : outputSections)
- sec->writeHeaderTo<ELFT>(++sHdrs);
-}
-
-// Open a result file.
-template <class ELFT> void Writer<ELFT>::openFile() {
- uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
- if (fileSize != size_t(fileSize) || maxSize < fileSize) {
- error("output file too large: " + Twine(fileSize) + " bytes");
- return;
- }
-
- unlinkAsync(config->outputFile);
- unsigned flags = 0;
- if (!config->relocatable)
- flags = FileOutputBuffer::F_executable;
- Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
- FileOutputBuffer::create(config->outputFile, fileSize, flags);
-
- if (!bufferOrErr) {
- error("failed to open " + config->outputFile + ": " +
- llvm::toString(bufferOrErr.takeError()));
- return;
- }
- buffer = std::move(*bufferOrErr);
- Out::bufferStart = buffer->getBufferStart();
-}
-
-template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
- for (OutputSection *sec : outputSections)
- if (sec->flags & SHF_ALLOC)
- sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
-}
-
-static void fillTrap(uint8_t *i, uint8_t *end) {
- for (; i + 4 <= end; i += 4)
- memcpy(i, &target->trapInstr, 4);
-}
-
-// Fill the last page of executable segments with trap instructions
-// instead of leaving them as zero. Even though it is not required by any
-// standard, it is in general a good thing to do for security reasons.
-//
-// We'll leave other pages in segments as-is because the rest will be
-// overwritten by output sections.
-template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
- if (script->hasSectionsCommand)
- return;
-
- for (Partition &part : partitions) {
- // Fill the last page.
- for (PhdrEntry *p : part.phdrs)
- if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
- fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
- config->commonPageSize),
- Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
- config->commonPageSize));
-
- // Round up the file size of the last segment to the page boundary iff it is
- // an executable segment to ensure that other tools don't accidentally
- // trim the instruction padding (e.g. when stripping the file).
- PhdrEntry *last = nullptr;
- for (PhdrEntry *p : part.phdrs)
- if (p->p_type == PT_LOAD)
- last = p;
-
- if (last && (last->p_flags & PF_X))
- last->p_memsz = last->p_filesz =
- alignTo(last->p_filesz, config->commonPageSize);
- }
-}
-
-// Write section contents to a mmap'ed file.
-template <class ELFT> void Writer<ELFT>::writeSections() {
- // In -r or -emit-relocs mode, write the relocation sections first as in
- // ELf_Rel targets we might find out that we need to modify the relocated
- // section while doing it.
- for (OutputSection *sec : outputSections)
- if (sec->type == SHT_REL || sec->type == SHT_RELA)
- sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
-
- for (OutputSection *sec : outputSections)
- if (sec->type != SHT_REL && sec->type != SHT_RELA)
- sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
-}
-
-// Split one uint8 array into small pieces of uint8 arrays.
-static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr,
- size_t chunkSize) {
- std::vector<ArrayRef<uint8_t>> ret;
- while (arr.size() > chunkSize) {
- ret.push_back(arr.take_front(chunkSize));
- arr = arr.drop_front(chunkSize);
- }
- if (!arr.empty())
- ret.push_back(arr);
- return ret;
-}
-
-// Computes a hash value of Data using a given hash function.
-// In order to utilize multiple cores, we first split data into 1MB
-// chunks, compute a hash for each chunk, and then compute a hash value
-// of the hash values.
-static void
-computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
- llvm::ArrayRef<uint8_t> data,
- std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
- std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
- std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
-
- // Compute hash values.
- parallelForEachN(0, chunks.size(), [&](size_t i) {
- hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
- });
-
- // Write to the final output buffer.
- hashFn(hashBuf.data(), hashes);
-}
-
-template <class ELFT> void Writer<ELFT>::writeBuildId() {
- if (!mainPart->buildId || !mainPart->buildId->getParent())
- return;
-
- if (config->buildId == BuildIdKind::Hexstring) {
- for (Partition &part : partitions)
- part.buildId->writeBuildId(config->buildIdVector);
- return;
- }
-
- // Compute a hash of all sections of the output file.
- size_t hashSize = mainPart->buildId->hashSize;
- std::vector<uint8_t> buildId(hashSize);
- llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
-
- switch (config->buildId) {
- case BuildIdKind::Fast:
- computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
- write64le(dest, xxHash64(arr));
- });
- break;
- case BuildIdKind::Md5:
- computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
- memcpy(dest, MD5::hash(arr).data(), hashSize);
- });
- break;
- case BuildIdKind::Sha1:
- computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
- memcpy(dest, SHA1::hash(arr).data(), hashSize);
- });
- break;
- case BuildIdKind::Uuid:
- if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
- error("entropy source failure: " + ec.message());
- break;
- default:
- llvm_unreachable("unknown BuildIdKind");
- }
- for (Partition &part : partitions)
- part.buildId->writeBuildId(buildId);
-}
-
-template void elf::writeResult<ELF32LE>();
-template void elf::writeResult<ELF32BE>();
-template void elf::writeResult<ELF64LE>();
-template void elf::writeResult<ELF64BE>();