diff options
| author | Andrew Kelley <andrew@ziglang.org> | 2020-01-16 13:09:45 -0500 |
|---|---|---|
| committer | Andrew Kelley <andrew@ziglang.org> | 2020-01-16 13:09:45 -0500 |
| commit | ba4cc03b4f0d71ac3e0147aa3dde449299ce8cd5 (patch) | |
| tree | 88e0c274db5c1c943944c565833bea103692a556 /deps/lld/ELF/Writer.cpp | |
| parent | fbe6af81fdb1b964bb0c28f51de2458800b8274c (diff) | |
| download | zig-ba4cc03b4f0d71ac3e0147aa3dde449299ce8cd5.tar.gz zig-ba4cc03b4f0d71ac3e0147aa3dde449299ce8cd5.zip | |
remove embedded LLD
we no longer have any patches against upstream LLD
Diffstat (limited to 'deps/lld/ELF/Writer.cpp')
| -rw-r--r-- | deps/lld/ELF/Writer.cpp | 2691 |
1 files changed, 0 insertions, 2691 deletions
diff --git a/deps/lld/ELF/Writer.cpp b/deps/lld/ELF/Writer.cpp deleted file mode 100644 index 10b171e8c0..0000000000 --- a/deps/lld/ELF/Writer.cpp +++ /dev/null @@ -1,2691 +0,0 @@ -//===- Writer.cpp ---------------------------------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// - -#include "Writer.h" -#include "AArch64ErrataFix.h" -#include "CallGraphSort.h" -#include "Config.h" -#include "LinkerScript.h" -#include "MapFile.h" -#include "OutputSections.h" -#include "Relocations.h" -#include "SymbolTable.h" -#include "Symbols.h" -#include "SyntheticSections.h" -#include "Target.h" -#include "lld/Common/Filesystem.h" -#include "lld/Common/Memory.h" -#include "lld/Common/Strings.h" -#include "lld/Common/Threads.h" -#include "llvm/ADT/StringMap.h" -#include "llvm/ADT/StringSwitch.h" -#include "llvm/Support/RandomNumberGenerator.h" -#include "llvm/Support/SHA1.h" -#include "llvm/Support/xxhash.h" -#include <climits> - -using namespace llvm; -using namespace llvm::ELF; -using namespace llvm::object; -using namespace llvm::support; -using namespace llvm::support::endian; - -using namespace lld; -using namespace lld::elf; - -namespace { -// The writer writes a SymbolTable result to a file. -template <class ELFT> class Writer { -public: - Writer() : buffer(errorHandler().outputBuffer) {} - using Elf_Shdr = typename ELFT::Shdr; - using Elf_Ehdr = typename ELFT::Ehdr; - using Elf_Phdr = typename ELFT::Phdr; - - void run(); - -private: - void copyLocalSymbols(); - void addSectionSymbols(); - void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); - void sortSections(); - void resolveShfLinkOrder(); - void finalizeAddressDependentContent(); - void sortInputSections(); - void finalizeSections(); - void checkExecuteOnly(); - void setReservedSymbolSections(); - - std::vector<PhdrEntry *> createPhdrs(Partition &part); - void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrEntry); - void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, - unsigned pFlags); - void assignFileOffsets(); - void assignFileOffsetsBinary(); - void setPhdrs(Partition &part); - void checkSections(); - void fixSectionAlignments(); - void openFile(); - void writeTrapInstr(); - void writeHeader(); - void writeSections(); - void writeSectionsBinary(); - void writeBuildId(); - - std::unique_ptr<FileOutputBuffer> &buffer; - - void addRelIpltSymbols(); - void addStartEndSymbols(); - void addStartStopSymbols(OutputSection *sec); - - uint64_t fileSize; - uint64_t sectionHeaderOff; -}; -} // anonymous namespace - -static bool isSectionPrefix(StringRef prefix, StringRef name) { - return name.startswith(prefix) || name == prefix.drop_back(); -} - -StringRef elf::getOutputSectionName(const InputSectionBase *s) { - if (config->relocatable) - return s->name; - - // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want - // to emit .rela.text.foo as .rela.text.bar for consistency (this is not - // technically required, but not doing it is odd). This code guarantees that. - if (auto *isec = dyn_cast<InputSection>(s)) { - if (InputSectionBase *rel = isec->getRelocatedSection()) { - OutputSection *out = rel->getOutputSection(); - if (s->type == SHT_RELA) - return saver.save(".rela" + out->name); - return saver.save(".rel" + out->name); - } - } - - // This check is for -z keep-text-section-prefix. This option separates text - // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or - // ".text.exit". - // When enabled, this allows identifying the hot code region (.text.hot) in - // the final binary which can be selectively mapped to huge pages or mlocked, - // for instance. - if (config->zKeepTextSectionPrefix) - for (StringRef v : - {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) - if (isSectionPrefix(v, s->name)) - return v.drop_back(); - - for (StringRef v : - {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", - ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", - ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) - if (isSectionPrefix(v, s->name)) - return v.drop_back(); - - // CommonSection is identified as "COMMON" in linker scripts. - // By default, it should go to .bss section. - if (s->name == "COMMON") - return ".bss"; - - return s->name; -} - -static bool needsInterpSection() { - return !sharedFiles.empty() && !config->dynamicLinker.empty() && - script->needsInterpSection(); -} - -template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } - -template <class ELFT> -void Writer<ELFT>::removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { - llvm::erase_if(phdrs, [&](const PhdrEntry *p) { - if (p->p_type != PT_LOAD) - return false; - if (!p->firstSec) - return true; - uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; - return size == 0; - }); -} - -template <class ELFT> static void copySectionsIntoPartitions() { - std::vector<InputSectionBase *> newSections; - for (unsigned part = 2; part != partitions.size() + 1; ++part) { - for (InputSectionBase *s : inputSections) { - if (!(s->flags & SHF_ALLOC) || !s->isLive()) - continue; - InputSectionBase *copy; - if (s->type == SHT_NOTE) - copy = make<InputSection>(cast<InputSection>(*s)); - else if (auto *es = dyn_cast<EhInputSection>(s)) - copy = make<EhInputSection>(*es); - else - continue; - copy->partition = part; - newSections.push_back(copy); - } - } - - inputSections.insert(inputSections.end(), newSections.begin(), - newSections.end()); -} - -template <class ELFT> static void combineEhSections() { - for (InputSectionBase *&s : inputSections) { - // Ignore dead sections and the partition end marker (.part.end), - // whose partition number is out of bounds. - if (!s->isLive() || s->partition == 255) - continue; - - Partition &part = s->getPartition(); - if (auto *es = dyn_cast<EhInputSection>(s)) { - part.ehFrame->addSection<ELFT>(es); - s = nullptr; - } else if (s->kind() == SectionBase::Regular && part.armExidx && - part.armExidx->addSection(cast<InputSection>(s))) { - s = nullptr; - } - } - - std::vector<InputSectionBase *> &v = inputSections; - v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); -} - -static Defined *addOptionalRegular(StringRef name, SectionBase *sec, - uint64_t val, uint8_t stOther = STV_HIDDEN, - uint8_t binding = STB_GLOBAL) { - Symbol *s = symtab->find(name); - if (!s || s->isDefined()) - return nullptr; - - s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, - /*size=*/0, sec}); - return cast<Defined>(s); -} - -static Defined *addAbsolute(StringRef name) { - Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, - STT_NOTYPE, 0, 0, nullptr}); - return cast<Defined>(sym); -} - -// The linker is expected to define some symbols depending on -// the linking result. This function defines such symbols. -void elf::addReservedSymbols() { - if (config->emachine == EM_MIPS) { - // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer - // so that it points to an absolute address which by default is relative - // to GOT. Default offset is 0x7ff0. - // See "Global Data Symbols" in Chapter 6 in the following document: - // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - ElfSym::mipsGp = addAbsolute("_gp"); - - // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between - // start of function and 'gp' pointer into GOT. - if (symtab->find("_gp_disp")) - ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); - - // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' - // pointer. This symbol is used in the code generated by .cpload pseudo-op - // in case of using -mno-shared option. - // https://sourceware.org/ml/binutils/2004-12/msg00094.html - if (symtab->find("__gnu_local_gp")) - ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); - } else if (config->emachine == EM_PPC) { - // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't - // support Small Data Area, define it arbitrarily as 0. - addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); - } - - // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which - // combines the typical ELF GOT with the small data sections. It commonly - // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both - // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to - // represent the TOC base which is offset by 0x8000 bytes from the start of - // the .got section. - // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the - // correctness of some relocations depends on its value. - StringRef gotSymName = - (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; - - if (Symbol *s = symtab->find(gotSymName)) { - if (s->isDefined()) { - error(toString(s->file) + " cannot redefine linker defined symbol '" + - gotSymName + "'"); - return; - } - - uint64_t gotOff = 0; - if (config->emachine == EM_PPC64) - gotOff = 0x8000; - - s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, - STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); - ElfSym::globalOffsetTable = cast<Defined>(s); - } - - // __ehdr_start is the location of ELF file headers. Note that we define - // this symbol unconditionally even when using a linker script, which - // differs from the behavior implemented by GNU linker which only define - // this symbol if ELF headers are in the memory mapped segment. - addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); - - // __executable_start is not documented, but the expectation of at - // least the Android libc is that it points to the ELF header. - addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); - - // __dso_handle symbol is passed to cxa_finalize as a marker to identify - // each DSO. The address of the symbol doesn't matter as long as they are - // different in different DSOs, so we chose the start address of the DSO. - addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); - - // If linker script do layout we do not need to create any standart symbols. - if (script->hasSectionsCommand) - return; - - auto add = [](StringRef s, int64_t pos) { - return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); - }; - - ElfSym::bss = add("__bss_start", 0); - ElfSym::end1 = add("end", -1); - ElfSym::end2 = add("_end", -1); - ElfSym::etext1 = add("etext", -1); - ElfSym::etext2 = add("_etext", -1); - ElfSym::edata1 = add("edata", -1); - ElfSym::edata2 = add("_edata", -1); -} - -static OutputSection *findSection(StringRef name, unsigned partition = 1) { - for (BaseCommand *base : script->sectionCommands) - if (auto *sec = dyn_cast<OutputSection>(base)) - if (sec->name == name && sec->partition == partition) - return sec; - return nullptr; -} - -// Initialize Out members. -template <class ELFT> static void createSyntheticSections() { - // Initialize all pointers with NULL. This is needed because - // you can call lld::elf::main more than once as a library. - memset(&Out::first, 0, sizeof(Out)); - - auto add = [](InputSectionBase *sec) { inputSections.push_back(sec); }; - - in.shStrTab = make<StringTableSection>(".shstrtab", false); - - Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); - Out::programHeaders->alignment = config->wordsize; - - if (config->strip != StripPolicy::All) { - in.strTab = make<StringTableSection>(".strtab", false); - in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); - in.symTabShndx = make<SymtabShndxSection>(); - } - - in.bss = make<BssSection>(".bss", 0, 1); - add(in.bss); - - // If there is a SECTIONS command and a .data.rel.ro section name use name - // .data.rel.ro.bss so that we match in the .data.rel.ro output section. - // This makes sure our relro is contiguous. - bool hasDataRelRo = - script->hasSectionsCommand && findSection(".data.rel.ro", 0); - in.bssRelRo = - make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); - add(in.bssRelRo); - - // Add MIPS-specific sections. - if (config->emachine == EM_MIPS) { - if (!config->shared && config->hasDynSymTab) { - in.mipsRldMap = make<MipsRldMapSection>(); - add(in.mipsRldMap); - } - if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) - add(sec); - if (auto *sec = MipsOptionsSection<ELFT>::create()) - add(sec); - if (auto *sec = MipsReginfoSection<ELFT>::create()) - add(sec); - } - - for (Partition &part : partitions) { - auto add = [&](InputSectionBase *sec) { - sec->partition = part.getNumber(); - inputSections.push_back(sec); - }; - - if (!part.name.empty()) { - part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); - part.elfHeader->name = part.name; - add(part.elfHeader); - - part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); - add(part.programHeaders); - } - - if (config->buildId != BuildIdKind::None) { - part.buildId = make<BuildIdSection>(); - add(part.buildId); - } - - part.dynStrTab = make<StringTableSection>(".dynstr", true); - part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); - part.dynamic = make<DynamicSection<ELFT>>(); - if (config->androidPackDynRelocs) { - part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>( - config->isRela ? ".rela.dyn" : ".rel.dyn"); - } else { - part.relaDyn = make<RelocationSection<ELFT>>( - config->isRela ? ".rela.dyn" : ".rel.dyn", config->zCombreloc); - } - - if (needsInterpSection()) - add(createInterpSection()); - - if (config->hasDynSymTab) { - part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); - add(part.dynSymTab); - - part.verSym = make<VersionTableSection>(); - add(part.verSym); - - if (!config->versionDefinitions.empty()) { - part.verDef = make<VersionDefinitionSection>(); - add(part.verDef); - } - - part.verNeed = make<VersionNeedSection<ELFT>>(); - add(part.verNeed); - - if (config->gnuHash) { - part.gnuHashTab = make<GnuHashTableSection>(); - add(part.gnuHashTab); - } - - if (config->sysvHash) { - part.hashTab = make<HashTableSection>(); - add(part.hashTab); - } - - add(part.dynamic); - add(part.dynStrTab); - add(part.relaDyn); - } - - if (config->relrPackDynRelocs) { - part.relrDyn = make<RelrSection<ELFT>>(); - add(part.relrDyn); - } - - if (!config->relocatable) { - if (config->ehFrameHdr) { - part.ehFrameHdr = make<EhFrameHeader>(); - add(part.ehFrameHdr); - } - part.ehFrame = make<EhFrameSection>(); - add(part.ehFrame); - } - - if (config->emachine == EM_ARM && !config->relocatable) { - // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx - // InputSections. - part.armExidx = make<ARMExidxSyntheticSection>(); - add(part.armExidx); - } - } - - if (partitions.size() != 1) { - // Create the partition end marker. This needs to be in partition number 255 - // so that it is sorted after all other partitions. It also has other - // special handling (see createPhdrs() and combineEhSections()). - in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); - in.partEnd->partition = 255; - add(in.partEnd); - - in.partIndex = make<PartitionIndexSection>(); - addOptionalRegular("__part_index_begin", in.partIndex, 0); - addOptionalRegular("__part_index_end", in.partIndex, - in.partIndex->getSize()); - add(in.partIndex); - } - - // Add .got. MIPS' .got is so different from the other archs, - // it has its own class. - if (config->emachine == EM_MIPS) { - in.mipsGot = make<MipsGotSection>(); - add(in.mipsGot); - } else { - in.got = make<GotSection>(); - add(in.got); - } - - if (config->emachine == EM_PPC) { - in.ppc32Got2 = make<PPC32Got2Section>(); - add(in.ppc32Got2); - } - - if (config->emachine == EM_PPC64) { - in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); - add(in.ppc64LongBranchTarget); - } - - if (config->emachine == EM_RISCV) { - in.riscvSdata = make<RISCVSdataSection>(); - add(in.riscvSdata); - } - - in.gotPlt = make<GotPltSection>(); - add(in.gotPlt); - in.igotPlt = make<IgotPltSection>(); - add(in.igotPlt); - - // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat - // it as a relocation and ensure the referenced section is created. - if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { - if (target->gotBaseSymInGotPlt) - in.gotPlt->hasGotPltOffRel = true; - else - in.got->hasGotOffRel = true; - } - - if (config->gdbIndex) - add(GdbIndexSection::create<ELFT>()); - - // We always need to add rel[a].plt to output if it has entries. - // Even for static linking it can contain R_[*]_IRELATIVE relocations. - in.relaPlt = make<RelocationSection<ELFT>>( - config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); - add(in.relaPlt); - - // The relaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure - // that the IRelative relocations are processed last by the dynamic loader. - // We cannot place the iplt section in .rel.dyn when Android relocation - // packing is enabled because that would cause a section type mismatch. - // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, - // we can get the desired behaviour by placing the iplt section in .rel.plt. - in.relaIplt = make<RelocationSection<ELFT>>( - (config->emachine == EM_ARM && !config->androidPackDynRelocs) - ? ".rel.dyn" - : in.relaPlt->name, - /*sort=*/false); - add(in.relaIplt); - - in.plt = make<PltSection>(false); - add(in.plt); - in.iplt = make<PltSection>(true); - add(in.iplt); - - if (config->andFeatures) - add(make<GnuPropertySection>()); - - // .note.GNU-stack is always added when we are creating a re-linkable - // object file. Other linkers are using the presence of this marker - // section to control the executable-ness of the stack area, but that - // is irrelevant these days. Stack area should always be non-executable - // by default. So we emit this section unconditionally. - if (config->relocatable) - add(make<GnuStackSection>()); - - if (in.symTab) - add(in.symTab); - if (in.symTabShndx) - add(in.symTabShndx); - add(in.shStrTab); - if (in.strTab) - add(in.strTab); -} - -// The main function of the writer. -template <class ELFT> void Writer<ELFT>::run() { - // Make copies of any input sections that need to be copied into each - // partition. - copySectionsIntoPartitions<ELFT>(); - - // Create linker-synthesized sections such as .got or .plt. - // Such sections are of type input section. - createSyntheticSections<ELFT>(); - - // Some input sections that are used for exception handling need to be moved - // into synthetic sections. Do that now so that they aren't assigned to - // output sections in the usual way. - if (!config->relocatable) - combineEhSections<ELFT>(); - - // We want to process linker script commands. When SECTIONS command - // is given we let it create sections. - script->processSectionCommands(); - - // Linker scripts controls how input sections are assigned to output sections. - // Input sections that were not handled by scripts are called "orphans", and - // they are assigned to output sections by the default rule. Process that. - script->addOrphanSections(); - - if (config->discard != DiscardPolicy::All) - copyLocalSymbols(); - - if (config->copyRelocs) - addSectionSymbols(); - - // Now that we have a complete set of output sections. This function - // completes section contents. For example, we need to add strings - // to the string table, and add entries to .got and .plt. - // finalizeSections does that. - finalizeSections(); - checkExecuteOnly(); - if (errorCount()) - return; - - script->assignAddresses(); - - // If -compressed-debug-sections is specified, we need to compress - // .debug_* sections. Do it right now because it changes the size of - // output sections. - for (OutputSection *sec : outputSections) - sec->maybeCompress<ELFT>(); - - script->allocateHeaders(mainPart->phdrs); - - // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a - // 0 sized region. This has to be done late since only after assignAddresses - // we know the size of the sections. - for (Partition &part : partitions) - removeEmptyPTLoad(part.phdrs); - - if (!config->oFormatBinary) - assignFileOffsets(); - else - assignFileOffsetsBinary(); - - for (Partition &part : partitions) - setPhdrs(part); - - if (config->relocatable) - for (OutputSection *sec : outputSections) - sec->addr = 0; - - if (config->checkSections) - checkSections(); - - // It does not make sense try to open the file if we have error already. - if (errorCount()) - return; - // Write the result down to a file. - openFile(); - if (errorCount()) - return; - - if (!config->oFormatBinary) { - writeTrapInstr(); - writeHeader(); - writeSections(); - } else { - writeSectionsBinary(); - } - - // Backfill .note.gnu.build-id section content. This is done at last - // because the content is usually a hash value of the entire output file. - writeBuildId(); - if (errorCount()) - return; - - // Handle -Map and -cref options. - writeMapFile(); - writeCrossReferenceTable(); - if (errorCount()) - return; - - if (auto e = buffer->commit()) - error("failed to write to the output file: " + toString(std::move(e))); -} - -static bool shouldKeepInSymtab(const Defined &sym) { - if (sym.isSection()) - return false; - - if (config->discard == DiscardPolicy::None) - return true; - - // If -emit-reloc is given, all symbols including local ones need to be - // copied because they may be referenced by relocations. - if (config->emitRelocs) - return true; - - // In ELF assembly .L symbols are normally discarded by the assembler. - // If the assembler fails to do so, the linker discards them if - // * --discard-locals is used. - // * The symbol is in a SHF_MERGE section, which is normally the reason for - // the assembler keeping the .L symbol. - StringRef name = sym.getName(); - bool isLocal = name.startswith(".L") || name.empty(); - if (!isLocal) - return true; - - if (config->discard == DiscardPolicy::Locals) - return false; - - SectionBase *sec = sym.section; - return !sec || !(sec->flags & SHF_MERGE); -} - -static bool includeInSymtab(const Symbol &b) { - if (!b.isLocal() && !b.isUsedInRegularObj) - return false; - - if (auto *d = dyn_cast<Defined>(&b)) { - // Always include absolute symbols. - SectionBase *sec = d->section; - if (!sec) - return true; - sec = sec->repl; - - // Exclude symbols pointing to garbage-collected sections. - if (isa<InputSectionBase>(sec) && !sec->isLive()) - return false; - - if (auto *s = dyn_cast<MergeInputSection>(sec)) - if (!s->getSectionPiece(d->value)->live) - return false; - return true; - } - return b.used; -} - -// Local symbols are not in the linker's symbol table. This function scans -// each object file's symbol table to copy local symbols to the output. -template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { - if (!in.symTab) - return; - for (InputFile *file : objectFiles) { - ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); - for (Symbol *b : f->getLocalSymbols()) { - if (!b->isLocal()) - fatal(toString(f) + - ": broken object: getLocalSymbols returns a non-local symbol"); - auto *dr = dyn_cast<Defined>(b); - - // No reason to keep local undefined symbol in symtab. - if (!dr) - continue; - if (!includeInSymtab(*b)) - continue; - if (!shouldKeepInSymtab(*dr)) - continue; - in.symTab->addSymbol(b); - } - } -} - -// Create a section symbol for each output section so that we can represent -// relocations that point to the section. If we know that no relocation is -// referring to a section (that happens if the section is a synthetic one), we -// don't create a section symbol for that section. -template <class ELFT> void Writer<ELFT>::addSectionSymbols() { - for (BaseCommand *base : script->sectionCommands) { - auto *sec = dyn_cast<OutputSection>(base); - if (!sec) - continue; - auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { - if (auto *isd = dyn_cast<InputSectionDescription>(base)) - return !isd->sections.empty(); - return false; - }); - if (i == sec->sectionCommands.end()) - continue; - InputSection *isec = cast<InputSectionDescription>(*i)->sections[0]; - - // Relocations are not using REL[A] section symbols. - if (isec->type == SHT_REL || isec->type == SHT_RELA) - continue; - - // Unlike other synthetic sections, mergeable output sections contain data - // copied from input sections, and there may be a relocation pointing to its - // contents if -r or -emit-reloc are given. - if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) - continue; - - auto *sym = - make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, - /*value=*/0, /*size=*/0, isec); - in.symTab->addSymbol(sym); - } -} - -// Today's loaders have a feature to make segments read-only after -// processing dynamic relocations to enhance security. PT_GNU_RELRO -// is defined for that. -// -// This function returns true if a section needs to be put into a -// PT_GNU_RELRO segment. -static bool isRelroSection(const OutputSection *sec) { - if (!config->zRelro) - return false; - - uint64_t flags = sec->flags; - - // Non-allocatable or non-writable sections don't need RELRO because - // they are not writable or not even mapped to memory in the first place. - // RELRO is for sections that are essentially read-only but need to - // be writable only at process startup to allow dynamic linker to - // apply relocations. - if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) - return false; - - // Once initialized, TLS data segments are used as data templates - // for a thread-local storage. For each new thread, runtime - // allocates memory for a TLS and copy templates there. No thread - // are supposed to use templates directly. Thus, it can be in RELRO. - if (flags & SHF_TLS) - return true; - - // .init_array, .preinit_array and .fini_array contain pointers to - // functions that are executed on process startup or exit. These - // pointers are set by the static linker, and they are not expected - // to change at runtime. But if you are an attacker, you could do - // interesting things by manipulating pointers in .fini_array, for - // example. So they are put into RELRO. - uint32_t type = sec->type; - if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || - type == SHT_PREINIT_ARRAY) - return true; - - // .got contains pointers to external symbols. They are resolved by - // the dynamic linker when a module is loaded into memory, and after - // that they are not expected to change. So, it can be in RELRO. - if (in.got && sec == in.got->getParent()) - return true; - - // .toc is a GOT-ish section for PowerPC64. Their contents are accessed - // through r2 register, which is reserved for that purpose. Since r2 is used - // for accessing .got as well, .got and .toc need to be close enough in the - // virtual address space. Usually, .toc comes just after .got. Since we place - // .got into RELRO, .toc needs to be placed into RELRO too. - if (sec->name.equals(".toc")) - return true; - - // .got.plt contains pointers to external function symbols. They are - // by default resolved lazily, so we usually cannot put it into RELRO. - // However, if "-z now" is given, the lazy symbol resolution is - // disabled, which enables us to put it into RELRO. - if (sec == in.gotPlt->getParent()) - return config->zNow; - - // .dynamic section contains data for the dynamic linker, and - // there's no need to write to it at runtime, so it's better to put - // it into RELRO. - if (sec->name == ".dynamic") - return true; - - // Sections with some special names are put into RELRO. This is a - // bit unfortunate because section names shouldn't be significant in - // ELF in spirit. But in reality many linker features depend on - // magic section names. - StringRef s = sec->name; - return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || - s == ".dtors" || s == ".jcr" || s == ".eh_frame" || - s == ".openbsd.randomdata"; -} - -// We compute a rank for each section. The rank indicates where the -// section should be placed in the file. Instead of using simple -// numbers (0,1,2...), we use a series of flags. One for each decision -// point when placing the section. -// Using flags has two key properties: -// * It is easy to check if a give branch was taken. -// * It is easy two see how similar two ranks are (see getRankProximity). -enum RankFlags { - RF_NOT_ADDR_SET = 1 << 27, - RF_NOT_ALLOC = 1 << 26, - RF_PARTITION = 1 << 18, // Partition number (8 bits) - RF_NOT_PART_EHDR = 1 << 17, - RF_NOT_PART_PHDR = 1 << 16, - RF_NOT_INTERP = 1 << 15, - RF_NOT_NOTE = 1 << 14, - RF_WRITE = 1 << 13, - RF_EXEC_WRITE = 1 << 12, - RF_EXEC = 1 << 11, - RF_RODATA = 1 << 10, - RF_NOT_RELRO = 1 << 9, - RF_NOT_TLS = 1 << 8, - RF_BSS = 1 << 7, - RF_PPC_NOT_TOCBSS = 1 << 6, - RF_PPC_TOCL = 1 << 5, - RF_PPC_TOC = 1 << 4, - RF_PPC_GOT = 1 << 3, - RF_PPC_BRANCH_LT = 1 << 2, - RF_MIPS_GPREL = 1 << 1, - RF_MIPS_NOT_GOT = 1 << 0 -}; - -static unsigned getSectionRank(const OutputSection *sec) { - unsigned rank = sec->partition * RF_PARTITION; - - // We want to put section specified by -T option first, so we - // can start assigning VA starting from them later. - if (config->sectionStartMap.count(sec->name)) - return rank; - rank |= RF_NOT_ADDR_SET; - - // Allocatable sections go first to reduce the total PT_LOAD size and - // so debug info doesn't change addresses in actual code. - if (!(sec->flags & SHF_ALLOC)) - return rank | RF_NOT_ALLOC; - - if (sec->type == SHT_LLVM_PART_EHDR) - return rank; - rank |= RF_NOT_PART_EHDR; - - if (sec->type == SHT_LLVM_PART_PHDR) - return rank; - rank |= RF_NOT_PART_PHDR; - - // Put .interp first because some loaders want to see that section - // on the first page of the executable file when loaded into memory. - if (sec->name == ".interp") - return rank; - rank |= RF_NOT_INTERP; - - // Put .note sections (which make up one PT_NOTE) at the beginning so that - // they are likely to be included in a core file even if core file size is - // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be - // included in a core to match core files with executables. - if (sec->type == SHT_NOTE) - return rank; - rank |= RF_NOT_NOTE; - - // Sort sections based on their access permission in the following - // order: R, RX, RWX, RW. This order is based on the following - // considerations: - // * Read-only sections come first such that they go in the - // PT_LOAD covering the program headers at the start of the file. - // * Read-only, executable sections come next. - // * Writable, executable sections follow such that .plt on - // architectures where it needs to be writable will be placed - // between .text and .data. - // * Writable sections come last, such that .bss lands at the very - // end of the last PT_LOAD. - bool isExec = sec->flags & SHF_EXECINSTR; - bool isWrite = sec->flags & SHF_WRITE; - - if (isExec) { - if (isWrite) - rank |= RF_EXEC_WRITE; - else - rank |= RF_EXEC; - } else if (isWrite) { - rank |= RF_WRITE; - } else if (sec->type == SHT_PROGBITS) { - // Make non-executable and non-writable PROGBITS sections (e.g .rodata - // .eh_frame) closer to .text. They likely contain PC or GOT relative - // relocations and there could be relocation overflow if other huge sections - // (.dynstr .dynsym) were placed in between. - rank |= RF_RODATA; - } - - // Place RelRo sections first. After considering SHT_NOBITS below, the - // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), - // where | marks where page alignment happens. An alternative ordering is - // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may - // waste more bytes due to 2 alignment places. - if (!isRelroSection(sec)) - rank |= RF_NOT_RELRO; - - // If we got here we know that both A and B are in the same PT_LOAD. - - // The TLS initialization block needs to be a single contiguous block in a R/W - // PT_LOAD, so stick TLS sections directly before the other RelRo R/W - // sections. Since p_filesz can be less than p_memsz, place NOBITS sections - // after PROGBITS. - if (!(sec->flags & SHF_TLS)) - rank |= RF_NOT_TLS; - - // Within TLS sections, or within other RelRo sections, or within non-RelRo - // sections, place non-NOBITS sections first. - if (sec->type == SHT_NOBITS) - rank |= RF_BSS; - - // Some architectures have additional ordering restrictions for sections - // within the same PT_LOAD. - if (config->emachine == EM_PPC64) { - // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections - // that we would like to make sure appear is a specific order to maximize - // their coverage by a single signed 16-bit offset from the TOC base - // pointer. Conversely, the special .tocbss section should be first among - // all SHT_NOBITS sections. This will put it next to the loaded special - // PPC64 sections (and, thus, within reach of the TOC base pointer). - StringRef name = sec->name; - if (name != ".tocbss") - rank |= RF_PPC_NOT_TOCBSS; - - if (name == ".toc1") - rank |= RF_PPC_TOCL; - - if (name == ".toc") - rank |= RF_PPC_TOC; - - if (name == ".got") - rank |= RF_PPC_GOT; - - if (name == ".branch_lt") - rank |= RF_PPC_BRANCH_LT; - } - - if (config->emachine == EM_MIPS) { - // All sections with SHF_MIPS_GPREL flag should be grouped together - // because data in these sections is addressable with a gp relative address. - if (sec->flags & SHF_MIPS_GPREL) - rank |= RF_MIPS_GPREL; - - if (sec->name != ".got") - rank |= RF_MIPS_NOT_GOT; - } - - return rank; -} - -static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { - const OutputSection *a = cast<OutputSection>(aCmd); - const OutputSection *b = cast<OutputSection>(bCmd); - - if (a->sortRank != b->sortRank) - return a->sortRank < b->sortRank; - - if (!(a->sortRank & RF_NOT_ADDR_SET)) - return config->sectionStartMap.lookup(a->name) < - config->sectionStartMap.lookup(b->name); - return false; -} - -void PhdrEntry::add(OutputSection *sec) { - lastSec = sec; - if (!firstSec) - firstSec = sec; - p_align = std::max(p_align, sec->alignment); - if (p_type == PT_LOAD) - sec->ptLoad = this; -} - -// The beginning and the ending of .rel[a].plt section are marked -// with __rel[a]_iplt_{start,end} symbols if it is a statically linked -// executable. The runtime needs these symbols in order to resolve -// all IRELATIVE relocs on startup. For dynamic executables, we don't -// need these symbols, since IRELATIVE relocs are resolved through GOT -// and PLT. For details, see http://www.airs.com/blog/archives/403. -template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { - if (config->relocatable || needsInterpSection()) - return; - - // By default, __rela_iplt_{start,end} belong to a dummy section 0 - // because .rela.plt might be empty and thus removed from output. - // We'll override Out::elfHeader with In.relaIplt later when we are - // sure that .rela.plt exists in output. - ElfSym::relaIpltStart = addOptionalRegular( - config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", - Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); - - ElfSym::relaIpltEnd = addOptionalRegular( - config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", - Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); -} - -template <class ELFT> -void Writer<ELFT>::forEachRelSec( - llvm::function_ref<void(InputSectionBase &)> fn) { - // Scan all relocations. Each relocation goes through a series - // of tests to determine if it needs special treatment, such as - // creating GOT, PLT, copy relocations, etc. - // Note that relocations for non-alloc sections are directly - // processed by InputSection::relocateNonAlloc. - for (InputSectionBase *isec : inputSections) - if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) - fn(*isec); - for (Partition &part : partitions) { - for (EhInputSection *es : part.ehFrame->sections) - fn(*es); - if (part.armExidx && part.armExidx->isLive()) - for (InputSection *ex : part.armExidx->exidxSections) - fn(*ex); - } -} - -// This function generates assignments for predefined symbols (e.g. _end or -// _etext) and inserts them into the commands sequence to be processed at the -// appropriate time. This ensures that the value is going to be correct by the -// time any references to these symbols are processed and is equivalent to -// defining these symbols explicitly in the linker script. -template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { - if (ElfSym::globalOffsetTable) { - // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually - // to the start of the .got or .got.plt section. - InputSection *gotSection = in.gotPlt; - if (!target->gotBaseSymInGotPlt) - gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) - : cast<InputSection>(in.got); - ElfSym::globalOffsetTable->section = gotSection; - } - - // .rela_iplt_{start,end} mark the start and the end of .rela.plt section. - if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { - ElfSym::relaIpltStart->section = in.relaIplt; - ElfSym::relaIpltEnd->section = in.relaIplt; - ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); - } - - PhdrEntry *last = nullptr; - PhdrEntry *lastRO = nullptr; - - for (Partition &part : partitions) { - for (PhdrEntry *p : part.phdrs) { - if (p->p_type != PT_LOAD) - continue; - last = p; - if (!(p->p_flags & PF_W)) - lastRO = p; - } - } - - if (lastRO) { - // _etext is the first location after the last read-only loadable segment. - if (ElfSym::etext1) - ElfSym::etext1->section = lastRO->lastSec; - if (ElfSym::etext2) - ElfSym::etext2->section = lastRO->lastSec; - } - - if (last) { - // _edata points to the end of the last mapped initialized section. - OutputSection *edata = nullptr; - for (OutputSection *os : outputSections) { - if (os->type != SHT_NOBITS) - edata = os; - if (os == last->lastSec) - break; - } - - if (ElfSym::edata1) - ElfSym::edata1->section = edata; - if (ElfSym::edata2) - ElfSym::edata2->section = edata; - - // _end is the first location after the uninitialized data region. - if (ElfSym::end1) - ElfSym::end1->section = last->lastSec; - if (ElfSym::end2) - ElfSym::end2->section = last->lastSec; - } - - if (ElfSym::bss) - ElfSym::bss->section = findSection(".bss"); - - // Setup MIPS _gp_disp/__gnu_local_gp symbols which should - // be equal to the _gp symbol's value. - if (ElfSym::mipsGp) { - // Find GP-relative section with the lowest address - // and use this address to calculate default _gp value. - for (OutputSection *os : outputSections) { - if (os->flags & SHF_MIPS_GPREL) { - ElfSym::mipsGp->section = os; - ElfSym::mipsGp->value = 0x7ff0; - break; - } - } - } -} - -// We want to find how similar two ranks are. -// The more branches in getSectionRank that match, the more similar they are. -// Since each branch corresponds to a bit flag, we can just use -// countLeadingZeros. -static int getRankProximityAux(OutputSection *a, OutputSection *b) { - return countLeadingZeros(a->sortRank ^ b->sortRank); -} - -static int getRankProximity(OutputSection *a, BaseCommand *b) { - auto *sec = dyn_cast<OutputSection>(b); - return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; -} - -// When placing orphan sections, we want to place them after symbol assignments -// so that an orphan after -// begin_foo = .; -// foo : { *(foo) } -// end_foo = .; -// doesn't break the intended meaning of the begin/end symbols. -// We don't want to go over sections since findOrphanPos is the -// one in charge of deciding the order of the sections. -// We don't want to go over changes to '.', since doing so in -// rx_sec : { *(rx_sec) } -// . = ALIGN(0x1000); -// /* The RW PT_LOAD starts here*/ -// rw_sec : { *(rw_sec) } -// would mean that the RW PT_LOAD would become unaligned. -static bool shouldSkip(BaseCommand *cmd) { - if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) - return assign->name != "."; - return false; -} - -// We want to place orphan sections so that they share as much -// characteristics with their neighbors as possible. For example, if -// both are rw, or both are tls. -static std::vector<BaseCommand *>::iterator -findOrphanPos(std::vector<BaseCommand *>::iterator b, - std::vector<BaseCommand *>::iterator e) { - OutputSection *sec = cast<OutputSection>(*e); - - // Find the first element that has as close a rank as possible. - auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { - return getRankProximity(sec, a) < getRankProximity(sec, b); - }); - if (i == e) - return e; - - // Consider all existing sections with the same proximity. - int proximity = getRankProximity(sec, *i); - for (; i != e; ++i) { - auto *curSec = dyn_cast<OutputSection>(*i); - if (!curSec || !curSec->hasInputSections) - continue; - if (getRankProximity(sec, curSec) != proximity || - sec->sortRank < curSec->sortRank) - break; - } - - auto isOutputSecWithInputSections = [](BaseCommand *cmd) { - auto *os = dyn_cast<OutputSection>(cmd); - return os && os->hasInputSections; - }; - auto j = std::find_if(llvm::make_reverse_iterator(i), - llvm::make_reverse_iterator(b), - isOutputSecWithInputSections); - i = j.base(); - - // As a special case, if the orphan section is the last section, put - // it at the very end, past any other commands. - // This matches bfd's behavior and is convenient when the linker script fully - // specifies the start of the file, but doesn't care about the end (the non - // alloc sections for example). - auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); - if (nextSec == e) - return e; - - while (i != e && shouldSkip(*i)) - ++i; - return i; -} - -// Builds section order for handling --symbol-ordering-file. -static DenseMap<const InputSectionBase *, int> buildSectionOrder() { - DenseMap<const InputSectionBase *, int> sectionOrder; - // Use the rarely used option -call-graph-ordering-file to sort sections. - if (!config->callGraphProfile.empty()) - return computeCallGraphProfileOrder(); - - if (config->symbolOrderingFile.empty()) - return sectionOrder; - - struct SymbolOrderEntry { - int priority; - bool present; - }; - - // Build a map from symbols to their priorities. Symbols that didn't - // appear in the symbol ordering file have the lowest priority 0. - // All explicitly mentioned symbols have negative (higher) priorities. - DenseMap<StringRef, SymbolOrderEntry> symbolOrder; - int priority = -config->symbolOrderingFile.size(); - for (StringRef s : config->symbolOrderingFile) - symbolOrder.insert({s, {priority++, false}}); - - // Build a map from sections to their priorities. - auto addSym = [&](Symbol &sym) { - auto it = symbolOrder.find(sym.getName()); - if (it == symbolOrder.end()) - return; - SymbolOrderEntry &ent = it->second; - ent.present = true; - - maybeWarnUnorderableSymbol(&sym); - - if (auto *d = dyn_cast<Defined>(&sym)) { - if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { - int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; - priority = std::min(priority, ent.priority); - } - } - }; - - // We want both global and local symbols. We get the global ones from the - // symbol table and iterate the object files for the local ones. - symtab->forEachSymbol([&](Symbol *sym) { - if (!sym->isLazy()) - addSym(*sym); - }); - - for (InputFile *file : objectFiles) - for (Symbol *sym : file->getSymbols()) - if (sym->isLocal()) - addSym(*sym); - - if (config->warnSymbolOrdering) - for (auto orderEntry : symbolOrder) - if (!orderEntry.second.present) - warn("symbol ordering file: no such symbol: " + orderEntry.first); - - return sectionOrder; -} - -// Sorts the sections in ISD according to the provided section order. -static void -sortISDBySectionOrder(InputSectionDescription *isd, - const DenseMap<const InputSectionBase *, int> &order) { - std::vector<InputSection *> unorderedSections; - std::vector<std::pair<InputSection *, int>> orderedSections; - uint64_t unorderedSize = 0; - - for (InputSection *isec : isd->sections) { - auto i = order.find(isec); - if (i == order.end()) { - unorderedSections.push_back(isec); - unorderedSize += isec->getSize(); - continue; - } - orderedSections.push_back({isec, i->second}); - } - llvm::sort(orderedSections, [&](std::pair<InputSection *, int> a, - std::pair<InputSection *, int> b) { - return a.second < b.second; - }); - - // Find an insertion point for the ordered section list in the unordered - // section list. On targets with limited-range branches, this is the mid-point - // of the unordered section list. This decreases the likelihood that a range - // extension thunk will be needed to enter or exit the ordered region. If the - // ordered section list is a list of hot functions, we can generally expect - // the ordered functions to be called more often than the unordered functions, - // making it more likely that any particular call will be within range, and - // therefore reducing the number of thunks required. - // - // For example, imagine that you have 8MB of hot code and 32MB of cold code. - // If the layout is: - // - // 8MB hot - // 32MB cold - // - // only the first 8-16MB of the cold code (depending on which hot function it - // is actually calling) can call the hot code without a range extension thunk. - // However, if we use this layout: - // - // 16MB cold - // 8MB hot - // 16MB cold - // - // both the last 8-16MB of the first block of cold code and the first 8-16MB - // of the second block of cold code can call the hot code without a thunk. So - // we effectively double the amount of code that could potentially call into - // the hot code without a thunk. - size_t insPt = 0; - if (target->getThunkSectionSpacing() && !orderedSections.empty()) { - uint64_t unorderedPos = 0; - for (; insPt != unorderedSections.size(); ++insPt) { - unorderedPos += unorderedSections[insPt]->getSize(); - if (unorderedPos > unorderedSize / 2) - break; - } - } - - isd->sections.clear(); - for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) - isd->sections.push_back(isec); - for (std::pair<InputSection *, int> p : orderedSections) - isd->sections.push_back(p.first); - for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) - isd->sections.push_back(isec); -} - -static void sortSection(OutputSection *sec, - const DenseMap<const InputSectionBase *, int> &order) { - StringRef name = sec->name; - - // Sort input sections by section name suffixes for - // __attribute__((init_priority(N))). - if (name == ".init_array" || name == ".fini_array") { - if (!script->hasSectionsCommand) - sec->sortInitFini(); - return; - } - - // Sort input sections by the special rule for .ctors and .dtors. - if (name == ".ctors" || name == ".dtors") { - if (!script->hasSectionsCommand) - sec->sortCtorsDtors(); - return; - } - - // Never sort these. - if (name == ".init" || name == ".fini") - return; - - // .toc is allocated just after .got and is accessed using GOT-relative - // relocations. Object files compiled with small code model have an - // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. - // To reduce the risk of relocation overflow, .toc contents are sorted so that - // sections having smaller relocation offsets are at beginning of .toc - if (config->emachine == EM_PPC64 && name == ".toc") { - if (script->hasSectionsCommand) - return; - assert(sec->sectionCommands.size() == 1); - auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); - llvm::stable_sort(isd->sections, - [](const InputSection *a, const InputSection *b) -> bool { - return a->file->ppc64SmallCodeModelTocRelocs && - !b->file->ppc64SmallCodeModelTocRelocs; - }); - return; - } - - // Sort input sections by priority using the list provided - // by --symbol-ordering-file. - if (!order.empty()) - for (BaseCommand *b : sec->sectionCommands) - if (auto *isd = dyn_cast<InputSectionDescription>(b)) - sortISDBySectionOrder(isd, order); -} - -// If no layout was provided by linker script, we want to apply default -// sorting for special input sections. This also handles --symbol-ordering-file. -template <class ELFT> void Writer<ELFT>::sortInputSections() { - // Build the order once since it is expensive. - DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); - for (BaseCommand *base : script->sectionCommands) - if (auto *sec = dyn_cast<OutputSection>(base)) - sortSection(sec, order); -} - -template <class ELFT> void Writer<ELFT>::sortSections() { - script->adjustSectionsBeforeSorting(); - - // Don't sort if using -r. It is not necessary and we want to preserve the - // relative order for SHF_LINK_ORDER sections. - if (config->relocatable) - return; - - sortInputSections(); - - for (BaseCommand *base : script->sectionCommands) { - auto *os = dyn_cast<OutputSection>(base); - if (!os) - continue; - os->sortRank = getSectionRank(os); - - // We want to assign rude approximation values to outSecOff fields - // to know the relative order of the input sections. We use it for - // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). - uint64_t i = 0; - for (InputSection *sec : getInputSections(os)) - sec->outSecOff = i++; - } - - if (!script->hasSectionsCommand) { - // We know that all the OutputSections are contiguous in this case. - auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; - std::stable_sort( - llvm::find_if(script->sectionCommands, isSection), - llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), - compareSections); - return; - } - - // Orphan sections are sections present in the input files which are - // not explicitly placed into the output file by the linker script. - // - // The sections in the linker script are already in the correct - // order. We have to figuere out where to insert the orphan - // sections. - // - // The order of the sections in the script is arbitrary and may not agree with - // compareSections. This means that we cannot easily define a strict weak - // ordering. To see why, consider a comparison of a section in the script and - // one not in the script. We have a two simple options: - // * Make them equivalent (a is not less than b, and b is not less than a). - // The problem is then that equivalence has to be transitive and we can - // have sections a, b and c with only b in a script and a less than c - // which breaks this property. - // * Use compareSectionsNonScript. Given that the script order doesn't have - // to match, we can end up with sections a, b, c, d where b and c are in the - // script and c is compareSectionsNonScript less than b. In which case d - // can be equivalent to c, a to b and d < a. As a concrete example: - // .a (rx) # not in script - // .b (rx) # in script - // .c (ro) # in script - // .d (ro) # not in script - // - // The way we define an order then is: - // * Sort only the orphan sections. They are in the end right now. - // * Move each orphan section to its preferred position. We try - // to put each section in the last position where it can share - // a PT_LOAD. - // - // There is some ambiguity as to where exactly a new entry should be - // inserted, because Commands contains not only output section - // commands but also other types of commands such as symbol assignment - // expressions. There's no correct answer here due to the lack of the - // formal specification of the linker script. We use heuristics to - // determine whether a new output command should be added before or - // after another commands. For the details, look at shouldSkip - // function. - - auto i = script->sectionCommands.begin(); - auto e = script->sectionCommands.end(); - auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { - if (auto *sec = dyn_cast<OutputSection>(base)) - return sec->sectionIndex == UINT32_MAX; - return false; - }); - - // Sort the orphan sections. - std::stable_sort(nonScriptI, e, compareSections); - - // As a horrible special case, skip the first . assignment if it is before any - // section. We do this because it is common to set a load address by starting - // the script with ". = 0xabcd" and the expectation is that every section is - // after that. - auto firstSectionOrDotAssignment = - std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); - if (firstSectionOrDotAssignment != e && - isa<SymbolAssignment>(**firstSectionOrDotAssignment)) - ++firstSectionOrDotAssignment; - i = firstSectionOrDotAssignment; - - while (nonScriptI != e) { - auto pos = findOrphanPos(i, nonScriptI); - OutputSection *orphan = cast<OutputSection>(*nonScriptI); - - // As an optimization, find all sections with the same sort rank - // and insert them with one rotate. - unsigned rank = orphan->sortRank; - auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { - return cast<OutputSection>(cmd)->sortRank != rank; - }); - std::rotate(pos, nonScriptI, end); - nonScriptI = end; - } - - script->adjustSectionsAfterSorting(); -} - -static bool compareByFilePosition(InputSection *a, InputSection *b) { - InputSection *la = a->getLinkOrderDep(); - InputSection *lb = b->getLinkOrderDep(); - OutputSection *aOut = la->getParent(); - OutputSection *bOut = lb->getParent(); - - if (aOut != bOut) - return aOut->sectionIndex < bOut->sectionIndex; - return la->outSecOff < lb->outSecOff; -} - -template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { - for (OutputSection *sec : outputSections) { - if (!(sec->flags & SHF_LINK_ORDER)) - continue; - - // Link order may be distributed across several InputSectionDescriptions - // but sort must consider them all at once. - std::vector<InputSection **> scriptSections; - std::vector<InputSection *> sections; - for (BaseCommand *base : sec->sectionCommands) { - if (auto *isd = dyn_cast<InputSectionDescription>(base)) { - for (InputSection *&isec : isd->sections) { - scriptSections.push_back(&isec); - sections.push_back(isec); - } - } - } - - // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated - // this processing inside the ARMExidxsyntheticsection::finalizeContents(). - if (!config->relocatable && config->emachine == EM_ARM && - sec->type == SHT_ARM_EXIDX) - continue; - - llvm::stable_sort(sections, compareByFilePosition); - - for (int i = 0, n = sections.size(); i < n; ++i) - *scriptSections[i] = sections[i]; - } -} - -// We need to generate and finalize the content that depends on the address of -// InputSections. As the generation of the content may also alter InputSection -// addresses we must converge to a fixed point. We do that here. See the comment -// in Writer<ELFT>::finalizeSections(). -template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { - ThunkCreator tc; - AArch64Err843419Patcher a64p; - - // For some targets, like x86, this loop iterates only once. - for (;;) { - bool changed = false; - - script->assignAddresses(); - - if (target->needsThunks) - changed |= tc.createThunks(outputSections); - - if (config->fixCortexA53Errata843419) { - if (changed) - script->assignAddresses(); - changed |= a64p.createFixes(); - } - - if (in.mipsGot) - in.mipsGot->updateAllocSize(); - - for (Partition &part : partitions) { - changed |= part.relaDyn->updateAllocSize(); - if (part.relrDyn) - changed |= part.relrDyn->updateAllocSize(); - } - - if (!changed) - return; - } -} - -static void finalizeSynthetic(SyntheticSection *sec) { - if (sec && sec->isNeeded() && sec->getParent()) - sec->finalizeContents(); -} - -// In order to allow users to manipulate linker-synthesized sections, -// we had to add synthetic sections to the input section list early, -// even before we make decisions whether they are needed. This allows -// users to write scripts like this: ".mygot : { .got }". -// -// Doing it has an unintended side effects. If it turns out that we -// don't need a .got (for example) at all because there's no -// relocation that needs a .got, we don't want to emit .got. -// -// To deal with the above problem, this function is called after -// scanRelocations is called to remove synthetic sections that turn -// out to be empty. -static void removeUnusedSyntheticSections() { - // All input synthetic sections that can be empty are placed after - // all regular ones. We iterate over them all and exit at first - // non-synthetic. - for (InputSectionBase *s : llvm::reverse(inputSections)) { - SyntheticSection *ss = dyn_cast<SyntheticSection>(s); - if (!ss) - return; - OutputSection *os = ss->getParent(); - if (!os || ss->isNeeded()) - continue; - - // If we reach here, then SS is an unused synthetic section and we want to - // remove it from corresponding input section description of output section. - for (BaseCommand *b : os->sectionCommands) - if (auto *isd = dyn_cast<InputSectionDescription>(b)) - llvm::erase_if(isd->sections, - [=](InputSection *isec) { return isec == ss; }); - } -} - -// Returns true if a symbol can be replaced at load-time by a symbol -// with the same name defined in other ELF executable or DSO. -static bool computeIsPreemptible(const Symbol &b) { - assert(!b.isLocal()); - - // Only symbols that appear in dynsym can be preempted. - if (!b.includeInDynsym()) - return false; - - // Only default visibility symbols can be preempted. - if (b.visibility != STV_DEFAULT) - return false; - - // At this point copy relocations have not been created yet, so any - // symbol that is not defined locally is preemptible. - if (!b.isDefined()) - return true; - - // If we have a dynamic list it specifies which local symbols are preemptible. - if (config->hasDynamicList) - return false; - - if (!config->shared) - return false; - - // -Bsymbolic means that definitions are not preempted. - if (config->bsymbolic || (config->bsymbolicFunctions && b.isFunc())) - return false; - return true; -} - -// Create output section objects and add them to OutputSections. -template <class ELFT> void Writer<ELFT>::finalizeSections() { - Out::preinitArray = findSection(".preinit_array"); - Out::initArray = findSection(".init_array"); - Out::finiArray = findSection(".fini_array"); - - // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop - // symbols for sections, so that the runtime can get the start and end - // addresses of each section by section name. Add such symbols. - if (!config->relocatable) { - addStartEndSymbols(); - for (BaseCommand *base : script->sectionCommands) - if (auto *sec = dyn_cast<OutputSection>(base)) - addStartStopSymbols(sec); - } - - // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. - // It should be okay as no one seems to care about the type. - // Even the author of gold doesn't remember why gold behaves that way. - // https://sourceware.org/ml/binutils/2002-03/msg00360.html - if (mainPart->dynamic->parent) - symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, - STV_HIDDEN, STT_NOTYPE, - /*value=*/0, /*size=*/0, mainPart->dynamic}); - - // Define __rel[a]_iplt_{start,end} symbols if needed. - addRelIpltSymbols(); - - // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined. - // This symbol should only be defined in an executable. - if (config->emachine == EM_RISCV && !config->shared) - ElfSym::riscvGlobalPointer = - addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800, - STV_DEFAULT, STB_GLOBAL); - - if (config->emachine == EM_X86_64) { - // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a - // way that: - // - // 1) Without relaxation: it produces a dynamic TLSDESC relocation that - // computes 0. - // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in - // the TLS block). - // - // 2) is special cased in @tpoff computation. To satisfy 1), we define it as - // an absolute symbol of zero. This is different from GNU linkers which - // define _TLS_MODULE_BASE_ relative to the first TLS section. - Symbol *s = symtab->find("_TLS_MODULE_BASE_"); - if (s && s->isUndefined()) { - s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, - STT_TLS, /*value=*/0, 0, - /*section=*/nullptr}); - ElfSym::tlsModuleBase = cast<Defined>(s); - } - } - - // This responsible for splitting up .eh_frame section into - // pieces. The relocation scan uses those pieces, so this has to be - // earlier. - for (Partition &part : partitions) - finalizeSynthetic(part.ehFrame); - - symtab->forEachSymbol([](Symbol *s) { - if (!s->isPreemptible) - s->isPreemptible = computeIsPreemptible(*s); - }); - - // Scan relocations. This must be done after every symbol is declared so that - // we can correctly decide if a dynamic relocation is needed. - if (!config->relocatable) { - forEachRelSec(scanRelocations<ELFT>); - reportUndefinedSymbols<ELFT>(); - } - - addIRelativeRelocs(); - - if (in.plt && in.plt->isNeeded()) - in.plt->addSymbols(); - if (in.iplt && in.iplt->isNeeded()) - in.iplt->addSymbols(); - - if (!config->allowShlibUndefined) { - // Error on undefined symbols in a shared object, if all of its DT_NEEDED - // entires are seen. These cases would otherwise lead to runtime errors - // reported by the dynamic linker. - // - // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to - // catch more cases. That is too much for us. Our approach resembles the one - // used in ld.gold, achieves a good balance to be useful but not too smart. - for (SharedFile *file : sharedFiles) - file->allNeededIsKnown = - llvm::all_of(file->dtNeeded, [&](StringRef needed) { - return symtab->soNames.count(needed); - }); - - symtab->forEachSymbol([](Symbol *sym) { - if (sym->isUndefined() && !sym->isWeak()) - if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) - if (f->allNeededIsKnown) - error(toString(f) + ": undefined reference to " + toString(*sym)); - }); - } - - // Now that we have defined all possible global symbols including linker- - // synthesized ones. Visit all symbols to give the finishing touches. - symtab->forEachSymbol([](Symbol *sym) { - if (!includeInSymtab(*sym)) - return; - if (in.symTab) - in.symTab->addSymbol(sym); - - if (sym->includeInDynsym()) { - partitions[sym->partition - 1].dynSymTab->addSymbol(sym); - if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) - if (file->isNeeded && !sym->isUndefined()) - addVerneed(sym); - } - }); - - // We also need to scan the dynamic relocation tables of the other partitions - // and add any referenced symbols to the partition's dynsym. - for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { - DenseSet<Symbol *> syms; - for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) - syms.insert(e.sym); - for (DynamicReloc &reloc : part.relaDyn->relocs) - if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) - part.dynSymTab->addSymbol(reloc.sym); - } - - // Do not proceed if there was an undefined symbol. - if (errorCount()) - return; - - if (in.mipsGot) - in.mipsGot->build(); - - removeUnusedSyntheticSections(); - - sortSections(); - - // Now that we have the final list, create a list of all the - // OutputSections for convenience. - for (BaseCommand *base : script->sectionCommands) - if (auto *sec = dyn_cast<OutputSection>(base)) - outputSections.push_back(sec); - - // Prefer command line supplied address over other constraints. - for (OutputSection *sec : outputSections) { - auto i = config->sectionStartMap.find(sec->name); - if (i != config->sectionStartMap.end()) - sec->addrExpr = [=] { return i->second; }; - } - - // This is a bit of a hack. A value of 0 means undef, so we set it - // to 1 to make __ehdr_start defined. The section number is not - // particularly relevant. - Out::elfHeader->sectionIndex = 1; - - for (size_t i = 0, e = outputSections.size(); i != e; ++i) { - OutputSection *sec = outputSections[i]; - sec->sectionIndex = i + 1; - sec->shName = in.shStrTab->addString(sec->name); - } - - // Binary and relocatable output does not have PHDRS. - // The headers have to be created before finalize as that can influence the - // image base and the dynamic section on mips includes the image base. - if (!config->relocatable && !config->oFormatBinary) { - for (Partition &part : partitions) { - part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() - : createPhdrs(part); - if (config->emachine == EM_ARM) { - // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME - addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); - } - if (config->emachine == EM_MIPS) { - // Add separate segments for MIPS-specific sections. - addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); - addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); - addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); - } - } - Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); - - // Find the TLS segment. This happens before the section layout loop so that - // Android relocation packing can look up TLS symbol addresses. We only need - // to care about the main partition here because all TLS symbols were moved - // to the main partition (see MarkLive.cpp). - for (PhdrEntry *p : mainPart->phdrs) - if (p->p_type == PT_TLS) - Out::tlsPhdr = p; - } - - // Some symbols are defined in term of program headers. Now that we - // have the headers, we can find out which sections they point to. - setReservedSymbolSections(); - - finalizeSynthetic(in.bss); - finalizeSynthetic(in.bssRelRo); - finalizeSynthetic(in.symTabShndx); - finalizeSynthetic(in.shStrTab); - finalizeSynthetic(in.strTab); - finalizeSynthetic(in.got); - finalizeSynthetic(in.mipsGot); - finalizeSynthetic(in.igotPlt); - finalizeSynthetic(in.gotPlt); - finalizeSynthetic(in.relaIplt); - finalizeSynthetic(in.relaPlt); - finalizeSynthetic(in.plt); - finalizeSynthetic(in.iplt); - finalizeSynthetic(in.ppc32Got2); - finalizeSynthetic(in.riscvSdata); - finalizeSynthetic(in.partIndex); - - // Dynamic section must be the last one in this list and dynamic - // symbol table section (dynSymTab) must be the first one. - for (Partition &part : partitions) { - finalizeSynthetic(part.armExidx); - finalizeSynthetic(part.dynSymTab); - finalizeSynthetic(part.gnuHashTab); - finalizeSynthetic(part.hashTab); - finalizeSynthetic(part.verDef); - finalizeSynthetic(part.relaDyn); - finalizeSynthetic(part.relrDyn); - finalizeSynthetic(part.ehFrameHdr); - finalizeSynthetic(part.verSym); - finalizeSynthetic(part.verNeed); - finalizeSynthetic(part.dynamic); - } - - if (!script->hasSectionsCommand && !config->relocatable) - fixSectionAlignments(); - - // SHFLinkOrder processing must be processed after relative section placements are - // known but before addresses are allocated. - resolveShfLinkOrder(); - - // This is used to: - // 1) Create "thunks": - // Jump instructions in many ISAs have small displacements, and therefore - // they cannot jump to arbitrary addresses in memory. For example, RISC-V - // JAL instruction can target only +-1 MiB from PC. It is a linker's - // responsibility to create and insert small pieces of code between - // sections to extend the ranges if jump targets are out of range. Such - // code pieces are called "thunks". - // - // We add thunks at this stage. We couldn't do this before this point - // because this is the earliest point where we know sizes of sections and - // their layouts (that are needed to determine if jump targets are in - // range). - // - // 2) Update the sections. We need to generate content that depends on the - // address of InputSections. For example, MIPS GOT section content or - // android packed relocations sections content. - // - // 3) Assign the final values for the linker script symbols. Linker scripts - // sometimes using forward symbol declarations. We want to set the correct - // values. They also might change after adding the thunks. - finalizeAddressDependentContent(); - - // finalizeAddressDependentContent may have added local symbols to the static symbol table. - finalizeSynthetic(in.symTab); - finalizeSynthetic(in.ppc64LongBranchTarget); - - // Fill other section headers. The dynamic table is finalized - // at the end because some tags like RELSZ depend on result - // of finalizing other sections. - for (OutputSection *sec : outputSections) - sec->finalize(); -} - -// Ensure data sections are not mixed with executable sections when -// -execute-only is used. -execute-only is a feature to make pages executable -// but not readable, and the feature is currently supported only on AArch64. -template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { - if (!config->executeOnly) - return; - - for (OutputSection *os : outputSections) - if (os->flags & SHF_EXECINSTR) - for (InputSection *isec : getInputSections(os)) - if (!(isec->flags & SHF_EXECINSTR)) - error("cannot place " + toString(isec) + " into " + toString(os->name) + - ": -execute-only does not support intermingling data and code"); -} - -// The linker is expected to define SECNAME_start and SECNAME_end -// symbols for a few sections. This function defines them. -template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { - // If a section does not exist, there's ambiguity as to how we - // define _start and _end symbols for an init/fini section. Since - // the loader assume that the symbols are always defined, we need to - // always define them. But what value? The loader iterates over all - // pointers between _start and _end to run global ctors/dtors, so if - // the section is empty, their symbol values don't actually matter - // as long as _start and _end point to the same location. - // - // That said, we don't want to set the symbols to 0 (which is - // probably the simplest value) because that could cause some - // program to fail to link due to relocation overflow, if their - // program text is above 2 GiB. We use the address of the .text - // section instead to prevent that failure. - // - // In a rare sitaution, .text section may not exist. If that's the - // case, use the image base address as a last resort. - OutputSection *Default = findSection(".text"); - if (!Default) - Default = Out::elfHeader; - - auto define = [=](StringRef start, StringRef end, OutputSection *os) { - if (os) { - addOptionalRegular(start, os, 0); - addOptionalRegular(end, os, -1); - } else { - addOptionalRegular(start, Default, 0); - addOptionalRegular(end, Default, 0); - } - }; - - define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); - define("__init_array_start", "__init_array_end", Out::initArray); - define("__fini_array_start", "__fini_array_end", Out::finiArray); - - if (OutputSection *sec = findSection(".ARM.exidx")) - define("__exidx_start", "__exidx_end", sec); -} - -// If a section name is valid as a C identifier (which is rare because of -// the leading '.'), linkers are expected to define __start_<secname> and -// __stop_<secname> symbols. They are at beginning and end of the section, -// respectively. This is not requested by the ELF standard, but GNU ld and -// gold provide the feature, and used by many programs. -template <class ELFT> -void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { - StringRef s = sec->name; - if (!isValidCIdentifier(s)) - return; - addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED); - addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED); -} - -static bool needsPtLoad(OutputSection *sec) { - if (!(sec->flags & SHF_ALLOC) || sec->noload) - return false; - - // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is - // responsible for allocating space for them, not the PT_LOAD that - // contains the TLS initialization image. - if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) - return false; - return true; -} - -// Linker scripts are responsible for aligning addresses. Unfortunately, most -// linker scripts are designed for creating two PT_LOADs only, one RX and one -// RW. This means that there is no alignment in the RO to RX transition and we -// cannot create a PT_LOAD there. -static uint64_t computeFlags(uint64_t flags) { - if (config->omagic) - return PF_R | PF_W | PF_X; - if (config->executeOnly && (flags & PF_X)) - return flags & ~PF_R; - if (config->singleRoRx && !(flags & PF_W)) - return flags | PF_X; - return flags; -} - -// Decide which program headers to create and which sections to include in each -// one. -template <class ELFT> -std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { - std::vector<PhdrEntry *> ret; - auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { - ret.push_back(make<PhdrEntry>(type, flags)); - return ret.back(); - }; - - unsigned partNo = part.getNumber(); - bool isMain = partNo == 1; - - // The first phdr entry is PT_PHDR which describes the program header itself. - if (isMain) - addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); - else - addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); - - // PT_INTERP must be the second entry if exists. - if (OutputSection *cmd = findSection(".interp", partNo)) - addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); - - // Add the first PT_LOAD segment for regular output sections. - uint64_t flags = computeFlags(PF_R); - PhdrEntry *load = nullptr; - - // Add the headers. We will remove them if they don't fit. - // In the other partitions the headers are ordinary sections, so they don't - // need to be added here. - if (isMain) { - load = addHdr(PT_LOAD, flags); - load->add(Out::elfHeader); - load->add(Out::programHeaders); - } - - // PT_GNU_RELRO includes all sections that should be marked as - // read-only by dynamic linker after proccessing relocations. - // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give - // an error message if more than one PT_GNU_RELRO PHDR is required. - PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); - bool inRelroPhdr = false; - OutputSection *relroEnd = nullptr; - for (OutputSection *sec : outputSections) { - if (sec->partition != partNo || !needsPtLoad(sec)) - continue; - if (isRelroSection(sec)) { - inRelroPhdr = true; - if (!relroEnd) - relRo->add(sec); - else - error("section: " + sec->name + " is not contiguous with other relro" + - " sections"); - } else if (inRelroPhdr) { - inRelroPhdr = false; - relroEnd = sec; - } - } - - for (OutputSection *sec : outputSections) { - if (!(sec->flags & SHF_ALLOC)) - break; - if (!needsPtLoad(sec)) - continue; - - // Normally, sections in partitions other than the current partition are - // ignored. But partition number 255 is a special case: it contains the - // partition end marker (.part.end). It needs to be added to the main - // partition so that a segment is created for it in the main partition, - // which will cause the dynamic loader to reserve space for the other - // partitions. - if (sec->partition != partNo) { - if (isMain && sec->partition == 255) - addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); - continue; - } - - // Segments are contiguous memory regions that has the same attributes - // (e.g. executable or writable). There is one phdr for each segment. - // Therefore, we need to create a new phdr when the next section has - // different flags or is loaded at a discontiguous address or memory - // region using AT or AT> linker script command, respectively. At the same - // time, we don't want to create a separate load segment for the headers, - // even if the first output section has an AT or AT> attribute. - uint64_t newFlags = computeFlags(sec->getPhdrFlags()); - if (!load || - ((sec->lmaExpr || - (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) && - load->lastSec != Out::programHeaders) || - sec->memRegion != load->firstSec->memRegion || flags != newFlags || - sec == relroEnd) { - load = addHdr(PT_LOAD, newFlags); - flags = newFlags; - } - - load->add(sec); - } - - // Add a TLS segment if any. - PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); - for (OutputSection *sec : outputSections) - if (sec->partition == partNo && sec->flags & SHF_TLS) - tlsHdr->add(sec); - if (tlsHdr->firstSec) - ret.push_back(tlsHdr); - - // Add an entry for .dynamic. - if (OutputSection *sec = part.dynamic->getParent()) - addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); - - if (relRo->firstSec) - ret.push_back(relRo); - - // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. - if (part.ehFrame->isNeeded() && part.ehFrameHdr && - part.ehFrame->getParent() && part.ehFrameHdr->getParent()) - addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) - ->add(part.ehFrameHdr->getParent()); - - // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes - // the dynamic linker fill the segment with random data. - if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) - addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); - - // PT_GNU_STACK is a special section to tell the loader to make the - // pages for the stack non-executable. If you really want an executable - // stack, you can pass -z execstack, but that's not recommended for - // security reasons. - unsigned perm = PF_R | PF_W; - if (config->zExecstack) - perm |= PF_X; - addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; - - // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable - // is expected to perform W^X violations, such as calling mprotect(2) or - // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on - // OpenBSD. - if (config->zWxneeded) - addHdr(PT_OPENBSD_WXNEEDED, PF_X); - - // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the - // same alignment. - PhdrEntry *note = nullptr; - for (OutputSection *sec : outputSections) { - if (sec->partition != partNo) - continue; - if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { - if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) - note = addHdr(PT_NOTE, PF_R); - note->add(sec); - } else { - note = nullptr; - } - } - return ret; -} - -template <class ELFT> -void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, - unsigned pType, unsigned pFlags) { - unsigned partNo = part.getNumber(); - auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { - return cmd->partition == partNo && cmd->type == shType; - }); - if (i == outputSections.end()) - return; - - PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); - entry->add(*i); - part.phdrs.push_back(entry); -} - -// The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the -// first section after PT_GNU_RELRO have to be page aligned so that the dynamic -// linker can set the permissions. -template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { - auto pageAlign = [](OutputSection *cmd) { - if (cmd && !cmd->addrExpr) - cmd->addrExpr = [=] { - return alignTo(script->getDot(), config->maxPageSize); - }; - }; - - for (Partition &part : partitions) { - for (const PhdrEntry *p : part.phdrs) - if (p->p_type == PT_LOAD && p->firstSec) - pageAlign(p->firstSec); - } -} - -// Compute an in-file position for a given section. The file offset must be the -// same with its virtual address modulo the page size, so that the loader can -// load executables without any address adjustment. -static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { - // The first section in a PT_LOAD has to have congruent offset and address - // module the page size. - if (os->ptLoad && os->ptLoad->firstSec == os) { - uint64_t alignment = - std::max<uint64_t>(os->ptLoad->p_align, config->maxPageSize); - return alignTo(off, alignment, os->addr); - } - - // File offsets are not significant for .bss sections other than the first one - // in a PT_LOAD. By convention, we keep section offsets monotonically - // increasing rather than setting to zero. - if (os->type == SHT_NOBITS) - return off; - - // If the section is not in a PT_LOAD, we just have to align it. - if (!os->ptLoad) - return alignTo(off, os->alignment); - - // If two sections share the same PT_LOAD the file offset is calculated - // using this formula: Off2 = Off1 + (VA2 - VA1). - OutputSection *first = os->ptLoad->firstSec; - return first->offset + os->addr - first->addr; -} - -// Set an in-file position to a given section and returns the end position of -// the section. -static uint64_t setFileOffset(OutputSection *os, uint64_t off) { - off = computeFileOffset(os, off); - os->offset = off; - - if (os->type == SHT_NOBITS) - return off; - return off + os->size; -} - -template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { - uint64_t off = 0; - for (OutputSection *sec : outputSections) - if (sec->flags & SHF_ALLOC) - off = setFileOffset(sec, off); - fileSize = alignTo(off, config->wordsize); -} - -static std::string rangeToString(uint64_t addr, uint64_t len) { - return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; -} - -// Assign file offsets to output sections. -template <class ELFT> void Writer<ELFT>::assignFileOffsets() { - uint64_t off = 0; - off = setFileOffset(Out::elfHeader, off); - off = setFileOffset(Out::programHeaders, off); - - PhdrEntry *lastRX = nullptr; - for (Partition &part : partitions) - for (PhdrEntry *p : part.phdrs) - if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) - lastRX = p; - - for (OutputSection *sec : outputSections) { - off = setFileOffset(sec, off); - if (script->hasSectionsCommand) - continue; - - // If this is a last section of the last executable segment and that - // segment is the last loadable segment, align the offset of the - // following section to avoid loading non-segments parts of the file. - if (lastRX && lastRX->lastSec == sec) - off = alignTo(off, config->commonPageSize); - } - - sectionHeaderOff = alignTo(off, config->wordsize); - fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); - - // Our logic assumes that sections have rising VA within the same segment. - // With use of linker scripts it is possible to violate this rule and get file - // offset overlaps or overflows. That should never happen with a valid script - // which does not move the location counter backwards and usually scripts do - // not do that. Unfortunately, there are apps in the wild, for example, Linux - // kernel, which control segment distribution explicitly and move the counter - // backwards, so we have to allow doing that to support linking them. We - // perform non-critical checks for overlaps in checkSectionOverlap(), but here - // we want to prevent file size overflows because it would crash the linker. - for (OutputSection *sec : outputSections) { - if (sec->type == SHT_NOBITS) - continue; - if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) - error("unable to place section " + sec->name + " at file offset " + - rangeToString(sec->offset, sec->size) + - "; check your linker script for overflows"); - } -} - -// Finalize the program headers. We call this function after we assign -// file offsets and VAs to all sections. -template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { - for (PhdrEntry *p : part.phdrs) { - OutputSection *first = p->firstSec; - OutputSection *last = p->lastSec; - - if (first) { - p->p_filesz = last->offset - first->offset; - if (last->type != SHT_NOBITS) - p->p_filesz += last->size; - - p->p_memsz = last->addr + last->size - first->addr; - p->p_offset = first->offset; - p->p_vaddr = first->addr; - - // File offsets in partitions other than the main partition are relative - // to the offset of the ELF headers. Perform that adjustment now. - if (part.elfHeader) - p->p_offset -= part.elfHeader->getParent()->offset; - - if (!p->hasLMA) - p->p_paddr = first->getLMA(); - } - - if (p->p_type == PT_LOAD) { - p->p_align = std::max<uint64_t>(p->p_align, config->maxPageSize); - } else if (p->p_type == PT_GNU_RELRO) { - p->p_align = 1; - // The glibc dynamic loader rounds the size down, so we need to round up - // to protect the last page. This is a no-op on FreeBSD which always - // rounds up. - p->p_memsz = alignTo(p->p_memsz, config->commonPageSize); - } - } -} - -// A helper struct for checkSectionOverlap. -namespace { -struct SectionOffset { - OutputSection *sec; - uint64_t offset; -}; -} // namespace - -// Check whether sections overlap for a specific address range (file offsets, -// load and virtual adresses). -static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, - bool isVirtualAddr) { - llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { - return a.offset < b.offset; - }); - - // Finding overlap is easy given a vector is sorted by start position. - // If an element starts before the end of the previous element, they overlap. - for (size_t i = 1, end = sections.size(); i < end; ++i) { - SectionOffset a = sections[i - 1]; - SectionOffset b = sections[i]; - if (b.offset >= a.offset + a.sec->size) - continue; - - // If both sections are in OVERLAY we allow the overlapping of virtual - // addresses, because it is what OVERLAY was designed for. - if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) - continue; - - errorOrWarn("section " + a.sec->name + " " + name + - " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + - " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + - b.sec->name + " range is " + - rangeToString(b.offset, b.sec->size)); - } -} - -// Check for overlapping sections and address overflows. -// -// In this function we check that none of the output sections have overlapping -// file offsets. For SHF_ALLOC sections we also check that the load address -// ranges and the virtual address ranges don't overlap -template <class ELFT> void Writer<ELFT>::checkSections() { - // First, check that section's VAs fit in available address space for target. - for (OutputSection *os : outputSections) - if ((os->addr + os->size < os->addr) || - (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) - errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + - " of size 0x" + utohexstr(os->size) + - " exceeds available address space"); - - // Check for overlapping file offsets. In this case we need to skip any - // section marked as SHT_NOBITS. These sections don't actually occupy space in - // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat - // binary is specified only add SHF_ALLOC sections are added to the output - // file so we skip any non-allocated sections in that case. - std::vector<SectionOffset> fileOffs; - for (OutputSection *sec : outputSections) - if (sec->size > 0 && sec->type != SHT_NOBITS && - (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) - fileOffs.push_back({sec, sec->offset}); - checkOverlap("file", fileOffs, false); - - // When linking with -r there is no need to check for overlapping virtual/load - // addresses since those addresses will only be assigned when the final - // executable/shared object is created. - if (config->relocatable) - return; - - // Checking for overlapping virtual and load addresses only needs to take - // into account SHF_ALLOC sections since others will not be loaded. - // Furthermore, we also need to skip SHF_TLS sections since these will be - // mapped to other addresses at runtime and can therefore have overlapping - // ranges in the file. - std::vector<SectionOffset> vmas; - for (OutputSection *sec : outputSections) - if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) - vmas.push_back({sec, sec->addr}); - checkOverlap("virtual address", vmas, true); - - // Finally, check that the load addresses don't overlap. This will usually be - // the same as the virtual addresses but can be different when using a linker - // script with AT(). - std::vector<SectionOffset> lmas; - for (OutputSection *sec : outputSections) - if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) - lmas.push_back({sec, sec->getLMA()}); - checkOverlap("load address", lmas, false); -} - -// The entry point address is chosen in the following ways. -// -// 1. the '-e' entry command-line option; -// 2. the ENTRY(symbol) command in a linker control script; -// 3. the value of the symbol _start, if present; -// 4. the number represented by the entry symbol, if it is a number; -// 5. the address of the first byte of the .text section, if present; -// 6. the address 0. -static uint64_t getEntryAddr() { - // Case 1, 2 or 3 - if (Symbol *b = symtab->find(config->entry)) - return b->getVA(); - - // Case 4 - uint64_t addr; - if (to_integer(config->entry, addr)) - return addr; - - // Case 5 - if (OutputSection *sec = findSection(".text")) { - if (config->warnMissingEntry) - warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + - utohexstr(sec->addr)); - return sec->addr; - } - - // Case 6 - if (config->warnMissingEntry) - warn("cannot find entry symbol " + config->entry + - "; not setting start address"); - return 0; -} - -static uint16_t getELFType() { - if (config->isPic) - return ET_DYN; - if (config->relocatable) - return ET_REL; - return ET_EXEC; -} - -template <class ELFT> void Writer<ELFT>::writeHeader() { - writeEhdr<ELFT>(Out::bufferStart, *mainPart); - writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); - - auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); - eHdr->e_type = getELFType(); - eHdr->e_entry = getEntryAddr(); - eHdr->e_shoff = sectionHeaderOff; - - // Write the section header table. - // - // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum - // and e_shstrndx fields. When the value of one of these fields exceeds - // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and - // use fields in the section header at index 0 to store - // the value. The sentinel values and fields are: - // e_shnum = 0, SHdrs[0].sh_size = number of sections. - // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. - auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); - size_t num = outputSections.size() + 1; - if (num >= SHN_LORESERVE) - sHdrs->sh_size = num; - else - eHdr->e_shnum = num; - - uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; - if (strTabIndex >= SHN_LORESERVE) { - sHdrs->sh_link = strTabIndex; - eHdr->e_shstrndx = SHN_XINDEX; - } else { - eHdr->e_shstrndx = strTabIndex; - } - - for (OutputSection *sec : outputSections) - sec->writeHeaderTo<ELFT>(++sHdrs); -} - -// Open a result file. -template <class ELFT> void Writer<ELFT>::openFile() { - uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; - if (fileSize != size_t(fileSize) || maxSize < fileSize) { - error("output file too large: " + Twine(fileSize) + " bytes"); - return; - } - - unlinkAsync(config->outputFile); - unsigned flags = 0; - if (!config->relocatable) - flags = FileOutputBuffer::F_executable; - Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = - FileOutputBuffer::create(config->outputFile, fileSize, flags); - - if (!bufferOrErr) { - error("failed to open " + config->outputFile + ": " + - llvm::toString(bufferOrErr.takeError())); - return; - } - buffer = std::move(*bufferOrErr); - Out::bufferStart = buffer->getBufferStart(); -} - -template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { - for (OutputSection *sec : outputSections) - if (sec->flags & SHF_ALLOC) - sec->writeTo<ELFT>(Out::bufferStart + sec->offset); -} - -static void fillTrap(uint8_t *i, uint8_t *end) { - for (; i + 4 <= end; i += 4) - memcpy(i, &target->trapInstr, 4); -} - -// Fill the last page of executable segments with trap instructions -// instead of leaving them as zero. Even though it is not required by any -// standard, it is in general a good thing to do for security reasons. -// -// We'll leave other pages in segments as-is because the rest will be -// overwritten by output sections. -template <class ELFT> void Writer<ELFT>::writeTrapInstr() { - if (script->hasSectionsCommand) - return; - - for (Partition &part : partitions) { - // Fill the last page. - for (PhdrEntry *p : part.phdrs) - if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) - fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, - config->commonPageSize), - Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, - config->commonPageSize)); - - // Round up the file size of the last segment to the page boundary iff it is - // an executable segment to ensure that other tools don't accidentally - // trim the instruction padding (e.g. when stripping the file). - PhdrEntry *last = nullptr; - for (PhdrEntry *p : part.phdrs) - if (p->p_type == PT_LOAD) - last = p; - - if (last && (last->p_flags & PF_X)) - last->p_memsz = last->p_filesz = - alignTo(last->p_filesz, config->commonPageSize); - } -} - -// Write section contents to a mmap'ed file. -template <class ELFT> void Writer<ELFT>::writeSections() { - // In -r or -emit-relocs mode, write the relocation sections first as in - // ELf_Rel targets we might find out that we need to modify the relocated - // section while doing it. - for (OutputSection *sec : outputSections) - if (sec->type == SHT_REL || sec->type == SHT_RELA) - sec->writeTo<ELFT>(Out::bufferStart + sec->offset); - - for (OutputSection *sec : outputSections) - if (sec->type != SHT_REL && sec->type != SHT_RELA) - sec->writeTo<ELFT>(Out::bufferStart + sec->offset); -} - -// Split one uint8 array into small pieces of uint8 arrays. -static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, - size_t chunkSize) { - std::vector<ArrayRef<uint8_t>> ret; - while (arr.size() > chunkSize) { - ret.push_back(arr.take_front(chunkSize)); - arr = arr.drop_front(chunkSize); - } - if (!arr.empty()) - ret.push_back(arr); - return ret; -} - -// Computes a hash value of Data using a given hash function. -// In order to utilize multiple cores, we first split data into 1MB -// chunks, compute a hash for each chunk, and then compute a hash value -// of the hash values. -static void -computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, - llvm::ArrayRef<uint8_t> data, - std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { - std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); - std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); - - // Compute hash values. - parallelForEachN(0, chunks.size(), [&](size_t i) { - hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); - }); - - // Write to the final output buffer. - hashFn(hashBuf.data(), hashes); -} - -template <class ELFT> void Writer<ELFT>::writeBuildId() { - if (!mainPart->buildId || !mainPart->buildId->getParent()) - return; - - if (config->buildId == BuildIdKind::Hexstring) { - for (Partition &part : partitions) - part.buildId->writeBuildId(config->buildIdVector); - return; - } - - // Compute a hash of all sections of the output file. - size_t hashSize = mainPart->buildId->hashSize; - std::vector<uint8_t> buildId(hashSize); - llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; - - switch (config->buildId) { - case BuildIdKind::Fast: - computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { - write64le(dest, xxHash64(arr)); - }); - break; - case BuildIdKind::Md5: - computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { - memcpy(dest, MD5::hash(arr).data(), hashSize); - }); - break; - case BuildIdKind::Sha1: - computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { - memcpy(dest, SHA1::hash(arr).data(), hashSize); - }); - break; - case BuildIdKind::Uuid: - if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) - error("entropy source failure: " + ec.message()); - break; - default: - llvm_unreachable("unknown BuildIdKind"); - } - for (Partition &part : partitions) - part.buildId->writeBuildId(buildId); -} - -template void elf::writeResult<ELF32LE>(); -template void elf::writeResult<ELF32BE>(); -template void elf::writeResult<ELF64LE>(); -template void elf::writeResult<ELF64BE>(); |
