aboutsummaryrefslogtreecommitdiff
path: root/lib/std/crypto/ghash_polyval.zig
blob: 45b2beb91b253ae0ee7fb6a8151bf82c0df47817 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;

const Precomp = u128;

/// GHASH is a universal hash function that uses multiplication by a fixed
/// parameter within a Galois field.
///
/// It is not a general purpose hash function - The key must be secret, unpredictable and never reused.
///
/// GHASH is typically used to compute the authentication tag in the AES-GCM construction.
pub const Ghash = Hash(.big, true);

/// POLYVAL is a universal hash function that uses multiplication by a fixed
/// parameter within a Galois field.
///
/// It is not a general purpose hash function - The key must be secret, unpredictable and never reused.
///
/// POLYVAL is typically used to compute the authentication tag in the AES-GCM-SIV construction.
pub const Polyval = Hash(.little, false);

fn Hash(comptime endian: std.builtin.Endian, comptime shift_key: bool) type {
    return struct {
        const Self = @This();

        pub const block_length: usize = 16;
        pub const mac_length = 16;
        pub const key_length = 16;

        const pc_count = if (builtin.mode != .ReleaseSmall) 16 else 2;
        const agg_4_threshold = 22;
        const agg_8_threshold = 84;
        const agg_16_threshold = 328;

        // Before the Haswell architecture, the carryless multiplication instruction was
        // extremely slow. Even with 128-bit operands, using Karatsuba multiplication was
        // thus faster than a schoolbook multiplication.
        // This is no longer the case -- Modern CPUs, including ARM-based ones, have a fast
        // carryless multiplication instruction; using 4 multiplications is now faster than
        // 3 multiplications with extra shifts and additions.
        const mul_algorithm = if (builtin.cpu.arch == .x86) .karatsuba else .schoolbook;

        hx: [pc_count]Precomp,
        acc: u128 = 0,

        leftover: usize = 0,
        buf: [block_length]u8 align(16) = undefined,

        /// Initialize the GHASH state with a key, and a minimum number of block count.
        pub fn initForBlockCount(key: *const [key_length]u8, block_count: usize) Self {
            var h = mem.readInt(u128, key[0..16], endian);
            if (shift_key) {
                // Shift the key by 1 bit to the left & reduce for GCM.
                const carry = ((@as(u128, 0xc2) << 120) | 1) & (@as(u128, 0) -% (h >> 127));
                h = (h << 1) ^ carry;
            }
            var hx: [pc_count]Precomp = undefined;
            hx[0] = h;
            hx[1] = reduce(clsq128(hx[0])); // h^2

            if (builtin.mode != .ReleaseSmall) {
                hx[2] = reduce(clmul128(hx[1], h)); // h^3
                hx[3] = reduce(clsq128(hx[1])); // h^4 = h^2^2
                if (block_count >= agg_8_threshold) {
                    hx[4] = reduce(clmul128(hx[3], h)); // h^5
                    hx[5] = reduce(clsq128(hx[2])); // h^6 = h^3^2
                    hx[6] = reduce(clmul128(hx[5], h)); // h^7
                    hx[7] = reduce(clsq128(hx[3])); // h^8 = h^4^2
                }
                if (block_count >= agg_16_threshold) {
                    var i: usize = 8;
                    while (i < 16) : (i += 2) {
                        hx[i] = reduce(clmul128(hx[i - 1], h));
                        hx[i + 1] = reduce(clsq128(hx[i / 2]));
                    }
                }
            }
            return Self{ .hx = hx };
        }

        /// Initialize the GHASH state with a key.
        pub fn init(key: *const [key_length]u8) Self {
            return Self.initForBlockCount(key, math.maxInt(usize));
        }

        const Selector = enum { lo, hi, hi_lo };

        // Carryless multiplication of two 64-bit integers for x86_64.
        fn clmulPclmul(x: u128, y: u128, comptime half: Selector) u128 {
            switch (half) {
                .hi => {
                    const product = asm (
                        \\ vpclmulqdq $0x11, %[x], %[y], %[out]
                        : [out] "=x" (-> @Vector(2, u64)),
                        : [x] "x" (@as(@Vector(2, u64), @bitCast(x))),
                          [y] "x" (@as(@Vector(2, u64), @bitCast(y))),
                    );
                    return @as(u128, @bitCast(product));
                },
                .lo => {
                    const product = asm (
                        \\ vpclmulqdq $0x00, %[x], %[y], %[out]
                        : [out] "=x" (-> @Vector(2, u64)),
                        : [x] "x" (@as(@Vector(2, u64), @bitCast(x))),
                          [y] "x" (@as(@Vector(2, u64), @bitCast(y))),
                    );
                    return @as(u128, @bitCast(product));
                },
                .hi_lo => {
                    const product = asm (
                        \\ vpclmulqdq $0x10, %[x], %[y], %[out]
                        : [out] "=x" (-> @Vector(2, u64)),
                        : [x] "x" (@as(@Vector(2, u64), @bitCast(x))),
                          [y] "x" (@as(@Vector(2, u64), @bitCast(y))),
                    );
                    return @as(u128, @bitCast(product));
                },
            }
        }

        // Carryless multiplication of two 64-bit integers for ARM crypto.
        fn clmulPmull(x: u128, y: u128, comptime half: Selector) u128 {
            switch (half) {
                .hi => {
                    const product = asm (
                        \\ pmull2 %[out].1q, %[x].2d, %[y].2d
                        : [out] "=w" (-> @Vector(2, u64)),
                        : [x] "w" (@as(@Vector(2, u64), @bitCast(x))),
                          [y] "w" (@as(@Vector(2, u64), @bitCast(y))),
                    );
                    return @as(u128, @bitCast(product));
                },
                .lo => {
                    const product = asm (
                        \\ pmull %[out].1q, %[x].1d, %[y].1d
                        : [out] "=w" (-> @Vector(2, u64)),
                        : [x] "w" (@as(@Vector(2, u64), @bitCast(x))),
                          [y] "w" (@as(@Vector(2, u64), @bitCast(y))),
                    );
                    return @as(u128, @bitCast(product));
                },
                .hi_lo => {
                    const product = asm (
                        \\ pmull %[out].1q, %[x].1d, %[y].1d
                        : [out] "=w" (-> @Vector(2, u64)),
                        : [x] "w" (@as(@Vector(2, u64), @bitCast(x >> 64))),
                          [y] "w" (@as(@Vector(2, u64), @bitCast(y))),
                    );
                    return @as(u128, @bitCast(product));
                },
            }
        }

        /// clmulSoft128_64 is faster on platforms with no native 128-bit registers.
        const clmulSoft = switch (builtin.cpu.arch) {
            .wasm32, .wasm64 => clmulSoft128_64,
            else => if (std.simd.suggestVectorLength(u128) != null) clmulSoft128 else clmulSoft128_64,
        };

        // Software carryless multiplication of two 64-bit integers using native 128-bit registers.
        fn clmulSoft128(x_: u128, y_: u128, comptime half: Selector) u128 {
            const x = @as(u64, @truncate(if (half == .hi or half == .hi_lo) x_ >> 64 else x_));
            const y = @as(u64, @truncate(if (half == .hi) y_ >> 64 else y_));

            const x0 = x & 0x1111111111111110;
            const x1 = x & 0x2222222222222220;
            const x2 = x & 0x4444444444444440;
            const x3 = x & 0x8888888888888880;
            const y0 = y & 0x1111111111111111;
            const y1 = y & 0x2222222222222222;
            const y2 = y & 0x4444444444444444;
            const y3 = y & 0x8888888888888888;
            const z0 = (x0 * @as(u128, y0)) ^ (x1 * @as(u128, y3)) ^ (x2 * @as(u128, y2)) ^ (x3 * @as(u128, y1));
            const z1 = (x0 * @as(u128, y1)) ^ (x1 * @as(u128, y0)) ^ (x2 * @as(u128, y3)) ^ (x3 * @as(u128, y2));
            const z2 = (x0 * @as(u128, y2)) ^ (x1 * @as(u128, y1)) ^ (x2 * @as(u128, y0)) ^ (x3 * @as(u128, y3));
            const z3 = (x0 * @as(u128, y3)) ^ (x1 * @as(u128, y2)) ^ (x2 * @as(u128, y1)) ^ (x3 * @as(u128, y0));

            const x0_mask = @as(u64, 0) -% (x & 1);
            const x1_mask = @as(u64, 0) -% ((x >> 1) & 1);
            const x2_mask = @as(u64, 0) -% ((x >> 2) & 1);
            const x3_mask = @as(u64, 0) -% ((x >> 3) & 1);
            const extra = (x0_mask & y) ^ (@as(u128, x1_mask & y) << 1) ^
                (@as(u128, x2_mask & y) << 2) ^ (@as(u128, x3_mask & y) << 3);

            return (z0 & 0x11111111111111111111111111111111) ^
                (z1 & 0x22222222222222222222222222222222) ^
                (z2 & 0x44444444444444444444444444444444) ^
                (z3 & 0x88888888888888888888888888888888) ^ extra;
        }

        // Software carryless multiplication of two 32-bit integers.
        fn clmulSoft32(x: u32, y: u32) u64 {
            const mulWide = math.mulWide;
            const a0 = x & 0x11111111;
            const a1 = x & 0x22222222;
            const a2 = x & 0x44444444;
            const a3 = x & 0x88888888;
            const b0 = y & 0x11111111;
            const b1 = y & 0x22222222;
            const b2 = y & 0x44444444;
            const b3 = y & 0x88888888;
            const c0 = mulWide(u32, a0, b0) ^ mulWide(u32, a1, b3) ^ mulWide(u32, a2, b2) ^ mulWide(u32, a3, b1);
            const c1 = mulWide(u32, a0, b1) ^ mulWide(u32, a1, b0) ^ mulWide(u32, a2, b3) ^ mulWide(u32, a3, b2);
            const c2 = mulWide(u32, a0, b2) ^ mulWide(u32, a1, b1) ^ mulWide(u32, a2, b0) ^ mulWide(u32, a3, b3);
            const c3 = mulWide(u32, a0, b3) ^ mulWide(u32, a1, b2) ^ mulWide(u32, a2, b1) ^ mulWide(u32, a3, b0);
            return (c0 & 0x1111111111111111) | (c1 & 0x2222222222222222) | (c2 & 0x4444444444444444) | (c3 & 0x8888888888888888);
        }

        // Software carryless multiplication of two 128-bit integers using 64-bit registers.
        fn clmulSoft128_64(x_: u128, y_: u128, comptime half: Selector) u128 {
            const a = @as(u64, @truncate(if (half == .hi or half == .hi_lo) x_ >> 64 else x_));
            const b = @as(u64, @truncate(if (half == .hi) y_ >> 64 else y_));
            const a0 = @as(u32, @truncate(a));
            const a1 = @as(u32, @truncate(a >> 32));
            const b0 = @as(u32, @truncate(b));
            const b1 = @as(u32, @truncate(b >> 32));
            const lo = clmulSoft32(a0, b0);
            const hi = clmulSoft32(a1, b1);
            const mid = clmulSoft32(a0 ^ a1, b0 ^ b1) ^ lo ^ hi;
            const res_lo = lo ^ (mid << 32);
            const res_hi = hi ^ (mid >> 32);
            return @as(u128, res_lo) | (@as(u128, res_hi) << 64);
        }

        const I256 = struct {
            hi: u128,
            lo: u128,
            mid: u128,
        };

        fn xor256(x: *I256, y: I256) void {
            x.* = I256{
                .hi = x.hi ^ y.hi,
                .lo = x.lo ^ y.lo,
                .mid = x.mid ^ y.mid,
            };
        }

        // Square a 128-bit integer in GF(2^128).
        fn clsq128(x: u128) I256 {
            return .{
                .hi = clmul(x, x, .hi),
                .lo = clmul(x, x, .lo),
                .mid = 0,
            };
        }

        // Multiply two 128-bit integers in GF(2^128).
        fn clmul128(x: u128, y: u128) I256 {
            if (mul_algorithm == .karatsuba) {
                const x_hi = @as(u64, @truncate(x >> 64));
                const y_hi = @as(u64, @truncate(y >> 64));
                const r_lo = clmul(x, y, .lo);
                const r_hi = clmul(x, y, .hi);
                const r_mid = clmul(x ^ x_hi, y ^ y_hi, .lo) ^ r_lo ^ r_hi;
                return .{
                    .hi = r_hi,
                    .lo = r_lo,
                    .mid = r_mid,
                };
            } else {
                return .{
                    .hi = clmul(x, y, .hi),
                    .lo = clmul(x, y, .lo),
                    .mid = clmul(x, y, .hi_lo) ^ clmul(y, x, .hi_lo),
                };
            }
        }

        // Reduce a 256-bit representative of a polynomial modulo the irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1.
        // This is done using Shay Gueron's black magic demysticated here:
        // https://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html
        fn reduce(x: I256) u128 {
            const hi = x.hi ^ (x.mid >> 64);
            const lo = x.lo ^ (x.mid << 64);
            const p64 = (((1 << 121) | (1 << 126) | (1 << 127)) >> 64);
            const a = clmul(lo, p64, .lo);
            const b = ((lo << 64) | (lo >> 64)) ^ a;
            const c = clmul(b, p64, .lo);
            const d = ((b << 64) | (b >> 64)) ^ c;
            return d ^ hi;
        }

        const has_pclmul = builtin.cpu.has(.x86, .pclmul);
        const has_avx = builtin.cpu.has(.x86, .avx);
        const has_armaes = builtin.cpu.has(.aarch64, .aes);
        // C backend doesn't currently support passing vectors to inline asm.
        const clmul = if (builtin.cpu.arch == .x86_64 and builtin.zig_backend != .stage2_c and has_pclmul and has_avx) impl: {
            break :impl clmulPclmul;
        } else if (builtin.cpu.arch == .aarch64 and builtin.zig_backend != .stage2_c and has_armaes) impl: {
            break :impl clmulPmull;
        } else impl: {
            break :impl clmulSoft;
        };

        // Process 16 byte blocks.
        fn blocks(st: *Self, msg: []const u8) void {
            assert(msg.len % 16 == 0); // GHASH blocks() expects full blocks
            var acc = st.acc;

            var i: usize = 0;

            if (builtin.mode != .ReleaseSmall and msg.len >= agg_16_threshold * block_length) {
                // 16-blocks aggregated reduction
                while (i + 256 <= msg.len) : (i += 256) {
                    var u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[15 - 0]);
                    comptime var j = 1;
                    inline while (j < 16) : (j += 1) {
                        xor256(&u, clmul128(mem.readInt(u128, msg[i..][j * 16 ..][0..16], endian), st.hx[15 - j]));
                    }
                    acc = reduce(u);
                }
            } else if (builtin.mode != .ReleaseSmall and msg.len >= agg_8_threshold * block_length) {
                // 8-blocks aggregated reduction
                while (i + 128 <= msg.len) : (i += 128) {
                    var u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[7 - 0]);
                    comptime var j = 1;
                    inline while (j < 8) : (j += 1) {
                        xor256(&u, clmul128(mem.readInt(u128, msg[i..][j * 16 ..][0..16], endian), st.hx[7 - j]));
                    }
                    acc = reduce(u);
                }
            } else if (builtin.mode != .ReleaseSmall and msg.len >= agg_4_threshold * block_length) {
                // 4-blocks aggregated reduction
                while (i + 64 <= msg.len) : (i += 64) {
                    var u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[3 - 0]);
                    comptime var j = 1;
                    inline while (j < 4) : (j += 1) {
                        xor256(&u, clmul128(mem.readInt(u128, msg[i..][j * 16 ..][0..16], endian), st.hx[3 - j]));
                    }
                    acc = reduce(u);
                }
            }
            // 2-blocks aggregated reduction
            while (i + 32 <= msg.len) : (i += 32) {
                var u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[1 - 0]);
                comptime var j = 1;
                inline while (j < 2) : (j += 1) {
                    xor256(&u, clmul128(mem.readInt(u128, msg[i..][j * 16 ..][0..16], endian), st.hx[1 - j]));
                }
                acc = reduce(u);
            }
            // remaining blocks
            if (i < msg.len) {
                const u = clmul128(acc ^ mem.readInt(u128, msg[i..][0..16], endian), st.hx[0]);
                acc = reduce(u);
                i += 16;
            }
            assert(i == msg.len);
            st.acc = acc;
        }

        /// Absorb a message into the GHASH state.
        pub fn update(st: *Self, m: []const u8) void {
            var mb = m;

            if (st.leftover > 0) {
                const want = @min(block_length - st.leftover, mb.len);
                const mc = mb[0..want];
                for (mc, 0..) |x, i| {
                    st.buf[st.leftover + i] = x;
                }
                mb = mb[want..];
                st.leftover += want;
                if (st.leftover < block_length) {
                    return;
                }
                st.blocks(&st.buf);
                st.leftover = 0;
            }
            if (mb.len >= block_length) {
                const want = mb.len & ~(block_length - 1);
                st.blocks(mb[0..want]);
                mb = mb[want..];
            }
            if (mb.len > 0) {
                for (mb, 0..) |x, i| {
                    st.buf[st.leftover + i] = x;
                }
                st.leftover += mb.len;
            }
        }

        /// Zero-pad to align the next input to the first byte of a block
        pub fn pad(st: *Self) void {
            if (st.leftover == 0) {
                return;
            }
            var i = st.leftover;
            while (i < block_length) : (i += 1) {
                st.buf[i] = 0;
            }
            st.blocks(&st.buf);
            st.leftover = 0;
        }

        /// Compute the GHASH of the entire input.
        pub fn final(st: *Self, out: *[mac_length]u8) void {
            st.pad();
            mem.writeInt(u128, out[0..16], st.acc, endian);

            std.crypto.secureZero(u8, @as([*]u8, @ptrCast(st))[0..@sizeOf(Self)]);
        }

        /// Compute the GHASH of a message.
        pub fn create(out: *[mac_length]u8, msg: []const u8, key: *const [key_length]u8) void {
            var st = Self.init(key);
            st.update(msg);
            st.final(out);
        }
    };
}

const htest = @import("test.zig");

test "ghash" {
    const key = [_]u8{0x42} ** 16;
    const m = [_]u8{0x69} ** 256;

    var st = Ghash.init(&key);
    st.update(&m);
    var out: [16]u8 = undefined;
    st.final(&out);
    try htest.assertEqual("889295fa746e8b174bf4ec80a65dea41", &out);

    st = Ghash.init(&key);
    st.update(m[0..100]);
    st.update(m[100..]);
    st.final(&out);
    try htest.assertEqual("889295fa746e8b174bf4ec80a65dea41", &out);
}

test "ghash2" {
    var key: [16]u8 = undefined;
    var i: usize = 0;
    while (i < key.len) : (i += 1) {
        key[i] = @as(u8, @intCast(i * 15 + 1));
    }
    const tvs = [_]struct { len: usize, hash: [:0]const u8 }{
        .{ .len = 5263, .hash = "b9395f37c131cd403a327ccf82ec016a" },
        .{ .len = 1361, .hash = "8c24cb3664e9a36e32ddef0c8178ab33" },
        .{ .len = 1344, .hash = "015d7243b52d62eee8be33a66a9658cc" },
        .{ .len = 1000, .hash = "56e148799944193f351f2014ef9dec9d" },
        .{ .len = 512, .hash = "ca4882ce40d37546185c57709d17d1ca" },
        .{ .len = 128, .hash = "d36dc3aac16cfe21a75cd5562d598c1c" },
        .{ .len = 111, .hash = "6e2bea99700fd19cf1694e7b56543320" },
        .{ .len = 80, .hash = "aa28f4092a7cca155f3de279cf21aa17" },
        .{ .len = 16, .hash = "9d7eb5ed121a52a4b0996e4ec9b98911" },
        .{ .len = 1, .hash = "968a203e5c7a98b6d4f3112f4d6b89a7" },
        .{ .len = 0, .hash = "00000000000000000000000000000000" },
    };
    inline for (tvs) |tv| {
        var m: [tv.len]u8 = undefined;
        i = 0;
        while (i < m.len) : (i += 1) {
            m[i] = @as(u8, @truncate(i % 254 + 1));
        }
        var st = Ghash.init(&key);
        st.update(&m);
        var out: [16]u8 = undefined;
        st.final(&out);
        try htest.assertEqual(tv.hash, &out);
    }
}

test "polyval" {
    const key = [_]u8{0x42} ** 16;
    const m = [_]u8{0x69} ** 256;

    var st = Polyval.init(&key);
    st.update(&m);
    var out: [16]u8 = undefined;
    st.final(&out);
    try htest.assertEqual("0713c82b170eef25c8955ddf72c85ccb", &out);

    st = Polyval.init(&key);
    st.update(m[0..100]);
    st.update(m[100..]);
    st.final(&out);
    try htest.assertEqual("0713c82b170eef25c8955ddf72c85ccb", &out);
}