1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
|
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/user.h>
#include <sys/wait.h>
#include <sys/ptrace.h>
#include <sys/mman.h>
#include <dlfcn.h>
#include <unistd.h>
#include <elf.h>
#include "inject.h"
#include "memory.h"
#include "module.h"
#include "arch.h"
#define Elf64W(type) Elf64_ ## type
#define Elf32W(type) Elf32_ ## type
#define Elf64Ehdr Elf64W(Ehdr)
#define Elf32Ehdr Elf32W(Ehdr)
#define Elf64Shdr Elf64W(Shdr)
#define Elf32Shdr Elf32W(Shdr)
#define Elf64Sym Elf64W(Sym)
#define Elf32Sym Elf32W(Sym)
static uintptr_t getSymbolOffset(const char* elf_path, const char* symbol_name)
{
unsigned char bits = getElfBits(elf_path);
FILE* fd = fopen(elf_path, "rb");
fseek(fd, 0, SEEK_END);
size_t elf_size = (size_t) ftell(fd);
rewind(fd);
char* elf_body = malloc(elf_size);
fread(elf_body, 1, elf_size, fd);
fclose(fd);
if (bits == 64)
{
Elf64Ehdr* header = (Elf64Ehdr*)elf_body;
Elf64Shdr* section = (Elf64Shdr*)(elf_body + header->e_shoff);
Elf64Shdr* symtab_section = NULL;
for (uintptr_t i = 0; i <= header->e_shnum; i++)
{
if (i == header->e_shnum)
return 0;
if (section[i].sh_type == SHT_SYMTAB)
{
symtab_section = section+i;
break;
}
}
Elf64Sym* symtab = (Elf64Sym*)(elf_body + symtab_section->sh_offset);
size_t symbol_num = symtab_section->sh_size / symtab_section->sh_entsize;
char *symbol_names = (char *)(elf_body + section[symtab_section->sh_link].sh_offset);
for (size_t j = 0; j < symbol_num; ++j)
{
char* name = symbol_names + symtab[j].st_name;
size_t symbol_name_len = strlen(symbol_name);
if (strncmp(name, symbol_name, symbol_name_len))
continue;
if (name[symbol_name_len] != '\0' && name[symbol_name_len] != '@')
continue;
if (symtab[j].st_value > 0)
{
uintptr_t value = symtab[j].st_value;
free(elf_body);
return value;
}
}
}
else if (bits == 32)
{
Elf32Ehdr* header = (Elf32Ehdr*)elf_body;
Elf32Shdr* section = (Elf32Shdr*)(elf_body + header->e_shoff);
Elf32Shdr* symtab_section = NULL;
for (uintptr_t i = 0; i <= header->e_shnum; i++)
{
if (i == header->e_shnum)
return 0;
if (section[i].sh_type == SHT_SYMTAB)
{
symtab_section = section+i;
break;
}
}
Elf32Sym* symtab = (Elf32Sym*)(elf_body + symtab_section->sh_offset);
size_t symbol_num = symtab_section->sh_size / symtab_section->sh_entsize;
char *symbol_names = (char *)(elf_body + section[symtab_section->sh_link].sh_offset);
for (size_t j = 0; j < symbol_num; ++j)
{
char* name = symbol_names + symtab[j].st_name;
size_t symbol_name_len = strlen(symbol_name);
if (strncmp(name, symbol_name, symbol_name_len))
continue;
if (name[symbol_name_len] != '\0' && name[symbol_name_len] != '@')
continue;
if (symtab[j].st_value > 0)
{
uintptr_t value = symtab[j].st_value;
free(elf_body);
return value;
}
}
}
free(elf_body);
return 0;
}
void* inject_syscall(
pid_t pid,
uintptr_t syscall_n,
void* arg0,
void* arg1,
void* arg2,
void* arg3,
void* arg4,
void* arg5
){
void* ret = (void*)-1;
int status;
struct user_regs_struct old_regs, regs;
void* injection_addr = (void*)-1;
//This buffer is our payload, which will run a syscall properly on x86/x64
unsigned char injection_buf[] =
{
0xff, 0xff, // placerholder
/* these nops are here because
* we're going to write memory using
* ptrace, and it always writes the size
* of a word, which means we have to make
* sure the buffer is long enough
*/
0x90, //nop
0x90, //nop
0x90, //nop
0x90, //nop
0x90, //nop
0x90 //nop
};
unsigned char bits = getProcessBits(pid);
if (bits == 64)
{
//syscall
injection_buf[0] = 0x0f;
injection_buf[1] = 0x05;
}
else if (bits == 32)
{
//int80 (syscall)
injection_buf[0] = 0xcd;
injection_buf[1] = 0x80;
}
else
{
return NULL;
}
//As ptrace will always write a uintptr_t, let's make sure we're using proper buffers
uintptr_t old_data;
uintptr_t injection_buffer;
memcpy(&injection_buffer, injection_buf, sizeof(injection_buffer));
//Attach to process using 'PTRACE_ATTACH'
ptrace(PTRACE_ATTACH, pid, NULL, NULL);
wait(&status);
/* Get the current registers using 'PTRACE_GETREGS' so that
* we can restore the execution later
* and also modify the bytes of EIP/RIP
*/
ptrace(PTRACE_GETREGS, pid, NULL, &old_regs);
regs = old_regs;
//Now, let's set up the registers that will be injected into the tracee
#if defined(__i386__)
regs.eax = (uintptr_t)syscall_n;
regs.ebx = (uintptr_t)arg0;
regs.ecx = (uintptr_t)arg1;
regs.edx = (uintptr_t)arg2;
regs.esi = (uintptr_t)arg3;
regs.edi = (uintptr_t)arg4;
regs.ebp = (uintptr_t)arg5;
injection_addr = (void*)regs.eip;
#elif defined(__x86_64__)
if (bits == 64)
{
regs.rax = (uintptr_t)syscall_n;
regs.rdi = (uintptr_t)arg0;
regs.rsi = (uintptr_t)arg1;
regs.rdx = (uintptr_t)arg2;
regs.r10 = (uintptr_t)arg3;
regs.r8 = (uintptr_t)arg4;
regs.r9 = (uintptr_t)arg5;
injection_addr = (void*)regs.rip;
}
else if (bits == 32)
{
regs.rax = (uintptr_t)syscall_n;
regs.rbx = (uintptr_t)arg0;
regs.rcx = (uintptr_t)arg1;
regs.rdx = (uintptr_t)arg2;
regs.rsi = (uintptr_t)arg3;
regs.rdi = (uintptr_t)arg4;
regs.rbp = (uintptr_t)arg5;
injection_addr = (void*)regs.rip;
}
#endif
//Let's store the buffer at EIP/RIP that we're going to modify into 'old_data' using 'PTRACE_PEEKDATA'
old_data = (uintptr_t)ptrace(PTRACE_PEEKDATA, pid, injection_addr, NULL);
//Let's write our payload into the EIP/RIP of the target process using 'PTRACE_POKEDATA'
ptrace(PTRACE_POKEDATA, pid, injection_addr, injection_buffer);
//Let's inject our modified registers into the target process using 'PTRACE_SETREGS'
ptrace(PTRACE_SETREGS, pid, NULL, ®s);
//Let's run a single step in the target process (execute one assembly instruction)
ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL);
waitpid(pid, &status, WSTOPPED); //Wait for the instruction to run
//Let's get the registers after the syscall to store the return value
ptrace(PTRACE_GETREGS, pid, NULL, ®s);
#if defined(__i386__)
ret = (void*)regs.eax;
#elif defined(__x86_64__)
ret = (void*)regs.rax;
#endif
long long ret_int = (long long)ret;
if (ret_int < 0)
fprintf(stderr, "syscall error: %s\n", strerror((int)-ret_int));
//Let's write the old data at EIP/RIP
ptrace(PTRACE_POKEDATA, pid, (void*)injection_addr, old_data);
//Let's restore the old registers to continue the normal execution
ptrace(PTRACE_SETREGS, pid, NULL, &old_regs);
ptrace(PTRACE_DETACH, pid, NULL, NULL); //Detach and continue the execution
return ret;
}
/**
* Return values:
* 1 already loaded
* 2 arch error
*/
int load_library(pid_t pid, char* lib_path)
{
/* Let's get the address of the 'libc_dlopen_mode' of the target process
* and store it on 'dlopen_ex' by loading the LIBC of the target process
* on here and then getting the offset of its own '__libc_dlopen_mode'.
* Then we sum this offset to the base of the external LIBC module
*/
struct module_s lib_mod = getModule(pid, lib_path);
if (lib_mod.size)
return 1;
struct module_s libc_ex = getModule(pid, "/libc.so");
uintptr_t offset = getSymbolOffset(libc_ex.path, "__libc_dlopen_mode");
// fallback
if (!offset)
offset = getSymbolOffset(libc_ex.path, "dlopen");
fprintf(stderr, "%li\n", offset);
//Get the external '__libc_dlopen_mode' by summing the offset to the libc_ex.base
void* dlopen_ex = (void*)((uintptr_t)libc_ex.base + offset);
freeModule(&libc_ex);
//--- Now let's go to the injection part
int status;
struct user_regs_struct old_regs, regs;
unsigned char inj_buf_x64[] =
{
/* On 'x64', we dont have to pass anything to the stack, as we're only
* using 2 parameters, which will be stored on RDI (library path address) and
* RSI (flags, in this case RTLD_LAZY).
* This means we just have to call the __libc_dlopen_mode function, which
* will be on RAX.
*/
0xFF, 0xD0, //call rax
0xCC, //int3 (SIGTRAP)
};
unsigned char inj_buf_x86[] =
{
/* We have to pass the parameters to the stack (in reversed order)
* The register 'ebx' will store the library path address and the
* register 'ecx' will store the flag (RTLD_LAZY)
* After pushing the parameters to the stack, we will call EAX, which
* will store the address of '__libc_dlopen_mode'
*/
0x51, //push ecx
0x53, //push ebx
0xFF, 0xD0, //call eax
0xCC, //int3 (SIGTRAP)
};
unsigned char* inj_buf = NULL;
size_t sizeof_inj_buf = 0;
unsigned char bits = getProcessBits(pid);
if (bits == 64)
{
inj_buf = inj_buf_x64;
sizeof_inj_buf = sizeof(inj_buf_x64);
}
else if (bits == 32)
{
inj_buf = inj_buf_x86;
sizeof_inj_buf = sizeof(inj_buf_x86);
}
else
{
fprintf(stderr, "Could not figure out what injection buffer to use\n");
return 2;
}
//Let's allocate memory for the payload and the library path
size_t lib_path_len = strlen(lib_path) + 1;
size_t inj_size = sizeof_inj_buf + lib_path_len;
void* inj_addr = allocate_memory(pid, inj_size, PROT_EXEC | PROT_READ | PROT_WRITE);
void* path_addr = (void*)((uintptr_t)inj_addr + sizeof_inj_buf);
//Write the memory to our allocated address
write_memory(pid, inj_addr, inj_buf, sizeof_inj_buf);
write_memory(pid, path_addr, (void*)lib_path, lib_path_len);
//Attach to the target process
ptrace(PTRACE_ATTACH, pid, NULL, NULL);
wait(&status);
//Get the current registers to restore later
ptrace(PTRACE_GETREGS, pid, NULL, &old_regs);
regs = old_regs;
//Let's setup the registers according to our payload
# if defined(__i386__)
regs.eax = (long)dlopen_ex;
regs.ebx = (long)path_addr;
regs.ecx = (long)RTLD_LAZY;
regs.eip = (long)inj_addr; //The execution will continue from 'inj_addr' (EIP)
# elif defined(__x86_64__)
if (bits == 64)
{
regs.rax = (uintptr_t)dlopen_ex;
regs.rdi = (uintptr_t)path_addr;
regs.rsi = (uintptr_t)RTLD_LAZY;
regs.rip = (uintptr_t)inj_addr; //The execution will continue from 'inj_addr' (RIP)
}
else if (bits == 32)
{
regs.rax = (uintptr_t)dlopen_ex;
regs.rbx = (uintptr_t)path_addr;
regs.rcx = (uintptr_t)RTLD_LAZY;
regs.rip = (uintptr_t)inj_addr; //The execution will continue from 'inj_addr' (RIP)
}
# endif
//Inject the modified registers to the target process
ptrace(PTRACE_SETREGS, pid, NULL, ®s);
//Continue the execution
ptrace(PTRACE_CONT, pid, NULL, NULL);
//Wait for the int3 (SIGTRAP) breakpoint
waitpid(pid, &status, WSTOPPED);
//Set back the old registers
ptrace(PTRACE_SETREGS, pid, NULL, &old_regs);
//Detach from the process and continue the execution
ptrace(PTRACE_DETACH, pid, NULL, NULL);
//Deallocate the memory we allocated for the injection buffer and the library path
deallocate_memory(pid, inj_addr, inj_size);
return 0;
}
|