aboutsummaryrefslogtreecommitdiff
path: root/NorthstarDedicatedTest/include/protobuf/map.h
blob: 7f29d85371bb9cbb5bba9c37cf96a4bfdd2284b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// This file defines the map container and its helpers to support protobuf maps.
//
// The Map and MapIterator types are provided by this header file.
// Please avoid using other types defined here, unless they are public
// types within Map or MapIterator, such as Map::value_type.

#ifndef GOOGLE_PROTOBUF_MAP_H__
#define GOOGLE_PROTOBUF_MAP_H__

#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits>  // To support Visual Studio 2008
#include <map>
#include <string>
#include <type_traits>
#include <utility>

#if defined(__cpp_lib_string_view)
#include <string_view>
#endif  // defined(__cpp_lib_string_view)

#if !defined(GOOGLE_PROTOBUF_NO_RDTSC) && defined(__APPLE__)
#include <mach/mach_time.h>
#endif

#include <stubs/common.h>
#include <arena.h>
#include <generated_enum_util.h>
#include <map_type_handler.h>
#include <stubs/hash.h>

#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif

#include <port_def.inc>

namespace google {
namespace protobuf {

template <typename Key, typename T>
class Map;

class MapIterator;

template <typename Enum>
struct is_proto_enum;

namespace internal {
template <typename Derived, typename Key, typename T,
          WireFormatLite::FieldType key_wire_type,
          WireFormatLite::FieldType value_wire_type>
class MapFieldLite;

template <typename Derived, typename Key, typename T,
          WireFormatLite::FieldType key_wire_type,
          WireFormatLite::FieldType value_wire_type>
class MapField;

template <typename Key, typename T>
class TypeDefinedMapFieldBase;

class DynamicMapField;

class GeneratedMessageReflection;

// re-implement std::allocator to use arena allocator for memory allocation.
// Used for Map implementation. Users should not use this class
// directly.
template <typename U>
class MapAllocator {
 public:
  using value_type = U;
  using pointer = value_type*;
  using const_pointer = const value_type*;
  using reference = value_type&;
  using const_reference = const value_type&;
  using size_type = size_t;
  using difference_type = ptrdiff_t;

  constexpr MapAllocator() : arena_(nullptr) {}
  explicit constexpr MapAllocator(Arena* arena) : arena_(arena) {}
  template <typename X>
  MapAllocator(const MapAllocator<X>& allocator)  // NOLINT(runtime/explicit)
      : arena_(allocator.arena()) {}

  pointer allocate(size_type n, const void* /* hint */ = nullptr) {
    // If arena is not given, malloc needs to be called which doesn't
    // construct element object.
    if (arena_ == nullptr) {
      return static_cast<pointer>(::operator new(n * sizeof(value_type)));
    } else {
      return reinterpret_cast<pointer>(
          Arena::CreateArray<uint8_t>(arena_, n * sizeof(value_type)));
    }
  }

  void deallocate(pointer p, size_type n) {
    if (arena_ == nullptr) {
#if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
      ::operator delete(p, n * sizeof(value_type));
#else
      (void)n;
      ::operator delete(p);
#endif
    }
  }

#if !defined(GOOGLE_PROTOBUF_OS_APPLE) && !defined(GOOGLE_PROTOBUF_OS_NACL) && \
    !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN)
  template <class NodeType, class... Args>
  void construct(NodeType* p, Args&&... args) {
    // Clang 3.6 doesn't compile static casting to void* directly. (Issue
    // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall
    // not cast away constness". So first the maybe const pointer is casted to
    // const void* and after the const void* is const casted.
    new (const_cast<void*>(static_cast<const void*>(p)))
        NodeType(std::forward<Args>(args)...);
  }

  template <class NodeType>
  void destroy(NodeType* p) {
    p->~NodeType();
  }
#else
  void construct(pointer p, const_reference t) { new (p) value_type(t); }

  void destroy(pointer p) { p->~value_type(); }
#endif

  template <typename X>
  struct rebind {
    using other = MapAllocator<X>;
  };

  template <typename X>
  bool operator==(const MapAllocator<X>& other) const {
    return arena_ == other.arena_;
  }

  template <typename X>
  bool operator!=(const MapAllocator<X>& other) const {
    return arena_ != other.arena_;
  }

  // To support Visual Studio 2008
  size_type max_size() const {
    // parentheses around (std::...:max) prevents macro warning of max()
    return (std::numeric_limits<size_type>::max)();
  }

  // To support gcc-4.4, which does not properly
  // support templated friend classes
  Arena* arena() const { return arena_; }

 private:
  using DestructorSkippable_ = void;
  Arena* arena_;
};

template <typename T>
using KeyForTree =
    typename std::conditional<std::is_scalar<T>::value, T,
                              std::reference_wrapper<const T>>::type;

// Default case: Not transparent.
// We use std::hash<key_type>/std::less<key_type> and all the lookup functions
// only accept `key_type`.
template <typename key_type>
struct TransparentSupport {
  using hash = std::hash<key_type>;
  using less = std::less<key_type>;

  static bool Equals(const key_type& a, const key_type& b) { return a == b; }

  template <typename K>
  using key_arg = key_type;
};

#if defined(__cpp_lib_string_view)
// If std::string_view is available, we add transparent support for std::string
// keys. We use std::hash<std::string_view> as it supports the input types we
// care about. The lookup functions accept arbitrary `K`. This will include any
// key type that is convertible to std::string_view.
template <>
struct TransparentSupport<std::string> {
  static std::string_view ImplicitConvert(std::string_view str) { return str; }
  // If the element is not convertible to std::string_view, try to convert to
  // std::string first.
  // The template makes this overload lose resolution when both have the same
  // rank otherwise.
  template <typename = void>
  static std::string_view ImplicitConvert(const std::string& str) {
    return str;
  }

  struct hash : private std::hash<std::string_view> {
    using is_transparent = void;

    template <typename T>
    size_t operator()(const T& str) const {
      return base()(ImplicitConvert(str));
    }

   private:
    const std::hash<std::string_view>& base() const { return *this; }
  };
  struct less {
    using is_transparent = void;

    template <typename T, typename U>
    bool operator()(const T& t, const U& u) const {
      return ImplicitConvert(t) < ImplicitConvert(u);
    }
  };

  template <typename T, typename U>
  static bool Equals(const T& t, const U& u) {
    return ImplicitConvert(t) == ImplicitConvert(u);
  }

  template <typename K>
  using key_arg = K;
};
#endif  // defined(__cpp_lib_string_view)

template <typename Key>
using TreeForMap =
    std::map<KeyForTree<Key>, void*, typename TransparentSupport<Key>::less,
             MapAllocator<std::pair<const KeyForTree<Key>, void*>>>;

inline bool TableEntryIsEmpty(void* const* table, size_t b) {
  return table[b] == nullptr;
}
inline bool TableEntryIsNonEmptyList(void* const* table, size_t b) {
  return table[b] != nullptr && table[b] != table[b ^ 1];
}
inline bool TableEntryIsTree(void* const* table, size_t b) {
  return !TableEntryIsEmpty(table, b) && !TableEntryIsNonEmptyList(table, b);
}
inline bool TableEntryIsList(void* const* table, size_t b) {
  return !TableEntryIsTree(table, b);
}

// This captures all numeric types.
inline size_t MapValueSpaceUsedExcludingSelfLong(bool) { return 0; }
inline size_t MapValueSpaceUsedExcludingSelfLong(const std::string& str) {
  return StringSpaceUsedExcludingSelfLong(str);
}
template <typename T,
          typename = decltype(std::declval<const T&>().SpaceUsedLong())>
size_t MapValueSpaceUsedExcludingSelfLong(const T& message) {
  return message.SpaceUsedLong() - sizeof(T);
}

constexpr size_t kGlobalEmptyTableSize = 1;
PROTOBUF_EXPORT extern void* const kGlobalEmptyTable[kGlobalEmptyTableSize];

// Space used for the table, trees, and nodes.
// Does not include the indirect space used. Eg the data of a std::string.
template <typename Key>
PROTOBUF_NOINLINE size_t SpaceUsedInTable(void** table, size_t num_buckets,
                                          size_t num_elements,
                                          size_t sizeof_node) {
  size_t size = 0;
  // The size of the table.
  size += sizeof(void*) * num_buckets;
  // All the nodes.
  size += sizeof_node * num_elements;
  // For each tree, count the overhead of the those nodes.
  // Two buckets at a time because we only care about trees.
  for (size_t b = 0; b < num_buckets; b += 2) {
    if (internal::TableEntryIsTree(table, b)) {
      using Tree = TreeForMap<Key>;
      Tree* tree = static_cast<Tree*>(table[b]);
      // Estimated cost of the red-black tree nodes, 3 pointers plus a
      // bool (plus alignment, so 4 pointers).
      size += tree->size() *
              (sizeof(typename Tree::value_type) + sizeof(void*) * 4);
    }
  }
  return size;
}

template <typename Map,
          typename = typename std::enable_if<
              !std::is_scalar<typename Map::key_type>::value ||
              !std::is_scalar<typename Map::mapped_type>::value>::type>
size_t SpaceUsedInValues(const Map* map) {
  size_t size = 0;
  for (const auto& v : *map) {
    size += internal::MapValueSpaceUsedExcludingSelfLong(v.first) +
            internal::MapValueSpaceUsedExcludingSelfLong(v.second);
  }
  return size;
}

inline size_t SpaceUsedInValues(const void*) { return 0; }

}  // namespace internal

// This is the class for Map's internal value_type. Instead of using
// std::pair as value_type, we use this class which provides us more control of
// its process of construction and destruction.
template <typename Key, typename T>
struct MapPair {
  using first_type = const Key;
  using second_type = T;

  MapPair(const Key& other_first, const T& other_second)
      : first(other_first), second(other_second) {}
  explicit MapPair(const Key& other_first) : first(other_first), second() {}
  explicit MapPair(Key&& other_first)
      : first(std::move(other_first)), second() {}
  MapPair(const MapPair& other) : first(other.first), second(other.second) {}

  ~MapPair() {}

  // Implicitly convertible to std::pair of compatible types.
  template <typename T1, typename T2>
  operator std::pair<T1, T2>() const {  // NOLINT(runtime/explicit)
    return std::pair<T1, T2>(first, second);
  }

  const Key first;
  T second;

 private:
  friend class Arena;
  friend class Map<Key, T>;
};

// Map is an associative container type used to store protobuf map
// fields.  Each Map instance may or may not use a different hash function, a
// different iteration order, and so on.  E.g., please don't examine
// implementation details to decide if the following would work:
//  Map<int, int> m0, m1;
//  m0[0] = m1[0] = m0[1] = m1[1] = 0;
//  assert(m0.begin()->first == m1.begin()->first);  // Bug!
//
// Map's interface is similar to std::unordered_map, except that Map is not
// designed to play well with exceptions.
template <typename Key, typename T>
class Map {
 public:
  using key_type = Key;
  using mapped_type = T;
  using value_type = MapPair<Key, T>;

  using pointer = value_type*;
  using const_pointer = const value_type*;
  using reference = value_type&;
  using const_reference = const value_type&;

  using size_type = size_t;
  using hasher = typename internal::TransparentSupport<Key>::hash;

  constexpr Map() : elements_(nullptr) {}
  explicit Map(Arena* arena) : elements_(arena) {}

  Map(const Map& other) : Map() { insert(other.begin(), other.end()); }

  Map(Map&& other) noexcept : Map() {
    if (other.arena() != nullptr) {
      *this = other;
    } else {
      swap(other);
    }
  }

  Map& operator=(Map&& other) noexcept {
    if (this != &other) {
      if (arena() != other.arena()) {
        *this = other;
      } else {
        swap(other);
      }
    }
    return *this;
  }

  template <class InputIt>
  Map(const InputIt& first, const InputIt& last) : Map() {
    insert(first, last);
  }

  ~Map() {}

 private:
  using Allocator = internal::MapAllocator<void*>;

  // InnerMap is a generic hash-based map.  It doesn't contain any
  // protocol-buffer-specific logic.  It is a chaining hash map with the
  // additional feature that some buckets can be converted to use an ordered
  // container.  This ensures O(lg n) bounds on find, insert, and erase, while
  // avoiding the overheads of ordered containers most of the time.
  //
  // The implementation doesn't need the full generality of unordered_map,
  // and it doesn't have it.  More bells and whistles can be added as needed.
  // Some implementation details:
  // 1. The hash function has type hasher and the equality function
  //    equal_to<Key>.  We inherit from hasher to save space
  //    (empty-base-class optimization).
  // 2. The number of buckets is a power of two.
  // 3. Buckets are converted to trees in pairs: if we convert bucket b then
  //    buckets b and b^1 will share a tree.  Invariant: buckets b and b^1 have
  //    the same non-null value iff they are sharing a tree.  (An alternative
  //    implementation strategy would be to have a tag bit per bucket.)
  // 4. As is typical for hash_map and such, the Keys and Values are always
  //    stored in linked list nodes.  Pointers to elements are never invalidated
  //    until the element is deleted.
  // 5. The trees' payload type is pointer to linked-list node.  Tree-converting
  //    a bucket doesn't copy Key-Value pairs.
  // 6. Once we've tree-converted a bucket, it is never converted back. However,
  //    the items a tree contains may wind up assigned to trees or lists upon a
  //    rehash.
  // 7. The code requires no C++ features from C++14 or later.
  // 8. Mutations to a map do not invalidate the map's iterators, pointers to
  //    elements, or references to elements.
  // 9. Except for erase(iterator), any non-const method can reorder iterators.
  // 10. InnerMap uses KeyForTree<Key> when using the Tree representation, which
  //    is either `Key`, if Key is a scalar, or `reference_wrapper<const Key>`
  //    otherwise. This avoids unnecessary copies of string keys, for example.
  class InnerMap : private hasher {
   public:
    explicit constexpr InnerMap(Arena* arena)
        : hasher(),
          num_elements_(0),
          num_buckets_(internal::kGlobalEmptyTableSize),
          seed_(0),
          index_of_first_non_null_(internal::kGlobalEmptyTableSize),
          table_(const_cast<void**>(internal::kGlobalEmptyTable)),
          alloc_(arena) {}

    ~InnerMap() {
      if (alloc_.arena() == nullptr &&
          num_buckets_ != internal::kGlobalEmptyTableSize) {
        clear();
        Dealloc<void*>(table_, num_buckets_);
      }
    }

   private:
    enum { kMinTableSize = 8 };

    // Linked-list nodes, as one would expect for a chaining hash table.
    struct Node {
      value_type kv;
      Node* next;
    };

    // Trees. The payload type is a copy of Key, so that we can query the tree
    // with Keys that are not in any particular data structure.
    // The value is a void* pointing to Node. We use void* instead of Node* to
    // avoid code bloat. That way there is only one instantiation of the tree
    // class per key type.
    using Tree = internal::TreeForMap<Key>;
    using TreeIterator = typename Tree::iterator;

    static Node* NodeFromTreeIterator(TreeIterator it) {
      return static_cast<Node*>(it->second);
    }

    // iterator and const_iterator are instantiations of iterator_base.
    template <typename KeyValueType>
    class iterator_base {
     public:
      using reference = KeyValueType&;
      using pointer = KeyValueType*;

      // Invariants:
      // node_ is always correct. This is handy because the most common
      // operations are operator* and operator-> and they only use node_.
      // When node_ is set to a non-null value, all the other non-const fields
      // are updated to be correct also, but those fields can become stale
      // if the underlying map is modified.  When those fields are needed they
      // are rechecked, and updated if necessary.
      iterator_base() : node_(nullptr), m_(nullptr), bucket_index_(0) {}

      explicit iterator_base(const InnerMap* m) : m_(m) {
        SearchFrom(m->index_of_first_non_null_);
      }

      // Any iterator_base can convert to any other.  This is overkill, and we
      // rely on the enclosing class to use it wisely.  The standard "iterator
      // can convert to const_iterator" is OK but the reverse direction is not.
      template <typename U>
      explicit iterator_base(const iterator_base<U>& it)
          : node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {}

      iterator_base(Node* n, const InnerMap* m, size_type index)
          : node_(n), m_(m), bucket_index_(index) {}

      iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index)
          : node_(NodeFromTreeIterator(tree_it)), m_(m), bucket_index_(index) {
        // Invariant: iterators that use buckets with trees have an even
        // bucket_index_.
        GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u);
      }

      // Advance through buckets, looking for the first that isn't empty.
      // If nothing non-empty is found then leave node_ == nullptr.
      void SearchFrom(size_type start_bucket) {
        GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ ||
               m_->table_[m_->index_of_first_non_null_] != nullptr);
        node_ = nullptr;
        for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_;
             bucket_index_++) {
          if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
            node_ = static_cast<Node*>(m_->table_[bucket_index_]);
            break;
          } else if (m_->TableEntryIsTree(bucket_index_)) {
            Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
            GOOGLE_DCHECK(!tree->empty());
            node_ = NodeFromTreeIterator(tree->begin());
            break;
          }
        }
      }

      reference operator*() const { return node_->kv; }
      pointer operator->() const { return &(operator*()); }

      friend bool operator==(const iterator_base& a, const iterator_base& b) {
        return a.node_ == b.node_;
      }
      friend bool operator!=(const iterator_base& a, const iterator_base& b) {
        return a.node_ != b.node_;
      }

      iterator_base& operator++() {
        if (node_->next == nullptr) {
          TreeIterator tree_it;
          const bool is_list = revalidate_if_necessary(&tree_it);
          if (is_list) {
            SearchFrom(bucket_index_ + 1);
          } else {
            GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u);
            Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
            if (++tree_it == tree->end()) {
              SearchFrom(bucket_index_ + 2);
            } else {
              node_ = NodeFromTreeIterator(tree_it);
            }
          }
        } else {
          node_ = node_->next;
        }
        return *this;
      }

      iterator_base operator++(int /* unused */) {
        iterator_base tmp = *this;
        ++*this;
        return tmp;
      }

      // Assumes node_ and m_ are correct and non-null, but other fields may be
      // stale.  Fix them as needed.  Then return true iff node_ points to a
      // Node in a list.  If false is returned then *it is modified to be
      // a valid iterator for node_.
      bool revalidate_if_necessary(TreeIterator* it) {
        GOOGLE_DCHECK(node_ != nullptr && m_ != nullptr);
        // Force bucket_index_ to be in range.
        bucket_index_ &= (m_->num_buckets_ - 1);
        // Common case: the bucket we think is relevant points to node_.
        if (m_->table_[bucket_index_] == static_cast<void*>(node_)) return true;
        // Less common: the bucket is a linked list with node_ somewhere in it,
        // but not at the head.
        if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
          Node* l = static_cast<Node*>(m_->table_[bucket_index_]);
          while ((l = l->next) != nullptr) {
            if (l == node_) {
              return true;
            }
          }
        }
        // Well, bucket_index_ still might be correct, but probably
        // not.  Revalidate just to be sure.  This case is rare enough that we
        // don't worry about potential optimizations, such as having a custom
        // find-like method that compares Node* instead of the key.
        iterator_base i(m_->find(node_->kv.first, it));
        bucket_index_ = i.bucket_index_;
        return m_->TableEntryIsList(bucket_index_);
      }

      Node* node_;
      const InnerMap* m_;
      size_type bucket_index_;
    };

   public:
    using iterator = iterator_base<value_type>;
    using const_iterator = iterator_base<const value_type>;

    Arena* arena() const { return alloc_.arena(); }

    void Swap(InnerMap* other) {
      std::swap(num_elements_, other->num_elements_);
      std::swap(num_buckets_, other->num_buckets_);
      std::swap(seed_, other->seed_);
      std::swap(index_of_first_non_null_, other->index_of_first_non_null_);
      std::swap(table_, other->table_);
      std::swap(alloc_, other->alloc_);
    }

    iterator begin() { return iterator(this); }
    iterator end() { return iterator(); }
    const_iterator begin() const { return const_iterator(this); }
    const_iterator end() const { return const_iterator(); }

    void clear() {
      for (size_type b = 0; b < num_buckets_; b++) {
        if (TableEntryIsNonEmptyList(b)) {
          Node* node = static_cast<Node*>(table_[b]);
          table_[b] = nullptr;
          do {
            Node* next = node->next;
            DestroyNode(node);
            node = next;
          } while (node != nullptr);
        } else if (TableEntryIsTree(b)) {
          Tree* tree = static_cast<Tree*>(table_[b]);
          GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0);
          table_[b] = table_[b + 1] = nullptr;
          typename Tree::iterator tree_it = tree->begin();
          do {
            Node* node = NodeFromTreeIterator(tree_it);
            typename Tree::iterator next = tree_it;
            ++next;
            tree->erase(tree_it);
            DestroyNode(node);
            tree_it = next;
          } while (tree_it != tree->end());
          DestroyTree(tree);
          b++;
        }
      }
      num_elements_ = 0;
      index_of_first_non_null_ = num_buckets_;
    }

    const hasher& hash_function() const { return *this; }

    static size_type max_size() {
      return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28);
    }
    size_type size() const { return num_elements_; }
    bool empty() const { return size() == 0; }

    template <typename K>
    iterator find(const K& k) {
      return iterator(FindHelper(k).first);
    }

    template <typename K>
    const_iterator find(const K& k) const {
      return FindHelper(k).first;
    }

    // Insert the key into the map, if not present. In that case, the value will
    // be value initialized.
    template <typename K>
    std::pair<iterator, bool> insert(K&& k) {
      std::pair<const_iterator, size_type> p = FindHelper(k);
      // Case 1: key was already present.
      if (p.first.node_ != nullptr)
        return std::make_pair(iterator(p.first), false);
      // Case 2: insert.
      if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
        p = FindHelper(k);
      }
      const size_type b = p.second;  // bucket number
      // If K is not key_type, make the conversion to key_type explicit.
      using TypeToInit = typename std::conditional<
          std::is_same<typename std::decay<K>::type, key_type>::value, K&&,
          key_type>::type;
      Node* node = Alloc<Node>(1);
      // Even when arena is nullptr, CreateInArenaStorage is still used to
      // ensure the arena of submessage will be consistent. Otherwise,
      // submessage may have its own arena when message-owned arena is enabled.
      Arena::CreateInArenaStorage(const_cast<Key*>(&node->kv.first),
                                  alloc_.arena(),
                                  static_cast<TypeToInit>(std::forward<K>(k)));
      Arena::CreateInArenaStorage(&node->kv.second, alloc_.arena());

      iterator result = InsertUnique(b, node);
      ++num_elements_;
      return std::make_pair(result, true);
    }

    template <typename K>
    value_type& operator[](K&& k) {
      return *insert(std::forward<K>(k)).first;
    }

    void erase(iterator it) {
      GOOGLE_DCHECK_EQ(it.m_, this);
      typename Tree::iterator tree_it;
      const bool is_list = it.revalidate_if_necessary(&tree_it);
      size_type b = it.bucket_index_;
      Node* const item = it.node_;
      if (is_list) {
        GOOGLE_DCHECK(TableEntryIsNonEmptyList(b));
        Node* head = static_cast<Node*>(table_[b]);
        head = EraseFromLinkedList(item, head);
        table_[b] = static_cast<void*>(head);
      } else {
        GOOGLE_DCHECK(TableEntryIsTree(b));
        Tree* tree = static_cast<Tree*>(table_[b]);
        tree->erase(tree_it);
        if (tree->empty()) {
          // Force b to be the minimum of b and b ^ 1.  This is important
          // only because we want index_of_first_non_null_ to be correct.
          b &= ~static_cast<size_type>(1);
          DestroyTree(tree);
          table_[b] = table_[b + 1] = nullptr;
        }
      }
      DestroyNode(item);
      --num_elements_;
      if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) {
        while (index_of_first_non_null_ < num_buckets_ &&
               table_[index_of_first_non_null_] == nullptr) {
          ++index_of_first_non_null_;
        }
      }
    }

    size_t SpaceUsedInternal() const {
      return internal::SpaceUsedInTable<Key>(table_, num_buckets_,
                                             num_elements_, sizeof(Node));
    }

   private:
    const_iterator find(const Key& k, TreeIterator* it) const {
      return FindHelper(k, it).first;
    }
    template <typename K>
    std::pair<const_iterator, size_type> FindHelper(const K& k) const {
      return FindHelper(k, nullptr);
    }
    template <typename K>
    std::pair<const_iterator, size_type> FindHelper(const K& k,
                                                    TreeIterator* it) const {
      size_type b = BucketNumber(k);
      if (TableEntryIsNonEmptyList(b)) {
        Node* node = static_cast<Node*>(table_[b]);
        do {
          if (internal::TransparentSupport<Key>::Equals(node->kv.first, k)) {
            return std::make_pair(const_iterator(node, this, b), b);
          } else {
            node = node->next;
          }
        } while (node != nullptr);
      } else if (TableEntryIsTree(b)) {
        GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
        b &= ~static_cast<size_t>(1);
        Tree* tree = static_cast<Tree*>(table_[b]);
        auto tree_it = tree->find(k);
        if (tree_it != tree->end()) {
          if (it != nullptr) *it = tree_it;
          return std::make_pair(const_iterator(tree_it, this, b), b);
        }
      }
      return std::make_pair(end(), b);
    }

    // Insert the given Node in bucket b.  If that would make bucket b too big,
    // and bucket b is not a tree, create a tree for buckets b and b^1 to share.
    // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct
    // bucket.  num_elements_ is not modified.
    iterator InsertUnique(size_type b, Node* node) {
      GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ ||
             table_[index_of_first_non_null_] != nullptr);
      // In practice, the code that led to this point may have already
      // determined whether we are inserting into an empty list, a short list,
      // or whatever.  But it's probably cheap enough to recompute that here;
      // it's likely that we're inserting into an empty or short list.
      iterator result;
      GOOGLE_DCHECK(find(node->kv.first) == end());
      if (TableEntryIsEmpty(b)) {
        result = InsertUniqueInList(b, node);
      } else if (TableEntryIsNonEmptyList(b)) {
        if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) {
          TreeConvert(b);
          result = InsertUniqueInTree(b, node);
          GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1));
        } else {
          // Insert into a pre-existing list.  This case cannot modify
          // index_of_first_non_null_, so we skip the code to update it.
          return InsertUniqueInList(b, node);
        }
      } else {
        // Insert into a pre-existing tree.  This case cannot modify
        // index_of_first_non_null_, so we skip the code to update it.
        return InsertUniqueInTree(b, node);
      }
      // parentheses around (std::min) prevents macro expansion of min(...)
      index_of_first_non_null_ =
          (std::min)(index_of_first_non_null_, result.bucket_index_);
      return result;
    }

    // Returns whether we should insert after the head of the list. For
    // non-optimized builds, we randomly decide whether to insert right at the
    // head of the list or just after the head. This helps add a little bit of
    // non-determinism to the map ordering.
    bool ShouldInsertAfterHead(void* node) {
#ifdef NDEBUG
      (void)node;
      return false;
#else
      // Doing modulo with a prime mixes the bits more.
      return (reinterpret_cast<uintptr_t>(node) ^ seed_) % 13 > 6;
#endif
    }

    // Helper for InsertUnique.  Handles the case where bucket b is a
    // not-too-long linked list.
    iterator InsertUniqueInList(size_type b, Node* node) {
      if (table_[b] != nullptr && ShouldInsertAfterHead(node)) {
        Node* first = static_cast<Node*>(table_[b]);
        node->next = first->next;
        first->next = node;
        return iterator(node, this, b);
      }

      node->next = static_cast<Node*>(table_[b]);
      table_[b] = static_cast<void*>(node);
      return iterator(node, this, b);
    }

    // Helper for InsertUnique.  Handles the case where bucket b points to a
    // Tree.
    iterator InsertUniqueInTree(size_type b, Node* node) {
      GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
      // Maintain the invariant that node->next is null for all Nodes in Trees.
      node->next = nullptr;
      return iterator(
          static_cast<Tree*>(table_[b])->insert({node->kv.first, node}).first,
          this, b & ~static_cast<size_t>(1));
    }

    // Returns whether it did resize.  Currently this is only used when
    // num_elements_ increases, though it could be used in other situations.
    // It checks for load too low as well as load too high: because any number
    // of erases can occur between inserts, the load could be as low as 0 here.
    // Resizing to a lower size is not always helpful, but failing to do so can
    // destroy the expected big-O bounds for some operations. By having the
    // policy that sometimes we resize down as well as up, clients can easily
    // keep O(size()) = O(number of buckets) if they want that.
    bool ResizeIfLoadIsOutOfRange(size_type new_size) {
      const size_type kMaxMapLoadTimes16 = 12;  // controls RAM vs CPU tradeoff
      const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16;
      const size_type lo_cutoff = hi_cutoff / 4;
      // We don't care how many elements are in trees.  If a lot are,
      // we may resize even though there are many empty buckets.  In
      // practice, this seems fine.
      if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) {
        if (num_buckets_ <= max_size() / 2) {
          Resize(num_buckets_ * 2);
          return true;
        }
      } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff &&
                                        num_buckets_ > kMinTableSize)) {
        size_type lg2_of_size_reduction_factor = 1;
        // It's possible we want to shrink a lot here... size() could even be 0.
        // So, estimate how much to shrink by making sure we don't shrink so
        // much that we would need to grow the table after a few inserts.
        const size_type hypothetical_size = new_size * 5 / 4 + 1;
        while ((hypothetical_size << lg2_of_size_reduction_factor) <
               hi_cutoff) {
          ++lg2_of_size_reduction_factor;
        }
        size_type new_num_buckets = std::max<size_type>(
            kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor);
        if (new_num_buckets != num_buckets_) {
          Resize(new_num_buckets);
          return true;
        }
      }
      return false;
    }

    // Resize to the given number of buckets.
    void Resize(size_t new_num_buckets) {
      if (num_buckets_ == internal::kGlobalEmptyTableSize) {
        // This is the global empty array.
        // Just overwrite with a new one. No need to transfer or free anything.
        num_buckets_ = index_of_first_non_null_ = kMinTableSize;
        table_ = CreateEmptyTable(num_buckets_);
        seed_ = Seed();
        return;
      }

      GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize);
      void** const old_table = table_;
      const size_type old_table_size = num_buckets_;
      num_buckets_ = new_num_buckets;
      table_ = CreateEmptyTable(num_buckets_);
      const size_type start = index_of_first_non_null_;
      index_of_first_non_null_ = num_buckets_;
      for (size_type i = start; i < old_table_size; i++) {
        if (internal::TableEntryIsNonEmptyList(old_table, i)) {
          TransferList(old_table, i);
        } else if (internal::TableEntryIsTree(old_table, i)) {
          TransferTree(old_table, i++);
        }
      }
      Dealloc<void*>(old_table, old_table_size);
    }

    void TransferList(void* const* table, size_type index) {
      Node* node = static_cast<Node*>(table[index]);
      do {
        Node* next = node->next;
        InsertUnique(BucketNumber(node->kv.first), node);
        node = next;
      } while (node != nullptr);
    }

    void TransferTree(void* const* table, size_type index) {
      Tree* tree = static_cast<Tree*>(table[index]);
      typename Tree::iterator tree_it = tree->begin();
      do {
        InsertUnique(BucketNumber(std::cref(tree_it->first).get()),
                     NodeFromTreeIterator(tree_it));
      } while (++tree_it != tree->end());
      DestroyTree(tree);
    }

    Node* EraseFromLinkedList(Node* item, Node* head) {
      if (head == item) {
        return head->next;
      } else {
        head->next = EraseFromLinkedList(item, head->next);
        return head;
      }
    }

    bool TableEntryIsEmpty(size_type b) const {
      return internal::TableEntryIsEmpty(table_, b);
    }
    bool TableEntryIsNonEmptyList(size_type b) const {
      return internal::TableEntryIsNonEmptyList(table_, b);
    }
    bool TableEntryIsTree(size_type b) const {
      return internal::TableEntryIsTree(table_, b);
    }
    bool TableEntryIsList(size_type b) const {
      return internal::TableEntryIsList(table_, b);
    }

    void TreeConvert(size_type b) {
      GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1));
      Tree* tree =
          Arena::Create<Tree>(alloc_.arena(), typename Tree::key_compare(),
                              typename Tree::allocator_type(alloc_));
      size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree);
      GOOGLE_DCHECK_EQ(count, tree->size());
      table_[b] = table_[b ^ 1] = static_cast<void*>(tree);
    }

    // Copy a linked list in the given bucket to a tree.
    // Returns the number of things it copied.
    size_type CopyListToTree(size_type b, Tree* tree) {
      size_type count = 0;
      Node* node = static_cast<Node*>(table_[b]);
      while (node != nullptr) {
        tree->insert({node->kv.first, node});
        ++count;
        Node* next = node->next;
        node->next = nullptr;
        node = next;
      }
      return count;
    }

    // Return whether table_[b] is a linked list that seems awfully long.
    // Requires table_[b] to point to a non-empty linked list.
    bool TableEntryIsTooLong(size_type b) {
      const size_type kMaxLength = 8;
      size_type count = 0;
      Node* node = static_cast<Node*>(table_[b]);
      do {
        ++count;
        node = node->next;
      } while (node != nullptr);
      // Invariant: no linked list ever is more than kMaxLength in length.
      GOOGLE_DCHECK_LE(count, kMaxLength);
      return count >= kMaxLength;
    }

    template <typename K>
    size_type BucketNumber(const K& k) const {
      // We xor the hash value against the random seed so that we effectively
      // have a random hash function.
      uint64_t h = hash_function()(k) ^ seed_;

      // We use the multiplication method to determine the bucket number from
      // the hash value. The constant kPhi (suggested by Knuth) is roughly
      // (sqrt(5) - 1) / 2 * 2^64.
      constexpr uint64_t kPhi = uint64_t{0x9e3779b97f4a7c15};
      return ((kPhi * h) >> 32) & (num_buckets_ - 1);
    }

    // Return a power of two no less than max(kMinTableSize, n).
    // Assumes either n < kMinTableSize or n is a power of two.
    size_type TableSize(size_type n) {
      return n < static_cast<size_type>(kMinTableSize)
                 ? static_cast<size_type>(kMinTableSize)
                 : n;
    }

    // Use alloc_ to allocate an array of n objects of type U.
    template <typename U>
    U* Alloc(size_type n) {
      using alloc_type = typename Allocator::template rebind<U>::other;
      return alloc_type(alloc_).allocate(n);
    }

    // Use alloc_ to deallocate an array of n objects of type U.
    template <typename U>
    void Dealloc(U* t, size_type n) {
      using alloc_type = typename Allocator::template rebind<U>::other;
      alloc_type(alloc_).deallocate(t, n);
    }

    void DestroyNode(Node* node) {
      if (alloc_.arena() == nullptr) {
        delete node;
      }
    }

    void DestroyTree(Tree* tree) {
      if (alloc_.arena() == nullptr) {
        delete tree;
      }
    }

    void** CreateEmptyTable(size_type n) {
      GOOGLE_DCHECK(n >= kMinTableSize);
      GOOGLE_DCHECK_EQ(n & (n - 1), 0u);
      void** result = Alloc<void*>(n);
      memset(result, 0, n * sizeof(result[0]));
      return result;
    }

    // Return a randomish value.
    size_type Seed() const {
      // We get a little bit of randomness from the address of the map. The
      // lower bits are not very random, due to alignment, so we discard them
      // and shift the higher bits into their place.
      size_type s = reinterpret_cast<uintptr_t>(this) >> 4;
#if !defined(GOOGLE_PROTOBUF_NO_RDTSC)
#if defined(__APPLE__)
      // Use a commpage-based fast time function on Apple environments (MacOS,
      // iOS, tvOS, watchOS, etc).
      s += mach_absolute_time();
#elif defined(__x86_64__) && defined(__GNUC__)
      uint32_t hi, lo;
      asm volatile("rdtsc" : "=a"(lo), "=d"(hi));
      s += ((static_cast<uint64_t>(hi) << 32) | lo);
#elif defined(__aarch64__) && defined(__GNUC__)
      // There is no rdtsc on ARMv8. CNTVCT_EL0 is the virtual counter of the
      // system timer. It runs at a different frequency than the CPU's, but is
      // the best source of time-based entropy we get.
      uint64_t virtual_timer_value;
      asm volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value));
      s += virtual_timer_value;
#endif
#endif  // !defined(GOOGLE_PROTOBUF_NO_RDTSC)
      return s;
    }

    friend class Arena;
    using InternalArenaConstructable_ = void;
    using DestructorSkippable_ = void;

    size_type num_elements_;
    size_type num_buckets_;
    size_type seed_;
    size_type index_of_first_non_null_;
    void** table_;  // an array with num_buckets_ entries
    Allocator alloc_;
    GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap);
  };  // end of class InnerMap

  template <typename LookupKey>
  using key_arg = typename internal::TransparentSupport<
      key_type>::template key_arg<LookupKey>;

 public:
  // Iterators
  class const_iterator {
    using InnerIt = typename InnerMap::const_iterator;

   public:
    using iterator_category = std::forward_iterator_tag;
    using value_type = typename Map::value_type;
    using difference_type = ptrdiff_t;
    using pointer = const value_type*;
    using reference = const value_type&;

    const_iterator() {}
    explicit const_iterator(const InnerIt& it) : it_(it) {}

    const_reference operator*() const { return *it_; }
    const_pointer operator->() const { return &(operator*()); }

    const_iterator& operator++() {
      ++it_;
      return *this;
    }
    const_iterator operator++(int) { return const_iterator(it_++); }

    friend bool operator==(const const_iterator& a, const const_iterator& b) {
      return a.it_ == b.it_;
    }
    friend bool operator!=(const const_iterator& a, const const_iterator& b) {
      return !(a == b);
    }

   private:
    InnerIt it_;
  };

  class iterator {
    using InnerIt = typename InnerMap::iterator;

   public:
    using iterator_category = std::forward_iterator_tag;
    using value_type = typename Map::value_type;
    using difference_type = ptrdiff_t;
    using pointer = value_type*;
    using reference = value_type&;

    iterator() {}
    explicit iterator(const InnerIt& it) : it_(it) {}

    reference operator*() const { return *it_; }
    pointer operator->() const { return &(operator*()); }

    iterator& operator++() {
      ++it_;
      return *this;
    }
    iterator operator++(int) { return iterator(it_++); }

    // Allow implicit conversion to const_iterator.
    operator const_iterator() const {  // NOLINT(runtime/explicit)
      return const_iterator(typename InnerMap::const_iterator(it_));
    }

    friend bool operator==(const iterator& a, const iterator& b) {
      return a.it_ == b.it_;
    }
    friend bool operator!=(const iterator& a, const iterator& b) {
      return !(a == b);
    }

   private:
    friend class Map;

    InnerIt it_;
  };

  iterator begin() { return iterator(elements_.begin()); }
  iterator end() { return iterator(elements_.end()); }
  const_iterator begin() const { return const_iterator(elements_.begin()); }
  const_iterator end() const { return const_iterator(elements_.end()); }
  const_iterator cbegin() const { return begin(); }
  const_iterator cend() const { return end(); }

  // Capacity
  size_type size() const { return elements_.size(); }
  bool empty() const { return size() == 0; }

  // Element access
  template <typename K = key_type>
  T& operator[](const key_arg<K>& key) {
    return elements_[key].second;
  }
  template <
      typename K = key_type,
      // Disable for integral types to reduce code bloat.
      typename = typename std::enable_if<!std::is_integral<K>::value>::type>
  T& operator[](key_arg<K>&& key) {
    return elements_[std::forward<K>(key)].second;
  }

  template <typename K = key_type>
  const T& at(const key_arg<K>& key) const {
    const_iterator it = find(key);
    GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
    return it->second;
  }

  template <typename K = key_type>
  T& at(const key_arg<K>& key) {
    iterator it = find(key);
    GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
    return it->second;
  }

  // Lookup
  template <typename K = key_type>
  size_type count(const key_arg<K>& key) const {
    return find(key) == end() ? 0 : 1;
  }

  template <typename K = key_type>
  const_iterator find(const key_arg<K>& key) const {
    return const_iterator(elements_.find(key));
  }
  template <typename K = key_type>
  iterator find(const key_arg<K>& key) {
    return iterator(elements_.find(key));
  }

  template <typename K = key_type>
  bool contains(const key_arg<K>& key) const {
    return find(key) != end();
  }

  template <typename K = key_type>
  std::pair<const_iterator, const_iterator> equal_range(
      const key_arg<K>& key) const {
    const_iterator it = find(key);
    if (it == end()) {
      return std::pair<const_iterator, const_iterator>(it, it);
    } else {
      const_iterator begin = it++;
      return std::pair<const_iterator, const_iterator>(begin, it);
    }
  }

  template <typename K = key_type>
  std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
    iterator it = find(key);
    if (it == end()) {
      return std::pair<iterator, iterator>(it, it);
    } else {
      iterator begin = it++;
      return std::pair<iterator, iterator>(begin, it);
    }
  }

  // insert
  std::pair<iterator, bool> insert(const value_type& value) {
    std::pair<typename InnerMap::iterator, bool> p =
        elements_.insert(value.first);
    if (p.second) {
      p.first->second = value.second;
    }
    return std::pair<iterator, bool>(iterator(p.first), p.second);
  }
  template <class InputIt>
  void insert(InputIt first, InputIt last) {
    for (InputIt it = first; it != last; ++it) {
      iterator exist_it = find(it->first);
      if (exist_it == end()) {
        operator[](it->first) = it->second;
      }
    }
  }
  void insert(std::initializer_list<value_type> values) {
    insert(values.begin(), values.end());
  }

  // Erase and clear
  template <typename K = key_type>
  size_type erase(const key_arg<K>& key) {
    iterator it = find(key);
    if (it == end()) {
      return 0;
    } else {
      erase(it);
      return 1;
    }
  }
  iterator erase(iterator pos) {
    iterator i = pos++;
    elements_.erase(i.it_);
    return pos;
  }
  void erase(iterator first, iterator last) {
    while (first != last) {
      first = erase(first);
    }
  }
  void clear() { elements_.clear(); }

  // Assign
  Map& operator=(const Map& other) {
    if (this != &other) {
      clear();
      insert(other.begin(), other.end());
    }
    return *this;
  }

  void swap(Map& other) {
    if (arena() == other.arena()) {
      InternalSwap(other);
    } else {
      // TODO(zuguang): optimize this. The temporary copy can be allocated
      // in the same arena as the other message, and the "other = copy" can
      // be replaced with the fast-path swap above.
      Map copy = *this;
      *this = other;
      other = copy;
    }
  }

  void InternalSwap(Map& other) { elements_.Swap(&other.elements_); }

  // Access to hasher.  Currently this returns a copy, but it may
  // be modified to return a const reference in the future.
  hasher hash_function() const { return elements_.hash_function(); }

  size_t SpaceUsedExcludingSelfLong() const {
    if (empty()) return 0;
    return elements_.SpaceUsedInternal() + internal::SpaceUsedInValues(this);
  }

 private:
  Arena* arena() const { return elements_.arena(); }
  InnerMap elements_;

  friend class Arena;
  using InternalArenaConstructable_ = void;
  using DestructorSkippable_ = void;
  template <typename Derived, typename K, typename V,
            internal::WireFormatLite::FieldType key_wire_type,
            internal::WireFormatLite::FieldType value_wire_type>
  friend class internal::MapFieldLite;
};

}  // namespace protobuf
}  // namespace google

#include <port_undef.inc>

#endif  // GOOGLE_PROTOBUF_MAP_H__