1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
local core = require "core"
local syntax = require "core.syntax"
local common = require "core.common"
local tokenizer = {}
local bad_patterns = {}
local function push_token(t, type, text)
type = type or "normal"
local prev_type = t[#t-1]
local prev_text = t[#t]
if prev_type and (prev_type == type or prev_text:ufind("^%s*$")) then
t[#t-1] = type
t[#t] = prev_text .. text
else
table.insert(t, type)
table.insert(t, text)
end
end
local function push_tokens(t, syn, pattern, full_text, find_results)
if #find_results > 2 then
-- We do some manipulation with find_results so that it's arranged
-- like this:
-- { start, end, i_1, i_2, i_3, …, i_last }
-- Each position spans characters from i_n to ((i_n+1) - 1), to form
-- consecutive spans of text.
--
-- If i_1 is not equal to start, start is automatically inserted at
-- that index.
if find_results[3] ~= find_results[1] then
table.insert(find_results, 3, find_results[1])
end
-- Copy the ending index to the end of the table, so that an ending index
-- always follows a starting index after position 3 in the table.
table.insert(find_results, find_results[2] + 1)
-- Then, we just iterate over our modified table.
for i = 3, #find_results - 1 do
local start = find_results[i]
local fin = find_results[i + 1] - 1
local type = pattern.type[i - 2]
-- ↑ (i - 2) to convert from [3; n] to [1; n]
local text = full_text:usub(start, fin)
push_token(t, syn.symbols[text] or type, text)
end
else
local start, fin = find_results[1], find_results[2]
local text = full_text:usub(start, fin)
push_token(t, syn.symbols[text] or pattern.type, text)
end
end
-- State is a 32-bit number that is four separate bytes, illustrating how many
-- differnet delimiters we have open, and which subsyntaxes we have active.
-- At most, there are 3 subsyntaxes active at the same time. Beyond that,
-- does not support further highlighting.
-- You can think of it as a maximum 4 integer (0-255) stack. It always has
-- 1 integer in it. Calling `push_subsyntax` increases the stack depth. Calling
-- `pop_subsyntax` decreases it. The integers represent the index of a pattern
-- that we're following in the syntax. The top of the stack can be any valid
-- pattern index, any integer lower in the stack must represent a pattern that
-- specifies a subsyntax.
-- If you do not have subsyntaxes in your syntax, the three most
-- singificant numbers will always be 0, the stack will only ever be length 1
-- and the state variable will only ever range from 0-255.
local function retrieve_syntax_state(incoming_syntax, state)
local current_syntax, subsyntax_info, current_pattern_idx, current_level =
incoming_syntax, nil, state, 0
if state > 0 and (state > 255 or current_syntax.patterns[state].syntax) then
-- If we have higher bits, then decode them one at a time, and find which
-- syntax we're using. Rather than walking the bytes, and calling into
-- `syntax` each time, we could probably cache this in a single table.
for i = 0, 2 do
local target = bit32.extract(state, i*8, 8)
if target ~= 0 then
if current_syntax.patterns[target].syntax then
subsyntax_info = current_syntax.patterns[target]
current_syntax = type(subsyntax_info.syntax) == "table" and
subsyntax_info.syntax or syntax.get(subsyntax_info.syntax)
current_pattern_idx = 0
current_level = i+1
else
current_pattern_idx = target
break
end
else
break
end
end
end
return current_syntax, subsyntax_info, current_pattern_idx, current_level
end
local function report_bad_pattern(log_fn, syntax, pattern_idx, msg, ...)
if not bad_patterns[syntax] then
bad_patterns[syntax] = { }
end
if bad_patterns[syntax][pattern_idx] then return end
bad_patterns[syntax][pattern_idx] = true
log_fn("Malformed pattern #%d in %s language plugin. " .. msg,
pattern_idx, syntax.name or "unnamed", ...)
end
---@param incoming_syntax table
---@param text string
---@param state integer
function tokenizer.tokenize(incoming_syntax, text, state)
local res = {}
local i = 1
if #incoming_syntax.patterns == 0 then
return { "normal", text }
end
state = state or 0
-- incoming_syntax : the parent syntax of the file.
-- state : a 32-bit number representing syntax state (see above)
-- current_syntax : the syntax we're currently in.
-- subsyntax_info : info about the delimiters of this subsyntax.
-- current_pattern_idx: the index of the pattern we're on for this syntax.
-- current_level : how many subsyntaxes deep we are.
local current_syntax, subsyntax_info, current_pattern_idx, current_level =
retrieve_syntax_state(incoming_syntax, state)
-- Should be used to set the state variable. Don't modify it directly.
local function set_subsyntax_pattern_idx(pattern_idx)
current_pattern_idx = pattern_idx
state = bit32.replace(state, pattern_idx, current_level*8, 8)
end
local function push_subsyntax(entering_syntax, pattern_idx)
set_subsyntax_pattern_idx(pattern_idx)
current_level = current_level + 1
subsyntax_info = entering_syntax
current_syntax = type(entering_syntax.syntax) == "table" and
entering_syntax.syntax or syntax.get(entering_syntax.syntax)
current_pattern_idx = 0
end
local function pop_subsyntax()
set_subsyntax_pattern_idx(0)
current_level = current_level - 1
set_subsyntax_pattern_idx(0)
current_syntax, subsyntax_info, current_pattern_idx, current_level =
retrieve_syntax_state(incoming_syntax, state)
end
local function find_text(text, p, offset, at_start, close)
local target, res = p.pattern or p.regex, { 1, offset - 1 }
local p_idx = close and 2 or 1
local code = type(target) == "table" and target[p_idx] or target
if p.whole_line == nil then p.whole_line = { } end
if p.whole_line[p_idx] == nil then
-- Match patterns that start with '^'
p.whole_line[p_idx] = code:umatch("^%^") and true or false
if p.whole_line[p_idx] then
-- Remove '^' from the beginning of the pattern
if type(target) == "table" then
target[p_idx] = code:usub(2)
else
p.pattern = p.pattern and code:usub(2)
p.regex = p.regex and code:usub(2)
end
end
end
if p.regex and type(p.regex) ~= "table" then
p._regex = p._regex or regex.compile(p.regex)
code = p._regex
end
repeat
local next = res[2] + 1
-- If the pattern contained '^', allow matching only the whole line
if p.whole_line[p_idx] and next > 1 then
return
end
res = p.pattern and { text:ufind((at_start or p.whole_line[p_idx]) and "^" .. code or code, next) }
or { regex.match(code, text, text:ucharpos(next), (at_start or p.whole_line[p_idx]) and regex.ANCHORED or 0) }
if p.regex and #res > 0 then -- set correct utf8 len for regex result
local char_pos_1 = string.ulen(text:sub(1, res[1]))
local char_pos_2 = char_pos_1 + string.ulen(text:sub(res[1], res[2])) - 1
-- `regex.match` returns group results as a series of `begin, end`
-- we only want `begin`s
if #res >= 3 then
res[3] = char_pos_1 + string.ulen(text:sub(res[1], res[3])) - 1
end
for i=1,(#res-3) do
local curr = i + 3
local from = i * 2 + 3
if from < #res then
res[curr] = char_pos_1 + string.ulen(text:sub(res[1], res[from])) - 1
else
res[curr] = nil
end
end
res[1] = char_pos_1
res[2] = char_pos_2
end
if res[1] and target[3] then
-- Check to see if the escaped character is there,
-- and if it is not itself escaped.
local count = 0
for i = res[1] - 1, 1, -1 do
if text:ubyte(i) ~= target[3]:ubyte() then break end
count = count + 1
end
if count % 2 == 0 then
-- The match is not escaped, so confirm it
break
elseif not close then
-- The *open* match is escaped, so avoid it
return
end
end
until not res[1] or not close or not target[3]
return table.unpack(res)
end
local text_len = text:ulen()
while i <= text_len do
-- continue trying to match the end pattern of a pair if we have a state set
if current_pattern_idx > 0 then
local p = current_syntax.patterns[current_pattern_idx]
local s, e = find_text(text, p, i, false, true)
local cont = true
-- If we're in subsyntax mode, always check to see if we end our syntax
-- first, before the found delimeter, as ending the subsyntax takes
-- precedence over ending the delimiter in the subsyntax.
if subsyntax_info then
local ss, se = find_text(text, subsyntax_info, i, false, true)
-- If we find that we end the subsyntax before the
-- delimiter, push the token, and signal we shouldn't
-- treat the bit after as a token to be normally parsed
-- (as it's the syntax delimiter).
if ss and (s == nil or ss < s) then
push_token(res, p.type, text:usub(i, ss - 1))
i = ss
cont = false
end
end
-- If we don't have any concerns about syntax delimiters,
-- continue on as normal.
if cont then
if s then
push_token(res, p.type, text:usub(i, e))
set_subsyntax_pattern_idx(0)
i = e + 1
else
push_token(res, p.type, text:usub(i))
break
end
end
end
-- General end of syntax check. Applies in the case where
-- we're ending early in the middle of a delimiter, or
-- just normally, upon finding a token.
if subsyntax_info then
local s, e = find_text(text, subsyntax_info, i, true, true)
if s then
push_token(res, subsyntax_info.type, text:usub(i, e))
-- On finding unescaped delimiter, pop it.
pop_subsyntax()
i = e + 1
end
end
-- find matching pattern
local matched = false
for n, p in ipairs(current_syntax.patterns) do
local find_results = { find_text(text, p, i, true, false) }
if find_results[1] then
local type_is_table = type(p.type) == "table"
local n_types = type_is_table and #p.type or 1
if #find_results == 2 and type_is_table then
report_bad_pattern(core.warn, current_syntax, n,
"Token type is a table, but a string was expected.")
p.type = p.type[1]
elseif #find_results - 1 > n_types then
report_bad_pattern(core.error, current_syntax, n,
"Not enough token types: got %d needed %d.", n_types, #find_results - 1)
elseif #find_results - 1 < n_types then
report_bad_pattern(core.warn, current_syntax, n,
"Too many token types: got %d needed %d.", n_types, #find_results - 1)
end
-- matched pattern; make and add tokens
push_tokens(res, current_syntax, p, text, find_results)
-- update state if this was a start|end pattern pair
if type(p.pattern or p.regex) == "table" then
-- If we have a subsyntax, push that onto the subsyntax stack.
if p.syntax then
push_subsyntax(p, n)
else
set_subsyntax_pattern_idx(n)
end
end
-- move cursor past this token
i = find_results[2] + 1
matched = true
break
end
end
-- consume character if we didn't match
if not matched then
push_token(res, "normal", text:usub(i, i))
i = i + 1
end
end
return res, state
end
local function iter(t, i)
i = i + 2
local type, text = t[i], t[i+1]
if type then
return i, type, text
end
end
function tokenizer.each_token(t)
return iter, t, -1
end
return tokenizer
|