aboutsummaryrefslogtreecommitdiff
path: root/doc/langref.html.in
blob: 506ecbc4b3d49da1dfac8ad3814617962e3491fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
<!doctype html>
<html lang="en">
  <head>
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <meta name="color-scheme" content="light dark">
    <title>Documentation - The Zig Programming Language</title>
    <link rel="icon" href="">
    <link rel="icon" href="">
    <style>
      :root{
         --nav-width: 26em;
         --nav-margin-l: 1em;
      }
      body{
        font-family: system-ui, -apple-system, Roboto, "Segoe UI", sans-serif;
        margin: 0;
        line-height: 1.5;
      }
      header {
        padding: 0 1em;
      }
      #contents {
        max-width: 60em;
        margin: auto;
        padding: 0 1em;
      }
      #navigation {
        padding: 0 1em;
      }
      table ul {
        list-style-type: none;
        padding: 0em;
      }
      table li {
        padding-bottom: 1em;
        line-height:1.2em;
      }
      table, th, td {
        border-collapse: collapse;
        border: 1px solid grey;
      }
      th, td {
        padding: 0.5em;
      }
      th[scope=row] {
          text-align: left;
          font-weight: normal;
      }

      @media screen and (min-width: 1025px) {
        header {
          margin-left: calc(var(--nav-width) + var(--nav-margin-l));
        }
        header h1 {
          margin: auto;
          max-width: 30em;
        }
        #navigation {
          overflow: auto;
          width: var(--nav-width);
          height: 100vh;
          position: fixed;
          top:0;
          left:0;
          bottom:0;
          padding: unset;
          margin-left: var(--nav-margin-l);
        }
        #navigation nav ul {
          padding-left: 1em;
        }
        #contents-wrapper {
          margin-left: calc(var(--nav-width) + var(--nav-margin-l));
        }
      }

      a:hover,a:focus {
        background: #fff2a8;
      }
      dt {
        font-weight: bold;
      }
      .sgr-1m {
        font-weight: bold;
      }
      .sgr-2m {
        color: #575757;
      }
      .sgr-31_1m {
        color: #b40000;
      }
      .sgr-32_1m {
        color: green;
      }
      .sgr-36_1m {
        color: #005C7A;
      }
      .file {
        font-weight: bold;
        border: unset;
      }
      code {
        background: #f8f8f8;
        border: 1px dotted silver;
        padding-left: 0.3em;
        padding-right: 0.3em;
      }
      pre > code {
        display: block;
        overflow: auto;
        padding: 0.5em;
        border: 1px solid #eee;
        line-height: normal;
      }
      samp {
        background: #fafafa;
      }
      pre > samp {
        display: block;
        overflow: auto;
        padding: 0.5em;
        border: 1px solid #eee;
        line-height: normal;
      }
      kbd {
        font-weight: normal;
      }
      .table-wrapper {
        width: 100%;
        overflow-x: auto;
      }

      .tok-kw {
          color: #333;
          font-weight: bold;
      }
      .tok-str {
          color: #d14;
      }
      .tok-builtin {
          color: #005C7A;
      }
      .tok-comment {
          color: #545454;
          font-style: italic;
      }
      .tok-fn {
          color: #900;
          font-weight: bold;
      }
      .tok-null {
          color: #005C5C;
      }
      .tok-number {
          color: #005C5C;
      }
      .tok-type {
          color: #458;
          font-weight: bold;
      }

      figure {
        margin: auto 0;
      }
      figure pre {
        margin-top: 0;
      }

      figcaption {
        padding-left: 0.5em;
        font-size: small;
        border-top-left-radius: 5px;
        border-top-right-radius: 5px;
      }
      figcaption.zig-cap {
        background: #fcdba5;
      }
      figcaption.c-cap {
        background: #a8b9cc;
        color: #000;
      }
      figcaption.peg-cap {
        background: #fcdba5;
      }
      figcaption.javascript-cap {
        background: #365d95;
        color: #fff;
      }
      figcaption.shell-cap {
        background: #ccc;
        color: #000;
      }

      aside {
        border-left: 0.25em solid #f7a41d;
        padding: 0 1em 0 1em;
      }

      h1 a, h2 a, h3 a, h4 a, h5 a {
        text-decoration: none;
        color: #333;
      }

      a.hdr {
        visibility: hidden;
      }
      h1:hover > a.hdr, h2:hover > a.hdr, h3:hover > a.hdr, h4:hover > a.hdr, h5:hover > a.hdr {
        visibility: visible;
      }

      th pre code {
          background: none;
      }

      @media (prefers-color-scheme: dark) {
        body{
            background:#121212;
            color: #ccc;
        }
        a {
            color: #88f;
        }
        a:hover,a:focus {
            color: #000;
        }
        table, th, td {
            border-color: grey;
        }
        .sgr-2m {
            color: grey;
        }
        .sgr-31_1m {
            color: red;
        }
        .sgr-32_1m {
            color: #00B800;
        }
        .sgr-36_1m {
            color: #0086b3;
        }
        code {
          background: #222;
          border-color: #444;
        }
        pre > code {
            color: #ccc;
            background: #222;
            border: unset;
        }
        samp {
          background: #000;
          color: #ccc;
        }
        pre > samp {
          border: unset;
        }
        .tok-kw {
            color: #eee;
        }
        .tok-str {
            color: #2e5;
        }
        .tok-builtin {
            color: #ff894c;
        }
        .tok-comment {
            color: #aa7;
        }
        .tok-fn {
            color: #B1A0F8;
        }
        .tok-null {
            color: #ff8080;
        }
        .tok-number {
            color: #ff8080;
        }
        .tok-type {
            color: #68f;
        }
        h1 a, h2 a, h3 a, h4 a, h5 a {
            color: #aaa;
        }
        figcaption.zig-cap {
            background-color: #b27306;
            color: #000;
        }
        figcaption.peg-cap {
            background-color: #b27306;
            color: #000;
        }
        figcaption.shell-cap {
          background: #2a2a2a;
          color: #fff;
        }
      }
    </style>
</head>
<body>
  <header><h1>Zig Language Reference</h1></header>
  <div id="main-wrapper">
      <div id="navigation">
        <nav aria-labelledby="zig-version">
          <h2 id="zig-version">Zig Version</h2>
          <a href="https://ziglang.org/documentation/0.1.1/">0.1.1</a> |
          <a href="https://ziglang.org/documentation/0.2.0/">0.2.0</a> |
          <a href="https://ziglang.org/documentation/0.3.0/">0.3.0</a> |
          <a href="https://ziglang.org/documentation/0.4.0/">0.4.0</a> |
          <a href="https://ziglang.org/documentation/0.5.0/">0.5.0</a> |
          <a href="https://ziglang.org/documentation/0.6.0/">0.6.0</a> |
          <a href="https://ziglang.org/documentation/0.7.1/">0.7.1</a> |
          <a href="https://ziglang.org/documentation/0.8.1/">0.8.1</a> |
          <a href="https://ziglang.org/documentation/0.9.1/">0.9.1</a> |
          <a href="https://ziglang.org/documentation/0.10.1/">0.10.1</a> |
          <a href="https://ziglang.org/documentation/0.11.0/">0.11.0</a> |
          <a href="https://ziglang.org/documentation/0.12.0/">0.12.0</a> |
          <a href="https://ziglang.org/documentation/0.13.0/">0.13.0</a> |
          <a href="https://ziglang.org/documentation/0.14.1/">0.14.1</a> |
          <a href="https://ziglang.org/documentation/0.15.1/">0.15.1</a> |
          master
        </nav>
        <nav aria-labelledby="table-of-contents">
          <h2 id="table-of-contents">Table of Contents</h2>
          {#nav#}
        </nav>
      </div>
      <div id="contents-wrapper"><main id="contents">
      {#header_open|Introduction#}
      <p>
      <a href="https://ziglang.org">Zig</a> is a general-purpose programming language and toolchain for maintaining
      <strong>robust</strong>, <strong>optimal</strong>, and <strong>reusable</strong> software.
      </p>
      <dl>
        <dt>Robust</dt><dd>Behavior is correct even for edge cases such as out of memory.</dd>
        <dt>Optimal</dt><dd>Write programs the best way they can behave and perform.</dd>
        <dt>Reusable</dt><dd>The same code works in many environments which have different
          constraints.</dd>
        <dt>Maintainable</dt><dd>Precisely communicate intent to the compiler and
          other programmers. The language imposes a low overhead to reading code and is
          resilient to changing requirements and environments.</dd>
      </dl>
      <p>
      Often the most efficient way to learn something new is to see examples, so
      this documentation shows how to use each of Zig's features. It is
      all on one page so you can search with your browser's search tool.
      </p>
      <p>
      The code samples in this document are compiled and tested as part of the main test suite of Zig.
      </p>
      <p>
      This HTML document depends on no external files, so you can use it offline.
      </p>
      {#header_close#}

      {#header_open|Zig Standard Library#}
      <p>
        The <a href="https://ziglang.org/documentation/master/std/">Zig Standard Library</a> has its own documentation.
      </p>
      <p>
        Zig's Standard Library contains commonly used algorithms, data structures, and definitions to help you build programs or libraries.
        You will see many examples of Zig's Standard Library used in this documentation. To learn more about the Zig Standard Library,
        visit the link above.
      </p>
      <p>
        Alternatively, the Zig Standard Library documentation is provided with each Zig distribution. It can be rendered via a local webserver with:
      </p>
      {#shell_samp#}zig std{#end_shell_samp#}
      {#header_close#}

      {#header_open|Hello World#}

      {#code|hello.zig#}

      <p>
      Most of the time, it is more appropriate to write to stderr rather than stdout, and
      whether or not the message is successfully written to the stream is irrelevant.
      Also, formatted printing often comes in handy. For this common case,
      there is a simpler API:
      </p>
      {#code|hello_again.zig#}

      <p>
      In this case, the {#syntax#}!{#endsyntax#} may be omitted from the return
      type of <code>main</code> because no errors are returned from the function.
      </p>
      {#see_also|Values|Tuples|@import|Errors|Entry Point|Source Encoding|try#}
      {#header_close#}
      {#header_open|Comments#}
      <p>
      Zig supports 3 types of comments. Normal comments are ignored, but doc comments
      and top-level doc comments are used by the compiler to generate the package documentation.
      </p>
      <p>
      The generated documentation is still experimental, and can be produced with:
      </p>
      {#shell_samp#}zig test -femit-docs main.zig{#end_shell_samp#}
      {#code|comments.zig#}

      <p>
      There are no multiline comments in Zig (e.g. like <code class="c">/* */</code>
      comments in C).  This allows Zig to have the property that each line
      of code can be tokenized out of context.
      </p>
      {#header_open|Doc Comments#}
      <p>
      A doc comment is one that begins with exactly three slashes (i.e.
      {#syntax#}///{#endsyntax#} but not {#syntax#}////{#endsyntax#});
      multiple doc comments in a row are merged together to form a multiline
      doc comment.  The doc comment documents whatever immediately follows it.
      </p>
      {#code|doc_comments.zig#}

      <p>
      Doc comments are only allowed in certain places; it is a compile error to
      have a doc comment in an unexpected place, such as in the middle of an expression,
      or just before a non-doc comment.
      </p>
      {#code|invalid_doc-comment.zig#}

      {#code|unattached_doc-comment.zig#}

      <p>
      Doc comments can be interleaved with normal comments. Currently, when producing
      the package documentation, normal comments are merged with doc comments.
      </p>
      {#header_close#}
      {#header_open|Top-Level Doc Comments#}
      <p>
      A top-level doc comment is one that begins with two slashes and an exclamation
      point: {#syntax#}//!{#endsyntax#}; it documents the current module.
      </p>
      <p>
      It is a compile error if a top-level doc comment is not placed at the start
      of a {#link|container|Containers#}, before any expressions.
      </p>
      {#code|tldoc_comments.zig#}

      {#header_close#}
      {#header_close#}
      {#header_open|Values#}
      {#code|values.zig#}

      {#header_open|Primitive Types#}
      <div class="table-wrapper">
      <table>
        <caption>Primitive Types</caption>
        <thead>
            <tr>
            <th scope="col">Type</th>
            <th scope="col">C Equivalent</th>
            <th scope="col">Description</th>
        </tr>
        </thead>
        <tbody>
        <tr>
            <th scope="row">{#syntax#}i8{#endsyntax#}</th>
          <td><code class="c">int8_t</code></td>
          <td>signed 8-bit integer</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}u8{#endsyntax#}</th>
          <td><code class="c">uint8_t</code></td>
          <td>unsigned 8-bit integer</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}i16{#endsyntax#}</th>
          <td><code class="c">int16_t</code></td>
          <td>signed 16-bit integer</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}u16{#endsyntax#}</th>
          <td><code class="c">uint16_t</code></td>
          <td>unsigned 16-bit integer</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}i32{#endsyntax#}</th>
          <td><code class="c">int32_t</code></td>
          <td>signed 32-bit integer</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}u32{#endsyntax#}</th>
          <td><code class="c">uint32_t</code></td>
          <td>unsigned 32-bit integer</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}i64{#endsyntax#}</th>
          <td><code class="c">int64_t</code></td>
          <td>signed 64-bit integer</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}u64{#endsyntax#}</th>
          <td><code class="c">uint64_t</code></td>
          <td>unsigned 64-bit integer</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}i128{#endsyntax#}</th>
          <td><code class="c">__int128</code></td>
          <td>signed 128-bit integer</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}u128{#endsyntax#}</th>
          <td><code class="c">unsigned __int128</code></td>
          <td>unsigned 128-bit integer</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}isize{#endsyntax#}</th>
          <td><code class="c">intptr_t</code></td>
          <td>signed pointer sized integer</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}usize{#endsyntax#}</th>
          <td><code class="c">uintptr_t</code>, <code class="c">size_t</code></td>
          <td>unsigned pointer sized integer. Also see <a href="https://github.com/ziglang/zig/issues/5185">#5185</a></td>
        </tr>

        <tr>
            <th scope="row">{#syntax#}c_char{#endsyntax#}</th>
          <td><code class="c">char</code></td>
          <td>for ABI compatibility with C</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}c_short{#endsyntax#}</th>
          <td><code class="c">short</code></td>
          <td>for ABI compatibility with C</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}c_ushort{#endsyntax#}</th>
          <td><code class="c">unsigned short</code></td>
          <td>for ABI compatibility with C</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}c_int{#endsyntax#}</th>
          <td><code class="c">int</code></td>
          <td>for ABI compatibility with C</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}c_uint{#endsyntax#}</th>
          <td><code class="c">unsigned int</code></td>
          <td>for ABI compatibility with C</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}c_long{#endsyntax#}</th>
          <td><code class="c">long</code></td>
          <td>for ABI compatibility with C</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}c_ulong{#endsyntax#}</th>
          <td><code class="c">unsigned long</code></td>
          <td>for ABI compatibility with C</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}c_longlong{#endsyntax#}</th>
          <td><code class="c">long long</code></td>
          <td>for ABI compatibility with C</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}c_ulonglong{#endsyntax#}</th>
          <td><code class="c">unsigned long long</code></td>
          <td>for ABI compatibility with C</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}c_longdouble{#endsyntax#}</th>
          <td><code class="c">long double</code></td>
          <td>for ABI compatibility with C</td>
        </tr>

        <tr>
            <th scope="row">{#syntax#}f16{#endsyntax#}</th>
          <td><code class="c">_Float16</code></td>
          <td>16-bit floating point (10-bit mantissa) IEEE-754-2008 binary16</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}f32{#endsyntax#}</th>
          <td><code class="c">float</code></td>
          <td>32-bit floating point (23-bit mantissa) IEEE-754-2008 binary32</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}f64{#endsyntax#}</th>
          <td><code class="c">double</code></td>
          <td>64-bit floating point (52-bit mantissa) IEEE-754-2008 binary64</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}f80{#endsyntax#}</th>
          <td><code class="c">long double</code></td>
          <td>80-bit floating point (64-bit mantissa) IEEE-754-2008 80-bit extended precision</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}f128{#endsyntax#}</th>
            <td><code class="c">_Float128</code></td>
          <td>128-bit floating point (112-bit mantissa) IEEE-754-2008 binary128</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}bool{#endsyntax#}</th>
          <td><code class="c">bool</code></td>
          <td>{#syntax#}true{#endsyntax#} or {#syntax#}false{#endsyntax#}</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}anyopaque{#endsyntax#}</th>
          <td><code class="c">void</code></td>
          <td>Used for type-erased pointers.</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}void{#endsyntax#}</th>
          <td>(none)</td>
          <td>Always the value {#syntax#}void{}{#endsyntax#}</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}noreturn{#endsyntax#}</th>
          <td>(none)</td>
          <td>the type of {#syntax#}break{#endsyntax#}, {#syntax#}continue{#endsyntax#}, {#syntax#}return{#endsyntax#}, {#syntax#}unreachable{#endsyntax#}, and {#syntax#}while (true) {}{#endsyntax#}</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}type{#endsyntax#}</th>
          <td>(none)</td>
          <td>the type of types</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}anyerror{#endsyntax#}</th>
          <td>(none)</td>
          <td>an error code</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}comptime_int{#endsyntax#}</th>
          <td>(none)</td>
          <td>Only allowed for {#link|comptime#}-known values. The type of integer literals.</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}comptime_float{#endsyntax#}</th>
          <td>(none)</td>
          <td>Only allowed for {#link|comptime#}-known values. The type of float literals.</td>
        </tr>
        </tbody>
      </table>
      </div>
      <p>
      In addition to the integer types above, arbitrary bit-width integers can be referenced by using
      an identifier of <code>i</code> or <code>u</code> followed by digits. For example, the identifier
      {#syntax#}i7{#endsyntax#} refers to a signed 7-bit integer. The maximum allowed bit-width of an
      integer type is {#syntax#}65535{#endsyntax#}.
      </p>
      {#see_also|Integers|Floats|void|Errors|@Type#}
      {#header_close#}
      {#header_open|Primitive Values#}
      <div class="table-wrapper">
      <table>
        <caption>Primitive Values</caption>
        <thead>
        <tr>
          <th scope="col">Name</th>
          <th scope="col">Description</th>
        </tr>
        </thead>
        <tbody>
        <tr>
            <th scope="row">{#syntax#}true{#endsyntax#} and {#syntax#}false{#endsyntax#}</th>
            <td>{#syntax#}bool{#endsyntax#} values</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}null{#endsyntax#}</th>
            <td>used to set an optional type to {#syntax#}null{#endsyntax#}</td>
        </tr>
        <tr>
            <th scope="row">{#syntax#}undefined{#endsyntax#}</th>
          <td>used to leave a value unspecified</td>
        </tr>
        </tbody>
      </table>
      </div>
      {#see_also|Optionals|undefined#}
      {#header_close#}
      {#header_open|String Literals and Unicode Code Point Literals#}
      <p>
      String literals are constant single-item {#link|Pointers#} to null-terminated byte arrays.
      The type of string literals encodes both the length, and the fact that they are null-terminated,
      and thus they can be {#link|coerced|Type Coercion#} to both {#link|Slices#} and
      {#link|Null-Terminated Pointers|Sentinel-Terminated Pointers#}.
      Dereferencing string literals converts them to {#link|Arrays#}.
      </p>
      <p>
      Because Zig source code is {#link|UTF-8 encoded|Source Encoding#}, any
      non-ASCII bytes appearing within a string literal in source code carry
      their UTF-8 meaning into the content of the string in the Zig program;
      the bytes are not modified by the compiler. It is possible to embed
      non-UTF-8 bytes into a string literal using <code>\xNN</code> notation.
      </p>
      <p>Indexing into a string containing non-ASCII bytes returns individual
      bytes, whether valid UTF-8 or not.</p>
      <p>
      Unicode code point literals have type {#syntax#}comptime_int{#endsyntax#}, the same as
      {#link|Integer Literals#}. All {#link|Escape Sequences#} are valid in both string literals
      and Unicode code point literals.
      </p>
      {#code|string_literals.zig#}

      {#see_also|Arrays|Source Encoding#}
      {#header_open|Escape Sequences#}
      <div class="table-wrapper">
      <table>
        <caption>Escape Sequences</caption>
        <thead>
        <tr>
          <th scope="col">Escape Sequence</th>
          <th scope="col">Name</th>
        </tr>
        </thead>
        <tbody>
        <tr>
            <th scope="row"><code>\n</code></th>
          <td>Newline</td>
        </tr>
        <tr>
            <th scope="row"><code>\r</code></th>
          <td>Carriage Return</td>
        </tr>
        <tr>
            <th scope="row"><code>\t</code></th>
          <td>Tab</td>
        </tr>
        <tr>
            <th scope="row"><code>\\</code></th>
          <td>Backslash</td>
        </tr>
        <tr>
            <th scope="row"><code>\'</code></th>
          <td>Single Quote</td>
        </tr>
        <tr>
            <th scope="row"><code>\"</code></th>
          <td>Double Quote</td>
        </tr>
        <tr>
            <th scope="row"><code>\xNN</code></th>
          <td>hexadecimal 8-bit byte value (2 digits)</td>
        </tr>
        <tr>
            <th scope="row"><code>\u{NNNNNN}</code></th>
          <td>hexadecimal Unicode scalar value UTF-8 encoded (1 or more digits)</td>
        </tr>
        </tbody>
      </table>
      </div>
      <p>Note that the maximum valid Unicode scalar value is {#syntax#}0x10ffff{#endsyntax#}.</p>
      {#header_close#}
      {#header_open|Multiline String Literals#}
      <p>
      Multiline string literals have no escapes and can span across multiple lines.
      To start a multiline string literal, use the {#syntax#}\\{#endsyntax#} token. Just like a comment,
      the string literal goes until the end of the line. The end of the line is
      not included in the string literal.
      However, if the next line begins with {#syntax#}\\{#endsyntax#} then a newline is appended and
      the string literal continues.
      </p>
      {#code|multiline_string_literals.zig#}

      {#see_also|@embedFile#}
      {#header_close#}
      {#header_close#}
      {#header_open|Assignment#}
      <p>Use the {#syntax#}const{#endsyntax#} keyword to assign a value to an identifier:</p>
      {#code|constant_identifier_cannot_change.zig#}

      <p>{#syntax#}const{#endsyntax#} applies to all of the bytes that the identifier immediately addresses. {#link|Pointers#} have their own const-ness.</p>
      <p>If you need a variable that you can modify, use the {#syntax#}var{#endsyntax#} keyword:</p>
      {#code|mutable_var.zig#}

      <p>Variables must be initialized:</p>
      {#code|var_must_be_initialized.zig#}

      {#header_open|undefined#}
      <p>Use {#syntax#}undefined{#endsyntax#} to leave variables uninitialized:</p>
      {#code|assign_undefined.zig#}

      <p>
      {#syntax#}undefined{#endsyntax#} can be {#link|coerced|Type Coercion#} to any type.
          Once this happens, it is no longer possible to detect that the value is {#syntax#}undefined{#endsyntax#}.
              {#syntax#}undefined{#endsyntax#} means the value could be anything, even something that is nonsense
                  according to the type. Translated into English, {#syntax#}undefined{#endsyntax#} means "Not a meaningful
      value. Using this value would be a bug. The value will be unused, or overwritten before being used."
      </p>
      <p>
      In {#link|Debug#} and {#link|ReleaseSafe#} mode, Zig writes {#syntax#}0xaa{#endsyntax#} bytes to undefined memory. This is to catch
      bugs early, and to help detect use of undefined memory in a debugger. However, this behavior is only an
      implementation feature, not a language semantic, so it is not guaranteed to be observable to code.
      </p>
      {#header_close#}

      {#header_open|Destructuring#}
      <p>
        A destructuring assignment can separate elements of indexable aggregate types
        ({#link|Tuples#}, {#link|Arrays#}, {#link|Vectors#}):
      </p>
      {#code|destructuring_to_existing.zig#}

      <p>
        A destructuring expression may only appear within a block (i.e. not at container scope).
        The left hand side of the assignment must consist of a comma separated list,
        each element of which may be either an lvalue (for instance, an existing `var`) or a variable declaration:
      </p>
      {#code|destructuring_mixed.zig#}

      <p>
        A destructure may be prefixed with the {#syntax#}comptime{#endsyntax#} keyword, in which case the entire
        destructure expression is evaluated at {#link|comptime#}. All {#syntax#}var{#endsyntax#}s declared would
        be {#syntax#}comptime var{#endsyntax#}s and all expressions (both result locations and the assignee
        expression) are evaluated at {#link|comptime#}.
      </p>

      {#see_also|Destructuring Tuples|Destructuring Arrays|Destructuring Vectors#}
      {#header_close#}
      {#header_close#}
      {#header_close#}
      {#header_open|Zig Test#}
      <p>
        Code written within one or more {#syntax#}test{#endsyntax#} declarations can be used to ensure behavior meets expectations:
      </p>
      {#code|testing_introduction.zig#}

      <p>
        The <code class="file">testing_introduction.zig</code> code sample tests the {#link|function|Functions#}
        {#syntax#}addOne{#endsyntax#} to ensure that it returns {#syntax#}42{#endsyntax#} given the input
        {#syntax#}41{#endsyntax#}. From this test's perspective, the {#syntax#}addOne{#endsyntax#} function is
        said to be <em>code under test</em>.
      </p>
      <p>
        <kbd>zig test</kbd> is a tool that creates and runs a test build. By default, it builds and runs an
        executable program using the <em>default test runner</em> provided by the {#link|Zig Standard Library#}
        as its main entry point. During the build, {#syntax#}test{#endsyntax#} declarations found while
        {#link|resolving|File and Declaration Discovery#} the given Zig source file are included for the default test runner
        to run and report on.
      </p>
      <aside>
        This documentation discusses the features of the default test runner as provided by the Zig Standard Library.
        Its source code is located in <code class="file">lib/compiler/test_runner.zig</code>.
      </aside>
      <p>
        The shell output shown above displays two lines after the <kbd>zig test</kbd> command. These lines are
        printed to standard error by the default test runner:
      </p>
      <dl>
        <dt><samp>1/2 testing_introduction.test.expect addOne adds one to 41...</samp></dt>
        <dd>Lines like this indicate which test, out of the total number of tests, is being run.
          In this case, <samp>1/2</samp> indicates that the first test, out of a total of two tests,
          is being run. Note that, when the test runner program's standard error is output
          to the terminal, these lines are cleared when a test succeeds.
        </dd>
        <dt><samp>2/2 testing_introduction.decltest.addOne...</samp></dt>
        <dd>When the test name is an identifier, the default test runner uses the text
          decltest instead of test.
        </dd>
        <dt><samp>All 2 tests passed.</samp></dt>
        <dd>This line indicates the total number of tests that have passed.</dd>
      </dl>
      {#header_open|Test Declarations#}
      <p>
        Test declarations contain the {#link|keyword|Keyword Reference#} {#syntax#}test{#endsyntax#}, followed by an
        optional name written as a {#link|string literal|String Literals and Unicode Code Point Literals#} or an
        {#link|identifier|Identifiers#}, followed by a {#link|block|Blocks#} containing any valid Zig code that
        is allowed in a {#link|function|Functions#}.
      </p>
      <p>Non-named test blocks always run during test builds and are exempt from
        {#link|Skip Tests#}.</p>
      <p>
        Test declarations are similar to {#link|Functions#}: they have a return type and a block of code. The implicit
        return type of {#syntax#}test{#endsyntax#} is the {#link|Error Union Type#} {#syntax#}anyerror!void{#endsyntax#},
        and it cannot be changed. When a Zig source file is not built using the <kbd>zig test</kbd> tool, the test
        declarations are omitted from the build.
      </p>
      <p>
        Test declarations can be written in the same file, where code under test is written, or in a separate Zig source file.
        Since test declarations are top-level declarations, they are order-independent and can
        be written before or after the code under test.
      </p>
      {#see_also|The Global Error Set|Grammar#}
      {#header_open|Doctests#}
      <p>
        Test declarations named using an identifier are <em>doctests</em>. The identifier must refer to another declaration in
        scope. A doctest, like a {#link|doc comment|Doc Comments#}, serves as documentation for the associated declaration, and
        will appear in the generated documentation for the declaration.
      </p>
      <p>
        An effective doctest should be self-contained and focused on the declaration being tested, answering questions a new
        user might have about its interface or intended usage, while avoiding unnecessary or confusing details. A doctest is not
        a substitute for a doc comment, but rather a supplement and companion providing a testable, code-driven example, verified
        by <kbd>zig test</kbd>.
      </p>
      {#header_close#}
      {#header_close#}
      {#header_open|Test Failure#}
      <p>
        The default test runner checks for an {#link|error|Errors#} returned from a test.
        When a test returns an error, the test is considered a failure and its {#link|error return trace|Error Return Traces#}
        is output to standard error. The total number of failures will be reported after all tests have run.
      </p>
      {#code|testing_failure.zig#}

      {#header_close#}
      {#header_open|Skip Tests#}
      <p>
        One way to skip tests is to filter them out by using the <kbd>zig test</kbd> command line parameter
        <kbd>--test-filter [text]</kbd>. This makes the test build only include tests whose name contains the
        supplied filter text. Note that non-named tests are run even when using the <kbd>--test-filter [text]</kbd>
        command line parameter.
      </p>
      <p>
        To programmatically skip a test, make a {#syntax#}test{#endsyntax#} return the error
        {#syntax#}error.SkipZigTest{#endsyntax#} and the default test runner will consider the test as being skipped.
        The total number of skipped tests will be reported after all tests have run.
      </p>
      {#code|testing_skip.zig#}

      {#header_close#}

      {#header_open|Report Memory Leaks#}
      <p>
        When code allocates {#link|Memory#} using the {#link|Zig Standard Library#}'s testing allocator,
        {#syntax#}std.testing.allocator{#endsyntax#}, the default test runner will report any leaks that are
        found from using the testing allocator:
      </p>
      {#code|testing_detect_leak.zig#}

      {#see_also|defer|Memory#}
      {#header_close#}
      {#header_open|Detecting Test Build#}
      <p>
        Use the {#link|compile variable|Compile Variables#} {#syntax#}@import("builtin").is_test{#endsyntax#}
        to detect a test build:
      </p>
      {#code|testing_detect_test.zig#}

      {#header_close#}
      {#header_open|Test Output and Logging#}
      <p>
        The default test runner and the Zig Standard Library's testing namespace output messages to standard error.
      </p>
      {#header_close#}
      {#header_open|The Testing Namespace#}
      <p>
        The Zig Standard Library's <code>testing</code> namespace contains useful functions to help
        you create tests. In addition to the <code>expect</code> function, this document uses a couple of more functions
        as exemplified here:
      </p>
      {#code|testing_namespace.zig#}

      <p>The Zig Standard Library also contains functions to compare {#link|Slices#}, strings, and more. See the rest of the
        {#syntax#}std.testing{#endsyntax#} namespace in the {#link|Zig Standard Library#} for more available functions.</p>
      {#header_close#}
      {#header_open|Test Tool Documentation#}
      <p>
        <kbd>zig test</kbd> has a few command line parameters which affect the compilation.
        See <kbd>zig test --help</kbd> for a full list.
      </p>
      {#header_close#}
      {#header_close#}

      {#header_open|Variables#}
      <p>
      A variable is a unit of {#link|Memory#} storage.
      </p>
      <p>
      It is generally preferable to use {#syntax#}const{#endsyntax#} rather than
      {#syntax#}var{#endsyntax#} when declaring a variable. This causes less work for both
      humans and computers to do when reading code, and creates more optimization opportunities.
      </p>
      <p>
      The {#syntax#}extern{#endsyntax#} keyword or {#link|@extern#} builtin function can be used to link against a variable that is exported
      from another object. The {#syntax#}export{#endsyntax#} keyword or {#link|@export#} builtin function
      can be used to make a variable available to other objects at link time. In both cases,
      the type of the variable must be C ABI compatible.
      </p>
      {#see_also|Exporting a C Library#}

      {#header_open|Identifiers#}
      <p>
      Variable identifiers are never allowed to shadow identifiers from an outer scope.
      </p>
      <p>
      Identifiers must start with an alphabetic character or underscore and may be followed
      by any number of alphanumeric characters or underscores.
      They must not overlap with any keywords. See {#link|Keyword Reference#}.
      </p>
      <p>
      If a name that does not fit these requirements is needed, such as for linking with external libraries, the {#syntax#}@""{#endsyntax#} syntax may be used.
      </p>
      {#code|identifiers.zig#}

      {#header_close#}

      {#header_open|Container Level Variables#}
      <p>
      {#link|Container|Containers#} level variables have static lifetime and are order-independent and lazily analyzed.
      The initialization value of container level variables is implicitly
      {#link|comptime#}. If a container level variable is {#syntax#}const{#endsyntax#} then its value is
      {#syntax#}comptime{#endsyntax#}-known, otherwise it is runtime-known.
      </p>
      {#code|test_container_level_variables.zig#}

      <p>
      Container level variables may be declared inside a {#link|struct#}, {#link|union#}, {#link|enum#}, or {#link|opaque#}:
      </p>
      {#code|test_namespaced_container_level_variable.zig#}

      {#header_close#}

      {#header_open|Static Local Variables#}
      <p>
        It is also possible to have local variables with static lifetime by using containers inside functions.
      </p>
      {#code|test_static_local_variable.zig#}

      {#header_close#}

      {#header_open|Thread Local Variables#}
      <p>A variable may be specified to be a thread-local variable using the
      {#syntax#}threadlocal{#endsyntax#} keyword,
      which makes each thread work with a separate instance of the variable:</p>
      {#code|test_thread_local_variables.zig#}

      <p>
      For {#link|Single Threaded Builds#}, all thread local variables are treated as regular {#link|Container Level Variables#}.
      </p>
      <p>
      Thread local variables may not be {#syntax#}const{#endsyntax#}.
      </p>
      {#header_close#}

      {#header_open|Local Variables#}
      <p>
      Local variables occur inside {#link|Functions#}, {#link|comptime#} blocks, and {#link|@cImport#} blocks.
      </p>
      <p>
      When a local variable is {#syntax#}const{#endsyntax#}, it means that after initialization, the variable's
      value will not change. If the initialization value of a {#syntax#}const{#endsyntax#} variable is
      {#link|comptime#}-known, then the variable is also {#syntax#}comptime{#endsyntax#}-known.
      </p>
      <p>
      A local variable may be qualified with the {#syntax#}comptime{#endsyntax#} keyword. This causes
      the variable's value to be {#syntax#}comptime{#endsyntax#}-known, and all loads and stores of the
      variable to happen during semantic analysis of the program, rather than at runtime.
      All variables declared in a {#syntax#}comptime{#endsyntax#} expression are implicitly
      {#syntax#}comptime{#endsyntax#} variables.
      </p>
      {#code|test_comptime_variables.zig#}

      {#header_close#}
      {#header_close#}

      {#header_open|Integers#}
      {#header_open|Integer Literals#}
      {#code|integer_literals.zig#}

      {#header_close#}
      {#header_open|Runtime Integer Values#}
      <p>
      Integer literals have no size limitation, and if any Illegal Behavior occurs,
      the compiler catches it.
      </p>
      <p>
      However, once an integer value is no longer known at compile-time, it must have a
      known size, and is vulnerable to safety-checked {#link|Illegal Behavior#}.
      </p>
      {#code|runtime_vs_comptime.zig#}

      <p>
      In this function, values {#syntax#}a{#endsyntax#} and {#syntax#}b{#endsyntax#} are known only at runtime,
      and thus this division operation is vulnerable to both {#link|Integer Overflow#} and
      {#link|Division by Zero#}.
      </p>
      <p>
      Operators such as {#syntax#}+{#endsyntax#} and {#syntax#}-{#endsyntax#} cause {#link|Illegal Behavior#} on
      integer overflow. Alternative operators are provided for wrapping and saturating arithmetic on all targets.
      {#syntax#}+%{#endsyntax#} and {#syntax#}-%{#endsyntax#} perform wrapping arithmetic
      while {#syntax#}+|{#endsyntax#} and {#syntax#}-|{#endsyntax#} perform saturating arithmetic.
      </p>
      <p>
      Zig supports arbitrary bit-width integers, referenced by using
      an identifier of <code>i</code> or <code>u</code> followed by digits. For example, the identifier
      {#syntax#}i7{#endsyntax#} refers to a signed 7-bit integer. The maximum allowed bit-width of an
      integer type is {#syntax#}65535{#endsyntax#}. For signed integer types, Zig uses a
      <a href="https://en.wikipedia.org/wiki/Two's_complement">two's complement</a> representation.
      </p>
      {#see_also|Wrapping Operations#}
      {#header_close#}
      {#header_close#}
      {#header_open|Floats#}
      <p>Zig has the following floating point types:</p>
      <ul>
          <li>{#syntax#}f16{#endsyntax#} - IEEE-754-2008 binary16</li>
          <li>{#syntax#}f32{#endsyntax#} - IEEE-754-2008 binary32</li>
          <li>{#syntax#}f64{#endsyntax#} - IEEE-754-2008 binary64</li>
          <li>{#syntax#}f80{#endsyntax#} - IEEE-754-2008 80-bit extended precision</li>
          <li>{#syntax#}f128{#endsyntax#} - IEEE-754-2008 binary128</li>
          <li>{#syntax#}c_longdouble{#endsyntax#} - matches <code class="c">long double</code> for the target C ABI</li>
      </ul>
      {#header_open|Float Literals#}
      <p>
      Float literals have type {#syntax#}comptime_float{#endsyntax#} which is guaranteed to have
      the same precision and operations of the largest other floating point type, which is
      {#syntax#}f128{#endsyntax#}.
      </p>
      <p>
      Float literals {#link|coerce|Type Coercion#} to any floating point type,
      and to any {#link|integer|Integers#} type when there is no fractional component.
      </p>
      {#code|float_literals.zig#}

      <p>
      There is no syntax for NaN, infinity, or negative infinity. For these special values,
      one must use the standard library:
      </p>
      {#code|float_special_values.zig#}

      {#header_close#}
      {#header_open|Floating Point Operations#}
      <p>By default floating point operations use {#syntax#}Strict{#endsyntax#} mode,
          but you can switch to {#syntax#}Optimized{#endsyntax#} mode on a per-block basis:</p>
      {#code|float_mode_obj.zig#}

      <p>For this test we have to separate code into two object files -
      otherwise the optimizer figures out all the values at compile-time,
      which operates in strict mode.</p>
      {#code|float_mode_exe.zig#}

      {#see_also|@setFloatMode|Division by Zero#}
      {#header_close#}
      {#header_close#}
      {#header_open|Operators#}
      <p>
      There is no operator overloading. When you see an operator in Zig, you know that
      it is doing something from this table, and nothing else.
      </p>
      {#header_open|Table of Operators#}
      <div class="table-wrapper">
      <table>
        <thead>
        <tr>
          <th scope="col">Name</th>
          <th scope="col">Syntax</th>
          <th scope="col">Types</th>
          <th scope="col">Remarks</th>
          <th scope="col">Example</th>
        </tr>
        </thead>
        <tbody>
        <tr>
          <td>Addition</td>
          <td><pre>{#syntax#}a + b
a += b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
              <li>{#link|Floats#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Can cause {#link|overflow|Default Operations#} for integers.</li>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
              <li>See also {#link|@addWithOverflow#}.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}2 + 5 == 7{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Wrapping Addition</td>
          <td><pre>{#syntax#}a +% b
a +%= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Twos-complement wrapping behavior.</li>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
              <li>See also {#link|@addWithOverflow#}.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}@as(u32, 0xffffffff) +% 1 == 0{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Saturating Addition</td>
          <td><pre>{#syntax#}a +| b
a +|= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}@as(u8, 255) +| 1 == @as(u8, 255){#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Subtraction</td>
          <td><pre>{#syntax#}a - b
a -= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
              <li>{#link|Floats#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Can cause {#link|overflow|Default Operations#} for integers.</li>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
              <li>See also {#link|@subWithOverflow#}.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}2 - 5 == -3{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Wrapping Subtraction</td>
          <td><pre>{#syntax#}a -% b
a -%= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Twos-complement wrapping behavior.</li>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
              <li>See also {#link|@subWithOverflow#}.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}@as(u8, 0) -% 1 == 255{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Saturating Subtraction</td>
          <td><pre>{#syntax#}a -| b
a -|= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}@as(u32, 0) -| 1 == 0{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Negation</td>
          <td><pre>{#syntax#}-a{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
              <li>{#link|Floats#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Can cause {#link|overflow|Default Operations#} for integers.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}-1 == 0 - 1{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Wrapping Negation</td>
          <td><pre>{#syntax#}-%a{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Twos-complement wrapping behavior.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}-%@as(i8, -128) == -128{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Multiplication</td>
          <td><pre>{#syntax#}a * b
a *= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
              <li>{#link|Floats#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Can cause {#link|overflow|Default Operations#} for integers.</li>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
              <li>See also {#link|@mulWithOverflow#}.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}2 * 5 == 10{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Wrapping Multiplication</td>
          <td><pre>{#syntax#}a *% b
a *%= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Twos-complement wrapping behavior.</li>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
              <li>See also {#link|@mulWithOverflow#}.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}@as(u8, 200) *% 2 == 144{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Saturating Multiplication</td>
          <td><pre>{#syntax#}a *| b
a *|= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}@as(u8, 200) *| 2 == 255{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Division</td>
          <td><pre>{#syntax#}a / b
a /= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
              <li>{#link|Floats#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Can cause {#link|overflow|Default Operations#} for integers.</li>
              <li>Can cause {#link|Division by Zero#} for integers.</li>
              <li>Can cause {#link|Division by Zero#} for floats in {#link|FloatMode.Optimized Mode|Floating Point Operations#}.</li>
              <li>Signed integer operands must be comptime-known and positive. In other cases, use
                {#link|@divTrunc#},
                {#link|@divFloor#}, or
                {#link|@divExact#} instead.
              </li>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}10 / 5 == 2{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Remainder Division</td>
          <td><pre>{#syntax#}a % b
a %= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
              <li>{#link|Floats#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Can cause {#link|Division by Zero#} for integers.</li>
              <li>Can cause {#link|Division by Zero#} for floats in {#link|FloatMode.Optimized Mode|Floating Point Operations#}.</li>
              <li>Signed or floating-point operands must be comptime-known and positive. In other cases, use
                {#link|@rem#} or
                {#link|@mod#} instead.
              </li>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}10 % 3 == 1{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Bit Shift Left</td>
          <td><pre>{#syntax#}a << b
a <<= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Moves all bits to the left, inserting new zeroes at the
              least-significant bit.</li>
              <li>{#syntax#}b{#endsyntax#} must be
              {#link|comptime-known|comptime#} or have a type with log2 number
              of bits as {#syntax#}a{#endsyntax#}.</li>
              <li>See also {#link|@shlExact#}.</li>
              <li>See also {#link|@shlWithOverflow#}.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}0b1 << 8 == 0b100000000{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Saturating Bit Shift Left</td>
          <td><pre>{#syntax#}a <<| b
a <<|= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>See also {#link|@shlExact#}.</li>
              <li>See also {#link|@shlWithOverflow#}.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}@as(u8, 1) <<| 8 == 255{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Bit Shift Right</td>
          <td><pre>{#syntax#}a >> b
a >>= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Moves all bits to the right, inserting zeroes at the most-significant bit.</li>
              <li>{#syntax#}b{#endsyntax#} must be
                {#link|comptime-known|comptime#} or have a type with log2 number
                of bits as {#syntax#}a{#endsyntax#}.</li>
              <li>See also {#link|@shrExact#}.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}0b1010 >> 1 == 0b101{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Bitwise And</td>
          <td><pre>{#syntax#}a & b
a &= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}0b011 & 0b101 == 0b001{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Bitwise Or</td>
          <td><pre>{#syntax#}a | b
a |= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}0b010 | 0b100 == 0b110{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Bitwise Xor</td>
          <td><pre>{#syntax#}a ^ b
a ^= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Invokes {#link|Peer Type Resolution#} for the operands.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}0b011 ^ 0b101 == 0b110{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Bitwise Not</td>
          <td><pre>{#syntax#}~a{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
            </ul>
          </td>
          <td></td>
          <td>
            <pre>{#syntax#}~@as(u8, 0b10101111) == 0b01010000{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Defaulting Optional Unwrap</td>
          <td><pre>{#syntax#}a orelse b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Optionals#}</li>
            </ul>
          </td>
          <td>If {#syntax#}a{#endsyntax#} is {#syntax#}null{#endsyntax#},
          returns {#syntax#}b{#endsyntax#} ("default value"),
          otherwise returns the unwrapped value of {#syntax#}a{#endsyntax#}.
          Note that {#syntax#}b{#endsyntax#} may be a value of type {#link|noreturn#}.
          </td>
          <td>
            <pre>{#syntax#}const value: ?u32 = null;
const unwrapped = value orelse 1234;
unwrapped == 1234{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Optional Unwrap</td>
          <td><pre>{#syntax#}a.?{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Optionals#}</li>
            </ul>
          </td>
          <td>
            Equivalent to:
            <pre>{#syntax#}a orelse unreachable{#endsyntax#}</pre>
          </td>
          <td>
            <pre>{#syntax#}const value: ?u32 = 5678;
value.? == 5678{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Defaulting Error Unwrap</td>
          <td><pre>{#syntax#}a catch b
a catch |err| b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Error Unions|Errors#}</li>
            </ul>
          </td>
          <td>If {#syntax#}a{#endsyntax#} is an {#syntax#}error{#endsyntax#},
          returns {#syntax#}b{#endsyntax#} ("default value"),
          otherwise returns the unwrapped value of {#syntax#}a{#endsyntax#}.
          Note that {#syntax#}b{#endsyntax#} may be a value of type {#link|noreturn#}.
{#syntax#}err{#endsyntax#} is the {#syntax#}error{#endsyntax#} and is in scope of the expression {#syntax#}b{#endsyntax#}.
          </td>
          <td>
            <pre>{#syntax#}const value: anyerror!u32 = error.Broken;
const unwrapped = value catch 1234;
unwrapped == 1234{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Logical And</td>
          <td><pre>{#syntax#}a and b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|bool|Primitive Types#}</li>
            </ul>
          </td>
          <td>
          If {#syntax#}a{#endsyntax#} is {#syntax#}false{#endsyntax#}, returns {#syntax#}false{#endsyntax#}
          without evaluating {#syntax#}b{#endsyntax#}. Otherwise, returns {#syntax#}b{#endsyntax#}.
          </td>
          <td>
            <pre>{#syntax#}(false and true) == false{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Logical Or</td>
          <td><pre>{#syntax#}a or b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|bool|Primitive Types#}</li>
            </ul>
          </td>
          <td>
              If {#syntax#}a{#endsyntax#} is {#syntax#}true{#endsyntax#},
              returns {#syntax#}true{#endsyntax#} without evaluating
              {#syntax#}b{#endsyntax#}. Otherwise, returns
              {#syntax#}b{#endsyntax#}.
          </td>
          <td>
            <pre>{#syntax#}(false or true) == true{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Boolean Not</td>
          <td><pre>{#syntax#}!a{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|bool|Primitive Types#}</li>
            </ul>
          </td>
          <td></td>
          <td>
            <pre>{#syntax#}!false == true{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Equality</td>
          <td><pre>{#syntax#}a == b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
              <li>{#link|Floats#}</li>
              <li>{#link|bool|Primitive Types#}</li>
              <li>{#link|type|Primitive Types#}</li>
              <li>{#link|packed struct#}</li>
            </ul>
          </td>
          <td>
              Returns {#syntax#}true{#endsyntax#} if a and b are equal, otherwise returns {#syntax#}false{#endsyntax#}.
            Invokes {#link|Peer Type Resolution#} for the operands.
          </td>
          <td>
            <pre>{#syntax#}(1 == 1) == true{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Null Check</td>
          <td><pre>{#syntax#}a == null{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Optionals#}</li>
            </ul>
          </td>
          <td>
              Returns {#syntax#}true{#endsyntax#} if a is {#syntax#}null{#endsyntax#}, otherwise returns {#syntax#}false{#endsyntax#}.
          </td>
          <td>
            <pre>{#syntax#}const value: ?u32 = null;
(value == null) == true{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Inequality</td>
          <td><pre>{#syntax#}a != b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
              <li>{#link|Floats#}</li>
              <li>{#link|bool|Primitive Types#}</li>
              <li>{#link|type|Primitive Types#}</li>
            </ul>
          </td>
          <td>
              Returns {#syntax#}false{#endsyntax#} if a and b are equal, otherwise returns {#syntax#}true{#endsyntax#}.
            Invokes {#link|Peer Type Resolution#} for the operands.
          </td>
          <td>
            <pre>{#syntax#}(1 != 1) == false{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Non-Null Check</td>
          <td><pre>{#syntax#}a != null{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Optionals#}</li>
            </ul>
          </td>
          <td>
              Returns {#syntax#}false{#endsyntax#} if a is {#syntax#}null{#endsyntax#}, otherwise returns {#syntax#}true{#endsyntax#}.
          </td>
          <td>
            <pre>{#syntax#}const value: ?u32 = null;
(value != null) == false{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Greater Than</td>
          <td><pre>{#syntax#}a > b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
              <li>{#link|Floats#}</li>
            </ul>
          </td>
          <td>
              Returns {#syntax#}true{#endsyntax#} if a is greater than b, otherwise returns {#syntax#}false{#endsyntax#}.
            Invokes {#link|Peer Type Resolution#} for the operands.
          </td>
          <td>
            <pre>{#syntax#}(2 > 1) == true{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Greater or Equal</td>
          <td><pre>{#syntax#}a >= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
              <li>{#link|Floats#}</li>
            </ul>
          </td>
          <td>
              Returns {#syntax#}true{#endsyntax#} if a is greater than or equal to b, otherwise returns {#syntax#}false{#endsyntax#}.
            Invokes {#link|Peer Type Resolution#} for the operands.
          </td>
          <td>
            <pre>{#syntax#}(2 >= 1) == true{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Less Than</td>
          <td><pre>{#syntax#}a < b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
              <li>{#link|Floats#}</li>
            </ul>
          </td>
          <td>
              Returns {#syntax#}true{#endsyntax#} if a is less than b, otherwise returns {#syntax#}false{#endsyntax#}.
            Invokes {#link|Peer Type Resolution#} for the operands.
          </td>
          <td>
            <pre>{#syntax#}(1 < 2) == true{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Lesser or Equal</td>
          <td><pre>{#syntax#}a <= b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Integers#}</li>
              <li>{#link|Floats#}</li>
            </ul>
          </td>
          <td>
              Returns {#syntax#}true{#endsyntax#} if a is less than or equal to b, otherwise returns {#syntax#}false{#endsyntax#}.
            Invokes {#link|Peer Type Resolution#} for the operands.
          </td>
          <td>
            <pre>{#syntax#}(1 <= 2) == true{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Array Concatenation</td>
          <td><pre>{#syntax#}a ++ b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Arrays#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Only available when the lengths of both {#syntax#}a{#endsyntax#} and {#syntax#}b{#endsyntax#} are {#link|compile-time known|comptime#}.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}const mem = @import("std").mem;
const array1 = [_]u32{1,2};
const array2 = [_]u32{3,4};
const together = array1 ++ array2;
mem.eql(u32, &together, &[_]u32{1,2,3,4}){#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Array Multiplication</td>
          <td><pre>{#syntax#}a ** b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Arrays#}</li>
            </ul>
          </td>
          <td>
            <ul>
              <li>Only available when the length of {#syntax#}a{#endsyntax#} and {#syntax#}b{#endsyntax#} are {#link|compile-time known|comptime#}.</li>
            </ul>
          </td>
          <td>
            <pre>{#syntax#}const mem = @import("std").mem;
const pattern = "ab" ** 3;
mem.eql(u8, pattern, "ababab"){#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Pointer Dereference</td>
          <td><pre>{#syntax#}a.*{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Pointers#}</li>
            </ul>
          </td>
          <td>
            Pointer dereference.
          </td>
          <td>
            <pre>{#syntax#}const x: u32 = 1234;
const ptr = &x;
ptr.* == 1234{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Address Of</td>
          <td><pre>{#syntax#}&a{#endsyntax#}</pre></td>
          <td>
            All types
          </td>
          <td>
          </td>
          <td>
            <pre>{#syntax#}const x: u32 = 1234;
const ptr = &x;
ptr.* == 1234{#endsyntax#}</pre>
          </td>
        </tr>
        <tr>
          <td>Error Set Merge</td>
          <td><pre>{#syntax#}a || b{#endsyntax#}</pre></td>
          <td>
            <ul>
              <li>{#link|Error Set Type#}</li>
            </ul>
          </td>
          <td>
              {#link|Merging Error Sets#}
          </td>
          <td>
            <pre>{#syntax#}const A = error{One};
const B = error{Two};
(A || B) == error{One, Two}{#endsyntax#}</pre>
          </td>
        </tr>
        </tbody>
      </table>
      </div>
      {#header_close#}
      {#header_open|Precedence#}
      <pre>{#syntax#}x() x[] x.y x.* x.?
a!b
x{}
!x -x -%x ~x &x ?x
* / % ** *% *| ||
+ - ++ +% -% +| -|
<< >> <<|
& ^ | orelse catch
== != < > <= >=
and
or
= *= *%= *|= /= %= += +%= +|= -= -%= -|= <<= <<|= >>= &= ^= |={#endsyntax#}</pre>
      {#header_close#}
      {#header_close#}
      {#header_open|Arrays#}
      {#code|test_arrays.zig#}

      {#see_also|for|Slices#}

      {#header_open|Multidimensional Arrays#}
      <p>
      Multidimensional arrays can be created by nesting arrays:
      </p>
      {#code|test_multidimensional_arrays.zig#}

      {#header_close#}

      {#header_open|Sentinel-Terminated Arrays#}
      <p>
      The syntax {#syntax#}[N:x]T{#endsyntax#} describes an array which has a sentinel element of value {#syntax#}x{#endsyntax#} at the
      index corresponding to the length {#syntax#}N{#endsyntax#}.
      </p>
      {#code|test_null_terminated_array.zig#}

      {#see_also|Sentinel-Terminated Pointers|Sentinel-Terminated Slices#}
      {#header_close#}

      {#header_open|Destructuring Arrays#}
      <p>
        Arrays can be destructured:
      </p>
      {#code|destructuring_arrays.zig#}

      {#see_also|Destructuring|Destructuring Tuples|Destructuring Vectors#}
      {#header_close#}
      {#header_close#}

      {#header_open|Vectors#}
      <p>
      A vector is a group of booleans, {#link|Integers#}, {#link|Floats#}, or
      {#link|Pointers#} which are operated on in parallel, using SIMD instructions if possible.
      Vector types are created with the builtin function {#link|@Vector#}.
      </p>
      <p>
      Vectors generally support the same builtin operators as their underlying base types.
      The only exception to this is the keywords `and` and `or` on vectors of bools, since
      these operators affect control flow, which is not allowed for vectors.
      All other operations are performed element-wise, and return a vector of the same length
      as the input vectors. This includes:
      </p>
      <ul>
          <li>Arithmetic ({#syntax#}+{#endsyntax#}, {#syntax#}-{#endsyntax#}, {#syntax#}/{#endsyntax#}, {#syntax#}*{#endsyntax#},
                         {#syntax#}@divFloor{#endsyntax#}, {#syntax#}@sqrt{#endsyntax#}, {#syntax#}@ceil{#endsyntax#},
                         {#syntax#}@log{#endsyntax#}, etc.)</li>
          <li>Bitwise operators ({#syntax#}>>{#endsyntax#}, {#syntax#}<<{#endsyntax#}, {#syntax#}&{#endsyntax#},
                                 {#syntax#}|{#endsyntax#}, {#syntax#}~{#endsyntax#}, etc.)</li>
          <li>Comparison operators ({#syntax#}<{#endsyntax#}, {#syntax#}>{#endsyntax#}, {#syntax#}=={#endsyntax#}, etc.)</li>
          <li>Boolean not ({#syntax#}!{#endsyntax#})</li>
      </ul>
      <p>
      It is prohibited to use a math operator on a mixture of scalars (individual numbers)
      and vectors. Zig provides the {#link|@splat#} builtin to easily convert from scalars
      to vectors, and it supports {#link|@reduce#} and array indexing syntax to convert
      from vectors to scalars. Vectors also support assignment to and from fixed-length
      arrays with comptime-known length.
      </p>
      <p>
      For rearranging elements within and between vectors, Zig provides the {#link|@shuffle#} and {#link|@select#} functions.
      </p>
      <p>
      Operations on vectors shorter than the target machine's native SIMD size will typically compile to single SIMD
      instructions, while vectors longer than the target machine's native SIMD size will compile to multiple SIMD
      instructions. If a given operation doesn't have SIMD support on the target architecture, the compiler will default
      to operating on each vector element one at a time. Zig supports any comptime-known vector length up to 2^32-1,
      although small powers of two (2-64) are most typical. Note that excessively long vector lengths (e.g. 2^20) may
      result in compiler crashes on current versions of Zig.
      </p>
      {#code|test_vector.zig#}

      <p>
      TODO talk about C ABI interop<br>
      TODO consider suggesting std.MultiArrayList
      </p>
      {#see_also|@splat|@shuffle|@select|@reduce#}

      {#header_open|Relationship with Arrays#}
      <p>Vectors and {#link|Arrays#} each have a well-defined <strong>bit layout</strong>
      and therefore support {#link|@bitCast#} between each other. {#link|Type Coercion#} implicitly peforms
      {#syntax#}@bitCast{#endsyntax#}.</p>
      <p>Arrays have well-defined byte layout, but vectors do not, making {#link|@ptrCast#} between
      them {#link|Illegal Behavior#}.</p>
      {#header_close#}

      {#header_open|Destructuring Vectors#}
      <p>
        Vectors can be destructured:
      </p>
      {#code|destructuring_vectors.zig#}
      {#see_also|Destructuring|Destructuring Tuples|Destructuring Arrays#}
      {#header_close#}

      {#header_close#}

      {#header_open|Pointers#}
      <p>
      Zig has two kinds of pointers: single-item and many-item.
      </p>
      <ul>
          <li>{#syntax#}*T{#endsyntax#} - single-item pointer to exactly one item.
            <ul>
              <li>Supports deref syntax: {#syntax#}ptr.*{#endsyntax#}</li>
              <li>Supports slice syntax: {#syntax#}ptr[0..1]{#endsyntax#}</li>
              <li>Supports pointer subtraction: {#syntax#}ptr - ptr{#endsyntax#}</li>
            </ul>
          </li>
          <li>{#syntax#}[*]T{#endsyntax#} - many-item pointer to unknown number of items.
            <ul>
              <li>Supports index syntax: {#syntax#}ptr[i]{#endsyntax#}</li>
              <li>Supports slice syntax: {#syntax#}ptr[start..end]{#endsyntax#} and {#syntax#}ptr[start..]{#endsyntax#}</li>
              <li>Supports pointer-integer arithmetic: {#syntax#}ptr + int{#endsyntax#}, {#syntax#}ptr - int{#endsyntax#}</li>
              <li>Supports pointer subtraction: {#syntax#}ptr - ptr{#endsyntax#}</li>
            </ul>
            {#syntax#}T{#endsyntax#} must have a known size, which means that it cannot be
            {#syntax#}anyopaque{#endsyntax#} or any other {#link|opaque type|opaque#}.
          </li>
      </ul>
      <p>These types are closely related to {#link|Arrays#} and {#link|Slices#}:</p>
        <ul>
            <li>{#syntax#}*[N]T{#endsyntax#} - pointer to N items, same as single-item pointer to an array.
            <ul>
                <li>Supports index syntax: {#syntax#}array_ptr[i]{#endsyntax#}</li>
                <li>Supports slice syntax: {#syntax#}array_ptr[start..end]{#endsyntax#}</li>
                <li>Supports len property: {#syntax#}array_ptr.len{#endsyntax#}</li>
                <li>Supports pointer subtraction: {#syntax#}array_ptr - array_ptr{#endsyntax#}</li>
            </ul>
            </li>
        </ul>
        <ul>
            <li>{#syntax#}[]T{#endsyntax#} - is a slice (a fat pointer, which contains a pointer of type {#syntax#}[*]T{#endsyntax#} and a length).
            <ul>
                <li>Supports index syntax: {#syntax#}slice[i]{#endsyntax#}</li>
                <li>Supports slice syntax: {#syntax#}slice[start..end]{#endsyntax#}</li>
                <li>Supports len property: {#syntax#}slice.len{#endsyntax#}</li>
            </ul>
            </li>
        </ul>
        <p>Use {#syntax#}&x{#endsyntax#} to obtain a single-item pointer:</p>
      {#code|test_single_item_pointer.zig#}

      <p>
       Zig supports pointer arithmetic. It's better to assign the pointer to {#syntax#}[*]T{#endsyntax#} and increment that variable. For example, directly incrementing the pointer from a slice will corrupt it.
      </p>
      {#code|test_pointer_arithmetic.zig#}

      <p>
        In Zig, we generally prefer {#link|Slices#} rather than {#link|Sentinel-Terminated Pointers#}.
        You can turn an array or pointer into a slice using slice syntax.
      </p>
      <p>
        Slices have bounds checking and are therefore protected
        against this kind of Illegal Behavior. This is one reason
        we prefer slices to pointers.
      </p>
      {#code|test_slice_bounds.zig#}

      <p>Pointers work at compile-time too, as long as the code does not depend on
      an undefined memory layout:</p>
      {#code|test_comptime_pointers.zig#}

      <p>To convert an integer address into a pointer, use {#syntax#}@ptrFromInt{#endsyntax#}.
      To convert a pointer to an integer, use {#syntax#}@intFromPtr{#endsyntax#}:</p>
      {#code|test_integer_pointer_conversion.zig#}

      <p>Zig is able to preserve memory addresses in comptime code, as long as
      the pointer is never dereferenced:</p>
      {#code|test_comptime_pointer_conversion.zig#}

      <p>
      {#link|@ptrCast#} converts a pointer's element type to another. This
      creates a new pointer that can cause undetectable Illegal Behavior
      depending on the loads and stores that pass through it. Generally, other
      kinds of type conversions are preferable to
      {#syntax#}@ptrCast{#endsyntax#} if possible.
      </p>
      {#code|test_pointer_casting.zig#}

      {#see_also|Optional Pointers|@ptrFromInt|@intFromPtr|C Pointers#}
      {#header_open|volatile#}
      <p>Loads and stores are assumed to not have side effects. If a given load or store
      should have side effects, such as Memory Mapped Input/Output (MMIO), use {#syntax#}volatile{#endsyntax#}.
      In the following code, loads and stores with {#syntax#}mmio_ptr{#endsyntax#} are guaranteed to all happen
      and in the same order as in source code:</p>
      {#code|test_volatile.zig#}

      <p>
      Note that {#syntax#}volatile{#endsyntax#} is unrelated to concurrency and {#link|Atomics#}.
      If you see code that is using {#syntax#}volatile{#endsyntax#} for something other than Memory Mapped
      Input/Output, it is probably a bug.
      </p>
      {#header_close#}

      {#header_open|Alignment#}
      <p>
      Each type has an <strong>alignment</strong> - a number of bytes such that,
      when a value of the type is loaded from or stored to memory,
      the memory address must be evenly divisible by this number. You can use
      {#link|@alignOf#} to find out this value for any type.
      </p>
      <p>
      Alignment depends on the CPU architecture, but is always a power of two, and
      less than {#syntax#}1 << 29{#endsyntax#}.
      </p>
      <p>
      In Zig, a pointer type has an alignment value. If the value is equal to the
      alignment of the underlying type, it can be omitted from the type:
      </p>
      {#code|test_variable_alignment.zig#}

      <p>In the same way that a {#syntax#}*i32{#endsyntax#} can be {#link|coerced|Type Coercion#} to a
          {#syntax#}*const i32{#endsyntax#}, a pointer with a larger alignment can be implicitly
      cast to a pointer with a smaller alignment, but not vice versa.
      </p>
      <p>
      You can specify alignment on variables and functions. If you do this, then
      pointers to them get the specified alignment:
      </p>
      {#code|test_variable_func_alignment.zig#}

      <p>
      If you have a pointer or a slice that has a small alignment, but you know that it actually
      has a bigger alignment, use {#link|@alignCast#} to change the
      pointer into a more aligned pointer. This is a no-op at runtime, but inserts a
      {#link|safety check|Incorrect Pointer Alignment#}:
      </p>
      {#code|test_incorrect_pointer_alignment.zig#}

      {#header_close#}

      {#header_open|allowzero#}
      <p>
      This pointer attribute allows a pointer to have address zero. This is only ever needed on the
      freestanding OS target, where the address zero is mappable. If you want to represent null pointers, use
      {#link|Optional Pointers#} instead. {#link|Optional Pointers#} with {#syntax#}allowzero{#endsyntax#}
      are not the same size as pointers. In this code example, if the pointer
      did not have the {#syntax#}allowzero{#endsyntax#} attribute, this would be a
      {#link|Pointer Cast Invalid Null#} panic:
      </p>
      {#code|test_allowzero.zig#}

      {#header_close#}

      {#header_open|Sentinel-Terminated Pointers#}
      <p>
      The syntax {#syntax#}[*:x]T{#endsyntax#} describes a pointer that
      has a length determined by a sentinel value. This provides protection
      against buffer overflow and overreads.
      </p>
      {#code|sentinel-terminated_pointer.zig#}

      {#see_also|Sentinel-Terminated Slices|Sentinel-Terminated Arrays#}
      {#header_close#}
      {#header_close#}

      {#header_open|Slices#}
      <p>
      A slice is a pointer and a length. The difference between an array and
      a slice is that the array's length is part of the type and known at
      compile-time, whereas the slice's length is known at runtime.
      Both can be accessed with the {#syntax#}len{#endsyntax#} field.
      </p>
      {#code|test_basic_slices.zig#}

      <p>This is one reason we prefer slices to pointers.</p>
      {#code|test_slices.zig#}

      {#see_also|Pointers|for|Arrays#}

      {#header_open|Sentinel-Terminated Slices#}
      <p>
      The syntax {#syntax#}[:x]T{#endsyntax#} is a slice which has a runtime-known length
      and also guarantees a sentinel value at the element indexed by the length. The type does not
      guarantee that there are no sentinel elements before that. Sentinel-terminated slices allow element
      access to the {#syntax#}len{#endsyntax#} index.
      </p>
      {#code|test_null_terminated_slice.zig#}

      <p>
      Sentinel-terminated slices can also be created using a variation of the slice syntax
      {#syntax#}data[start..end :x]{#endsyntax#}, where {#syntax#}data{#endsyntax#} is a many-item pointer,
      array or slice and {#syntax#}x{#endsyntax#} is the sentinel value.
      </p>
      {#code|test_null_terminated_slicing.zig#}

      <p>
      Sentinel-terminated slicing asserts that the element in the sentinel position of the backing data is
      actually the sentinel value. If this is not the case, safety-checked {#link|Illegal Behavior#} results.
      </p>
      {#code|test_sentinel_mismatch.zig#}

      {#see_also|Sentinel-Terminated Pointers|Sentinel-Terminated Arrays#}
      {#header_close#}
      {#header_close#}

      {#header_open|struct#}
      {#code|test_structs.zig#}


      {#header_open|Default Field Values#}
      <p>
      Each struct field may have an expression indicating the default field
      value. Such expressions are executed at {#link|comptime#}, and allow the
      field to be omitted in a struct literal expression:
      </p>
      {#code|struct_default_field_values.zig#}

      {#header_open|Faulty Default Field Values#}
      <p>
      Default field values are only appropriate when the data invariants of a struct
      cannot be violated by omitting that field from an initialization.
      </p>
      <p>
      For example, here is an inappropriate use of default struct field initialization:
      </p>
      {#code|bad_default_value.zig#}

      <p>
      Above you can see the danger of ignoring this principle. The default
      field values caused the data invariant to be violated, causing illegal
      behavior.
      </p>
      <p>
      To fix this, remove the default values from all the struct fields, and provide
      a named default value:
      </p>
      {#code|struct_default_value.zig#}

      <p>If a struct value requires a runtime-known value in order to be initialized
      without violating data invariants, then use an initialization method that accepts
      those runtime values, and populates the remaining fields.</p>
      {#header_close#}
      {#header_close#}

      {#header_open|extern struct#}
      <p>An {#syntax#}extern struct{#endsyntax#} has in-memory layout matching
      the C ABI for the target.</p>
      <p>If well-defined in-memory layout is not required, {#link|struct#} is a better choice
      because it places fewer restrictions on the compiler.</p>
      <p>See {#link|packed struct#} for a struct that has the ABI of its backing integer,
      which can be useful for modeling flags.</p>
      {#see_also|extern union|extern enum#}
      {#header_close#}

      {#header_open|packed struct#}
      <p>
      {#syntax#}packed{#endsyntax#} structs, like {#syntax#}enum{#endsyntax#}, are based on the concept
      of interpreting integers differently. All packed structs have a <strong>backing integer</strong>,
      which is implicitly determined by the total bit count of fields, or explicitly specified.
      Packed structs have well-defined memory layout - exactly the same ABI as their backing integer.
      </p>
      <p>
      Each field of a packed struct is interpreted as a logical sequence of bits, arranged from
      least to most significant. Allowed field types:
      </p>
      <ul>
        <li>An {#link|integer|Integers#} field uses exactly as many bits as its
        bit width. For example, a {#syntax#}u5{#endsyntax#} will use 5 bits of
        the backing integer.</li>
        <li>A {#link|bool|Primitive Types#} field uses exactly 1 bit.</li>
        <li>An {#link|enum#} field uses exactly the bit width of its integer tag type.</li>
        <li>A {#link|packed union#} field uses exactly the bit width of the union field with
        the largest bit width.</li>
        <li>A {#syntax#}packed struct{#endsyntax#} field uses the bits of its backing integer.</li>
      </ul>
      <p>
      This means that a {#syntax#}packed struct{#endsyntax#} can participate
      in a {#link|@bitCast#} or a {#link|@ptrCast#} to reinterpret memory.
      This even works at {#link|comptime#}:
      </p>
      {#code|test_packed_structs.zig#}
      <p>
      The backing integer can be inferred or explicitly provided. When
      inferred, it will be unsigned. When explicitly provided, its bit width
      will be enforced at compile time to exactly match the total bit width of
      the fields:
      </p>
      {#code|test_missized_packed_struct.zig#}

      <p>
      Zig allows the address to be taken of a non-byte-aligned field:
      </p>
      {#code|test_pointer_to_non-byte_aligned_field.zig#}

      <p>
      However, the pointer to a non-byte-aligned field has special properties and cannot
      be passed when a normal pointer is expected:
      </p>
      {#code|test_misaligned_pointer.zig#}

      <p>
      In this case, the function {#syntax#}bar{#endsyntax#} cannot be called because the pointer
      to the non-ABI-aligned field mentions the bit offset, but the function expects an ABI-aligned pointer.
      </p>
      <p>
      Pointers to non-ABI-aligned fields share the same address as the other fields within their host integer:
      </p>
      {#code|test_packed_struct_field_address.zig#}

      <p>
      This can be observed with {#link|@bitOffsetOf#} and {#link|offsetOf#}:
      </p>
      {#code|test_bitOffsetOf_offsetOf.zig#}

      <p>
      Packed structs have the same alignment as their backing integer, however, overaligned
      pointers to packed structs can override this:
      </p>
      {#code|test_overaligned_packed_struct.zig#}

      <p>
      It's also possible to set alignment of struct fields:
      </p>
      {#code|test_aligned_struct_fields.zig#}

      <p>
      Equating packed structs results in a comparison of the backing integer,
      and only works for the {#syntax#}=={#endsyntax#} and {#syntax#}!={#endsyntax#} {#link|Operators#}.
      </p>
      {#code|test_packed_struct_equality.zig#}

      <p>
      Field access and assignment can be understood as shorthand for bitshifts
      on the backing integer. These operations are not {#link|atomic|Atomics#},
      so beware using field access syntax when combined with memory-mapped
      input-output (MMIO). Instead of field access on {#link|volatile#} {#link|Pointers#},
      construct a fully-formed new value first, then write that value to the volatile pointer.
      </p>
      {#code|packed_struct_mmio.zig#}
      {#header_close#}

      {#header_open|Struct Naming#}
      <p>Since all structs are anonymous, Zig infers the type name based on a few rules.</p>
      <ul>
          <li>If the struct is in the initialization expression of a variable, it gets named after
          that variable.</li>
          <li>If the struct is in the {#syntax#}return{#endsyntax#} expression, it gets named after
          the function it is returning from, with the parameter values serialized.</li>
          <li>Otherwise, the struct gets a name such as <code>(filename.funcname__struct_ID)</code>.</li>
          <li>If the struct is declared inside another struct, it gets named after both the parent
          struct and the name inferred by the previous rules, separated by a dot.</li>
      </ul>
      {#code|struct_name.zig#}

      {#header_close#}

      {#header_open|Anonymous Struct Literals#}
      <p>
      Zig allows omitting the struct type of a literal. When the result is {#link|coerced|Type Coercion#},
      the struct literal will directly instantiate the {#link|result location|Result Location Semantics#},
      with no copy:
      </p>
      {#code|test_struct_result.zig#}

      <p>
      The struct type can be inferred. Here the {#link|result location|Result Location Semantics#}
      does not include a type, and so Zig infers the type:
      </p>
      {#code|test_anonymous_struct.zig#}

      {#header_close#}

      {#header_open|Tuples#}
      <p>
      Anonymous structs can be created without specifying field names, and are referred to as "tuples". An empty tuple looks like <code>.{}</code> and can be seen in one of the {#link|Hello World examples|Hello World#}.
      </p>
      <p>
      The fields are implicitly named using numbers starting from 0. Because their names are integers,
      they cannot be accessed with {#syntax#}.{#endsyntax#} syntax without also wrapping them in
      {#syntax#}@""{#endsyntax#}. Names inside {#syntax#}@""{#endsyntax#} are always recognised as
      {#link|identifiers|Identifiers#}.
      </p>
      <p>
      Like arrays, tuples have a .len field, can be indexed (provided the index is comptime-known)
      and work with the ++ and ** operators. They can also be iterated over with {#link|inline for#}.
      </p>
      {#code|test_tuples.zig#}

      {#header_open|Destructuring Tuples#}
      <p>
        Tuples can be {#link|destructured|Destructuring#}.
      </p>
      <p>
        Tuple destructuring is helpful for returning multiple values from a block:
      </p>
      {#code|destructuring_block.zig#}

      <p>
        Tuple destructuring is helpful for dealing with functions and built-ins that return multiple values
        as a tuple:
      </p>
      {#code|destructuring_return_value.zig#}

      {#see_also|Destructuring|Destructuring Arrays|Destructuring Vectors#}
      {#header_close#}
      {#header_close#}
      {#see_also|comptime|@fieldParentPtr#}
      {#header_close#}
      {#header_open|enum#}
      {#code|test_enums.zig#}

      {#see_also|@typeInfo|@tagName|@sizeOf#}

      {#header_open|extern enum#}
      <p>
      By default, enums are not guaranteed to be compatible with the C ABI:
      </p>
      {#code|enum_export_error.zig#}

      <p>
      For a C-ABI-compatible enum, provide an explicit tag type to
      the enum:
      </p>
      {#code|enum_export.zig#}

      {#header_close#}

      {#header_open|Enum Literals#}
      <p>
      Enum literals allow specifying the name of an enum field without specifying the enum type:
      </p>
      {#code|test_enum_literals.zig#}

      {#header_close#}

      {#header_open|Non-exhaustive enum#}
      <p>
      A non-exhaustive enum can be created by adding a trailing {#syntax#}_{#endsyntax#} field.
      The enum must specify a tag type and cannot consume every enumeration value.
      </p>
      <p>
      {#link|@enumFromInt#} on a non-exhaustive enum involves the safety semantics
      of {#link|@intCast#} to the integer tag type, but beyond that always results in
      a well-defined enum value.
      </p>
      <p>
      A switch on a non-exhaustive enum can include a {#syntax#}_{#endsyntax#} prong as an alternative to an {#syntax#}else{#endsyntax#} prong.
      With a {#syntax#}_{#endsyntax#} prong the compiler errors if all the known tag names are not handled by the switch.
      </p>
      {#code|test_switch_non-exhaustive.zig#}

      {#header_close#}
      {#header_close#}

      {#header_open|union#}
      <p>
      A bare {#syntax#}union{#endsyntax#} defines a set of possible types that a value
      can be as a list of fields. Only one field can be active at a time.
      The in-memory representation of bare unions is not guaranteed.
      Bare unions cannot be used to reinterpret memory. For that, use {#link|@ptrCast#},
      or use an {#link|extern union#} or a {#link|packed union#} which have
      guaranteed in-memory layout.
      {#link|Accessing the non-active field|Wrong Union Field Access#} is
      safety-checked {#link|Illegal Behavior#}:
      </p>
      {#code|test_wrong_union_access.zig#}

      <p>You can activate another field by assigning the entire union:</p>
      {#code|test_simple_union.zig#}

      <p>
      In order to use {#link|switch#} with a union, it must be a {#link|Tagged union#}.
      </p>
      <p>
      To initialize a union when the tag is a {#link|comptime#}-known name, see {#link|@unionInit#}.
      </p>

      {#header_open|Tagged union#}
      <p>Unions can be declared with an enum tag type.
      This turns the union into a <em>tagged</em> union, which makes it eligible
      to use with {#link|switch#} expressions.
      Tagged unions coerce to their tag type: {#link|Type Coercion: Unions and Enums#}.
      </p>
      {#code|test_tagged_union.zig#}

      <p>In order to modify the payload of a tagged union in a switch expression,
      place a {#syntax#}*{#endsyntax#} before the variable name to make it a pointer:
      </p>
      {#code|test_switch_modify_tagged_union.zig#}

      <p>
      Unions can be made to infer the enum tag type.
      Further, unions can have methods just like structs and enums.
      </p>
      {#code|test_union_method.zig#}

      <p>
      Unions with inferred enum tag types can also assign ordinal values to their inferred tag.
      This requires the tag to specify an explicit integer type.
      {#link|@intFromEnum#} can be used to access the ordinal value corresponding to the active field.
      </p>
      {#code|test_tagged_union_with_tag_values.zig#}

      <p>
      {#link|@tagName#} can be used to return a {#link|comptime#}
      {#syntax#}[:0]const u8{#endsyntax#} value representing the field name:
      </p>
      {#code|test_tagName.zig#}

      {#header_close#}

      {#header_open|extern union#}
      <p>
      An {#syntax#}extern union{#endsyntax#} has memory layout guaranteed to be compatible with
      the target C ABI.
      </p>
      {#see_also|extern struct#}
      {#header_close#}

      {#header_open|packed union#}
      <p>A {#syntax#}packed union{#endsyntax#} has well-defined in-memory layout and is eligible
          to be in a {#link|packed struct#}.</p>
      <p>All fields in a packed union must have the same {#link|@bitSizeOf#}.</p>
      {#header_close#}

      {#header_open|Anonymous Union Literals#}
      <p>{#link|Anonymous Struct Literals#} syntax can be used to initialize unions without specifying
      the type:</p>
      {#code|test_anonymous_union.zig#}

      {#header_close#}

      {#header_close#}

      {#header_open|opaque#}
      <p>
      {#syntax#}opaque {}{#endsyntax#} declares a new type with an unknown (but non-zero) size and alignment.
      It can contain declarations the same as {#link|structs|struct#}, {#link|unions|union#},
      and {#link|enums|enum#}.
      </p>
      <p>
      This is typically used for type safety when interacting with C code that does not expose struct details.
      Example:
      </p>
      {#code|test_opaque.zig#}

      {#header_close#}

      {#header_open|Blocks#}
      <p>
      Blocks are used to limit the scope of variable declarations:
      </p>
      {#code|test_blocks.zig#}

      <p>Blocks are expressions. When labeled, {#syntax#}break{#endsyntax#} can be used
      to return a value from the block:
      </p>
      {#code|test_labeled_break.zig#}

      <p>Here, {#syntax#}blk{#endsyntax#} can be any name.</p>
      {#see_also|Labeled while|Labeled for#}

      {#header_open|Shadowing#}
      <p>{#link|Identifiers#} are never allowed to "hide" other identifiers by using the same name:</p>
      {#code|test_shadowing.zig#}

      <p>
      Because of this, when you read Zig code you can always rely on an identifier to consistently mean
      the same thing within the scope it is defined. Note that you can, however, use the same name if
      the scopes are separate:
      </p>
      {#code|test_scopes.zig#}

      {#header_close#}

      {#header_open|Empty Blocks#}
      <p>An empty block is equivalent to {#syntax#}void{}{#endsyntax#}:</p>
      {#code|test_empty_block.zig#}

      {#header_close#}
      {#header_close#}

      {#header_open|switch#}
      {#code|test_switch.zig#}

      <p>
      {#syntax#}switch{#endsyntax#} can be used to capture the field values
      of a {#link|Tagged union#}. Modifications to the field values can be
      done by placing a {#syntax#}*{#endsyntax#} before the capture variable name,
      turning it into a pointer.
      </p>
      {#code|test_switch_tagged_union.zig#}

      {#see_also|comptime|enum|@compileError|Compile Variables#}

      {#header_open|Exhaustive Switching#}
      <p>
      When a {#syntax#}switch{#endsyntax#} expression does not have an {#syntax#}else{#endsyntax#} clause,
      it must exhaustively list all the possible values. Failure to do so is a compile error:
      </p>
      {#code|test_unhandled_enumeration_value.zig#}

      {#header_close#}

      {#header_open|Switching with Enum Literals#}
      <p>
      {#link|Enum Literals#} can be useful to use with {#syntax#}switch{#endsyntax#} to avoid
      repetitively specifying {#link|enum#} or {#link|union#} types:
      </p>
      {#code|test_exhaustive_switch.zig#}

      {#header_close#}

      {#header_open|Labeled switch#}
      <p>
      When a switch statement is labeled, it can be referenced from a
      {#syntax#}break{#endsyntax#} or {#syntax#}continue{#endsyntax#}.
      {#syntax#}break{#endsyntax#} will return a value from the {#syntax#}
      switch{#endsyntax#}.
      </p>
      <p>
      A {#syntax#}continue{#endsyntax#} targeting a switch must have an
      operand. When executed, it will jump to the matching prong, as if the
      {#syntax#}switch{#endsyntax#} were executed again with the {#syntax#}
      continue{#endsyntax#}'s operand replacing the initial switch value.
      </p>

      {#code|test_switch_continue.zig#}

      <p>
      Semantically, this is equivalent to the following loop:
      </p>
      {#code|test_switch_continue_equivalent.zig#}

      <p>
      This can improve clarity of (for example) state machines, where the syntax {#syntax#}continue :sw .next_state{#endsyntax#} is unambiguous, explicit, and immediately understandable.
      </p>
      <p>
      However, the motivating example is a switch on each element of an array, where using a single switch can improve clarity and performance:
      </p>
      {#code|test_switch_dispatch_loop.zig#}

      <p>
      If the operand to {#syntax#}continue{#endsyntax#} is
      {#link|comptime#}-known, then it can be lowered to an unconditional branch
      to the relevant case. Such a branch is perfectly predicted, and hence
      typically very fast to execute.
      </p>

      <p>
      If the operand is runtime-known, each {#syntax#}continue{#endsyntax#} can
      embed a conditional branch inline (ideally through a jump table), which
      allows a CPU to predict its target independently of any other prong. A
      loop-based lowering would force every branch through the same dispatch
      point, hindering branch prediction.
      </p>


      {#header_close#}

      {#header_open|Inline Switch Prongs#}
      <p>
      Switch prongs can be marked as {#syntax#}inline{#endsyntax#} to generate
      the prong's body for each possible value it could have, making the
      captured value {#link|comptime#}.
      </p>
      {#code|test_inline_switch.zig#}

      <p>The {#syntax#}inline{#endsyntax#} keyword may also be combined with ranges:</p>
      {#code|inline_prong_range.zig#}

      <p>
      {#syntax#}inline else{#endsyntax#} prongs can be used as a type safe
      alternative to {#syntax#}inline for{#endsyntax#} loops:
      </p>
      {#code|test_inline_else.zig#}

      <p>
      When using an inline prong switching on an union an additional
      capture can be used to obtain the union's enum tag value.
      </p>
      {#code|test_inline_switch_union_tag.zig#}

      {#see_also|inline while|inline for#}
      {#header_close#}
      {#header_close#}

      {#header_open|while#}
      <p>
      A while loop is used to repeatedly execute an expression until
      some condition is no longer true.
      </p>
      {#code|test_while.zig#}

      <p>
      Use {#syntax#}break{#endsyntax#} to exit a while loop early.
      </p>
      {#code|test_while_break.zig#}

      <p>
      Use {#syntax#}continue{#endsyntax#} to jump back to the beginning of the loop.
      </p>
      {#code|test_while_continue.zig#}

      <p>
      While loops support a continue expression which is executed when the loop
      is continued. The {#syntax#}continue{#endsyntax#} keyword respects this expression.
      </p>
      {#code|test_while_continue_expression.zig#}

      <p>
      While loops are expressions. The result of the expression is the
      result of the {#syntax#}else{#endsyntax#} clause of a while loop, which is executed when
      the condition of the while loop is tested as false.
      </p>
      <p>
      {#syntax#}break{#endsyntax#}, like {#syntax#}return{#endsyntax#}, accepts a value
              parameter. This is the result of the {#syntax#}while{#endsyntax#} expression.
                  When you {#syntax#}break{#endsyntax#} from a while loop, the {#syntax#}else{#endsyntax#} branch is not
      evaluated.
      </p>
      {#code|test_while_else.zig#}

      {#header_open|Labeled while#}
      <p>When a {#syntax#}while{#endsyntax#} loop is labeled, it can be referenced from a {#syntax#}break{#endsyntax#}
              or {#syntax#}continue{#endsyntax#} from within a nested loop:</p>
      {#code|test_while_nested_break.zig#}

      {#header_close#}
      {#header_open|while with Optionals#}
      <p>
      Just like {#link|if#} expressions, while loops can take an optional as the
      condition and capture the payload. When {#link|null#} is encountered the loop
      exits.
      </p>
      <p>
      When the {#syntax#}|x|{#endsyntax#} syntax is present on a {#syntax#}while{#endsyntax#} expression,
      the while condition must have an {#link|Optional Type#}.
      </p>
      <p>
      The {#syntax#}else{#endsyntax#} branch is allowed on optional iteration. In this case, it will
      be executed on the first null value encountered.
      </p>
      {#code|test_while_null_capture.zig#}

      {#header_close#}

      {#header_open|while with Error Unions#}
      <p>
      Just like {#link|if#} expressions, while loops can take an error union as
      the condition and capture the payload or the error code. When the
      condition results in an error code the else branch is evaluated and
      the loop is finished.
      </p>
      <p>
      When the {#syntax#}else |x|{#endsyntax#} syntax is present on a {#syntax#}while{#endsyntax#} expression,
      the while condition must have an {#link|Error Union Type#}.
      </p>
      {#code|test_while_error_capture.zig#}

      {#header_close#}

      {#header_open|inline while#}
      <p>
      While loops can be inlined. This causes the loop to be unrolled, which
      allows the code to do some things which only work at compile time,
      such as use types as first class values.
      </p>
      {#code|test_inline_while.zig#}

      <p>
      It is recommended to use {#syntax#}inline{#endsyntax#} loops only for one of these reasons:
      </p>
      <ul>
        <li>You need the loop to execute at {#link|comptime#} for the semantics to work.</li>
        <li>
        You have a benchmark to prove that forcibly unrolling the loop in this way is measurably faster.
        </li>
      </ul>
      {#header_close#}
      {#see_also|if|Optionals|Errors|comptime|unreachable#}
      {#header_close#}
      {#header_open|for#}
      {#code|test_for.zig#}

      {#header_open|Labeled for#}
      <p>When a {#syntax#}for{#endsyntax#} loop is labeled, it can be referenced from a {#syntax#}break{#endsyntax#}
              or {#syntax#}continue{#endsyntax#} from within a nested loop:</p>
      {#code|test_for_nested_break.zig#}

      {#header_close#}
      {#header_open|inline for#}
      <p>
      For loops can be inlined. This causes the loop to be unrolled, which
      allows the code to do some things which only work at compile time,
      such as use types as first class values.
      The capture value and iterator value of inlined for loops are
      compile-time known.
      </p>
      {#code|test_inline_for.zig#}

      <p>
      It is recommended to use {#syntax#}inline{#endsyntax#} loops only for one of these reasons:
      </p>
      <ul>
        <li>You need the loop to execute at {#link|comptime#} for the semantics to work.</li>
        <li>
        You have a benchmark to prove that forcibly unrolling the loop in this way is measurably faster.
        </li>
      </ul>
      {#header_close#}
      {#see_also|while|comptime|Arrays|Slices#}
      {#header_close#}
      {#header_open|if#}
      {#code|test_if.zig#}

      {#header_open|if with Optionals#}

      {#code|test_if_optionals.zig#}

      {#header_close#}
      {#see_also|Optionals|Errors#}
      {#header_close#}
      {#header_open|defer#}
      <p>Executes an expression unconditionally at scope exit.</p>
      {#code|test_defer.zig#}

      <p>Defer expressions are evaluated in reverse order.</p>
      {#code|defer_unwind.zig#}

      <p>Inside a defer expression the return statement is not allowed.</p>
      {#code|test_invalid_defer.zig#}

      {#see_also|Errors#}
      {#header_close#}
      {#header_open|unreachable#}
      <p>
      In {#link|Debug#} and {#link|ReleaseSafe#} mode
      {#syntax#}unreachable{#endsyntax#} emits a call to {#syntax#}panic{#endsyntax#} with the message <code>reached unreachable code</code>.
      </p>
      <p>
      In {#link|ReleaseFast#} and {#link|ReleaseSmall#} mode, the optimizer uses the assumption that {#syntax#}unreachable{#endsyntax#} code
      will never be hit to perform optimizations.
      </p>
      {#header_open|Basics#}
      {#code|test_unreachable.zig#}

      <p>In fact, this is how {#syntax#}std.debug.assert{#endsyntax#} is implemented:</p>
      {#code|test_assertion_failure.zig#}

      {#header_close#}
      {#header_open|At Compile-Time#}
      {#code|test_comptime_unreachable.zig#}

      {#see_also|Zig Test|Build Mode|comptime#}
      {#header_close#}
      {#header_close#}
      {#header_open|noreturn#}
      <p>
      {#syntax#}noreturn{#endsyntax#} is the type of:
      </p>
      <ul>
          <li>{#syntax#}break{#endsyntax#}</li>
          <li>{#syntax#}continue{#endsyntax#}</li>
          <li>{#syntax#}return{#endsyntax#}</li>
          <li>{#syntax#}unreachable{#endsyntax#}</li>
          <li>{#syntax#}while (true) {}{#endsyntax#}</li>
      </ul>
      <p>When resolving types together, such as {#syntax#}if{#endsyntax#} clauses or {#syntax#}switch{#endsyntax#} prongs,
              the {#syntax#}noreturn{#endsyntax#} type is compatible with every other type. Consider:
      </p>
      {#code|test_noreturn.zig#}

      <p>Another use case for {#syntax#}noreturn{#endsyntax#} is the {#syntax#}exit{#endsyntax#} function:</p>
      {#code|test_noreturn_from_exit.zig#}

      {#header_close#}

      {#header_open|Functions#}
      {#code|test_functions.zig#}

      <p>There is a difference between a function <em>body</em> and a function <em>pointer</em>.
      Function bodies are {#link|comptime#}-only types while function {#link|Pointers#} may be
      runtime-known.</p>
      {#header_open|Pass-by-value Parameters#}
      <p>
      Primitive types such as {#link|Integers#} and {#link|Floats#} passed as parameters
      are copied, and then the copy is available in the function body. This is called "passing by value".
      Copying a primitive type is essentially free and typically involves nothing more than
      setting a register.
      </p>
      <p>
      Structs, unions, and arrays can sometimes be more efficiently passed as a reference, since a copy
      could be arbitrarily expensive depending on the size. When these types are passed
      as parameters, Zig may choose to copy and pass by value, or pass by reference, whichever way
      Zig decides will be faster. This is made possible, in part, by the fact that parameters are immutable.
      </p>
      {#code|test_pass_by_reference_or_value.zig#}

      <p>
      For extern functions, Zig follows the C ABI for passing structs and unions by value.
      </p>
      {#header_close#}
      {#header_open|Function Parameter Type Inference#}
      <p>
      Function parameters can be declared with {#syntax#}anytype{#endsyntax#} in place of the type.
      In this case the parameter types will be inferred when the function is called.
      Use {#link|@TypeOf#} and {#link|@typeInfo#} to get information about the inferred type.
      </p>
      {#code|test_fn_type_inference.zig#}


      {#header_close#}

      {#header_open|inline fn#}
      <p>
      Adding the {#syntax#}inline{#endsyntax#} keyword to a function definition makes that
      function become <em>semantically inlined</em> at the callsite. This is
      not a hint to be possibly observed by optimization passes, but has
      implications on the types and values involved in the function call.
      </p>
      <p>
      Unlike normal function calls, arguments at an inline function callsite which are
      compile-time known are treated as {#link|Compile Time Parameters#}. This can potentially
      propagate all the way to the return value:
      </p>
      {#code|inline_call.zig#}

      <p>If {#syntax#}inline{#endsyntax#} is removed, the test fails with the compile error
      instead of passing.</p>
      <p>It is generally better to let the compiler decide when to inline a
      function, except for these scenarios:</p>
      <ul>
        <li>To change how many stack frames are in the call stack, for debugging purposes.</li>
        <li>To force comptime-ness of the arguments to propagate to the return value of the function, as in the above example.</li>
        <li>Real world performance measurements demand it.</li>
      </ul>
      <p>Note that {#syntax#}inline{#endsyntax#} actually <em>restricts</em>
      what the compiler is allowed to do. This can harm binary size,
      compilation speed, and even runtime performance.</p>
      {#header_close#}

      {#header_open|Function Reflection#}
      {#code|test_fn_reflection.zig#}

      {#header_close#}
      {#header_close#}
      {#header_open|Errors#}
      {#header_open|Error Set Type#}
      <p>
      An error set is like an {#link|enum#}.
      However, each error name across the entire compilation gets assigned an unsigned integer
      greater than 0. You are allowed to declare the same error name more than once, and if you do, it
      gets assigned the same integer value.
      </p>
      <p>
      The error set type defaults to a {#syntax#}u16{#endsyntax#}, though if the maximum number of distinct
      error values is provided via the <kbd>--error-limit [num]</kbd> command line parameter an integer type
      with the minimum number of bits required to represent all of the error values will be used.
      </p>
      <p>
      You can {#link|coerce|Type Coercion#} an error from a subset to a superset:
      </p>
      {#code|test_coerce_error_subset_to_superset.zig#}

      <p>
      But you cannot {#link|coerce|Type Coercion#} an error from a superset to a subset:
      </p>
      {#code|test_coerce_error_superset_to_subset.zig#}

      <p>
      There is a shortcut for declaring an error set with only 1 value, and then getting that value:
      </p>
      {#code|single_value_error_set_shortcut.zig#}

      <p>This is equivalent to:</p>
      {#code|single_value_error_set.zig#}

      <p>
      This becomes useful when using {#link|Inferred Error Sets#}.
      </p>
      {#header_open|The Global Error Set#}
      <p>{#syntax#}anyerror{#endsyntax#} refers to the global error set.
      This is the error set that contains all errors in the entire compilation unit, i.e. it is the union of all other error sets.
      </p>
      <p>
      You can {#link|coerce|Type Coercion#} any error set to the global one, and you can explicitly
      cast an error of the global error set to a non-global one. This inserts a language-level
      assert to make sure the error value is in fact in the destination error set.
      </p>
      <p>
      The global error set should generally be avoided because it prevents the
      compiler from knowing what errors are possible at compile-time. Knowing
      the error set at compile-time is better for generated documentation and
      helpful error messages, such as forgetting a possible error value in a {#link|switch#}.
      </p>
      {#header_close#}
      {#header_close#}
      {#header_open|Error Union Type#}
      <p>
      An error set type and normal type can be combined with the {#syntax#}!{#endsyntax#}
      binary operator to form an error union type. You are likely to use an
      error union type more often than an error set type by itself.
      </p>
      <p>
      Here is a function to parse a string into a 64-bit integer:
      </p>
      {#code|error_union_parsing_u64.zig#}

      <p>
      Notice the return type is {#syntax#}!u64{#endsyntax#}. This means that the function
      either returns an unsigned 64 bit integer, or an error. We left off the error set
      to the left of the {#syntax#}!{#endsyntax#}, so the error set is inferred.
      </p>
      <p>
      Within the function definition, you can see some return statements that return
      an error, and at the bottom a return statement that returns a {#syntax#}u64{#endsyntax#}.
          Both types {#link|coerce|Type Coercion#} to {#syntax#}anyerror!u64{#endsyntax#}.
      </p>
      <p>
      What it looks like to use this function varies depending on what you're
      trying to do. One of the following:
      </p>
      <ul>
        <li>You want to provide a default value if it returned an error.</li>
        <li>If it returned an error then you want to return the same error.</li>
        <li>You know with complete certainty it will not return an error, so want to unconditionally unwrap it.</li>
        <li>You want to take a different action for each possible error.</li>
      </ul>
      {#header_open|catch#}
      <p>If you want to provide a default value, you can use the {#syntax#}catch{#endsyntax#} binary operator:</p>
      {#code|catch.zig#}

      <p>
      In this code, {#syntax#}number{#endsyntax#} will be equal to the successfully parsed string, or
          a default value of 13. The type of the right hand side of the binary {#syntax#}catch{#endsyntax#} operator must
              match the unwrapped error union type, or be of type {#syntax#}noreturn{#endsyntax#}.
      </p>
     <p>
      If you want to provide a default value with
      {#syntax#}catch{#endsyntax#} after performing some logic, you
      can combine {#syntax#}catch{#endsyntax#} with named {#link|Blocks#}:
      </p>
      {#code|handle_error_with_catch_block.zig.zig#}

      {#header_close#}
      {#header_open|try#}
      <p>Let's say you wanted to return the error if you got one, otherwise continue with the
      function logic:</p>
      {#code|catch_err_return.zig#}

      <p>
      There is a shortcut for this. The {#syntax#}try{#endsyntax#} expression:
      </p>
      {#code|try.zig#}

      <p>
      {#syntax#}try{#endsyntax#} evaluates an error union expression. If it is an error, it returns
      from the current function with the same error. Otherwise, the expression results in
      the unwrapped value.
      </p>
      {#header_close#}
      <p>
        Maybe you know with complete certainty that an expression will never be an error.
        In this case you can do this:
      </p>
      {#syntax#}const number = parseU64("1234", 10) catch unreachable;{#endsyntax#}
      <p>
      Here we know for sure that "1234" will parse successfully. So we put the
      {#syntax#}unreachable{#endsyntax#} value on the right hand side.
      {#syntax#}unreachable{#endsyntax#} invokes safety-checked {#link|Illegal Behavior#}, so
      in {#link|Debug#} and {#link|ReleaseSafe#}, triggers a safety panic by default. So, while
      we're debugging the application, if there <em>was</em> a surprise error here, the application
      would crash appropriately.
      </p>
      <p>
      You may want to take a different action for every situation. For that, we combine
      the {#link|if#} and {#link|switch#} expression:
      </p>
      {#syntax_block|zig|handle_all_error_scenarios.zig#}
fn doAThing(str: []u8) void {
    if (parseU64(str, 10)) |number| {
        doSomethingWithNumber(number);
    } else |err| switch (err) {
        error.Overflow => {
            // handle overflow...
        },
        // we promise that InvalidChar won't happen (or crash in debug mode if it does)
        error.InvalidChar => unreachable,
    }
}
      {#end_syntax_block#}
      <p>
      Finally, you may want to handle only some errors. For that, you can capture the unhandled
      errors in the {#syntax#}else{#endsyntax#} case, which now contains a narrower error set:
      </p>
      {#syntax_block|zig|handle_some_error_scenarios.zig#}
 fn doAnotherThing(str: []u8) error{InvalidChar}!void {
    if (parseU64(str, 10)) |number| {
        doSomethingWithNumber(number);
    } else |err| switch (err) {
        error.Overflow => {
            // handle overflow...
        },
        else => |leftover_err| return leftover_err,
    }
}
      {#end_syntax_block#}
      <p>
      You must use the variable capture syntax. If you don't need the
      variable, you can capture with {#syntax#}_{#endsyntax#} and avoid the
      {#syntax#}switch{#endsyntax#}.
      </p>
      {#syntax_block|zig|handle_no_error_scenarios.zig#}
fn doADifferentThing(str: []u8) void {
    if (parseU64(str, 10)) |number| {
        doSomethingWithNumber(number);
    } else |_| {
        // do as you'd like
    }
}
      {#end_syntax_block#}
      {#header_open|errdefer#}
      <p>
      The other component to error handling is defer statements.
      In addition to an unconditional {#link|defer#}, Zig has {#syntax#}errdefer{#endsyntax#},
      which evaluates the deferred expression on block exit path if and only if
      the function returned with an error from the block.
      </p>
      <p>
      Example:
      </p>
      {#syntax_block|zig|errdefer_example.zig#}
fn createFoo(param: i32) !Foo {
    const foo = try tryToAllocateFoo();
    // now we have allocated foo. we need to free it if the function fails.
    // but we want to return it if the function succeeds.
    errdefer deallocateFoo(foo);

    const tmp_buf = allocateTmpBuffer() orelse return error.OutOfMemory;
    // tmp_buf is truly a temporary resource, and we for sure want to clean it up
    // before this block leaves scope
    defer deallocateTmpBuffer(tmp_buf);

    if (param > 1337) return error.InvalidParam;

    // here the errdefer will not run since we're returning success from the function.
    // but the defer will run!
    return foo;
}
      {#end_syntax_block#}
      <p>
      The neat thing about this is that you get robust error handling without
      the verbosity and cognitive overhead of trying to make sure every exit path
      is covered. The deallocation code is always directly following the allocation code.
      </p>
      <p>
      The {#syntax#}errdefer{#endsyntax#} statement can optionally capture the error:
      </p>
      {#code|test_errdefer_capture.zig#}
      {#header_close#}
      <p>
      A couple of other tidbits about error handling:
      </p>
      <ul>
        <li>These primitives give enough expressiveness that it's completely practical
            to have failing to check for an error be a compile error. If you really want
            to ignore the error, you can add {#syntax#}catch unreachable{#endsyntax#} and
            get the added benefit of crashing in Debug and ReleaseSafe modes if your assumption was wrong.
        </li>
        <li>
          Since Zig understands error types, it can pre-weight branches in favor of
          errors not occurring. Just a small optimization benefit that is not available
          in other languages.
        </li>
      </ul>
      {#see_also|defer|if|switch#}

      <p>An error union is created with the {#syntax#}!{#endsyntax#} binary operator.
      You can use compile-time reflection to access the child type of an error union:</p>
      {#code|test_error_union.zig#}

      {#header_open|Merging Error Sets#}
      <p>
      Use the {#syntax#}||{#endsyntax#} operator to merge two error sets together. The resulting
      error set contains the errors of both error sets. Doc comments from the left-hand
      side override doc comments from the right-hand side. In this example, the doc
      comments for {#syntax#}C.PathNotFound{#endsyntax#} is <code>A doc comment</code>.
      </p>
      <p>
      This is especially useful for functions which return different error sets depending
      on {#link|comptime#} branches. For example, the Zig standard library uses
      {#syntax#}LinuxFileOpenError || WindowsFileOpenError{#endsyntax#} for the error set of opening
      files.
      </p>
      {#code|test_merging_error_sets.zig#}

      {#header_close#}
      {#header_open|Inferred Error Sets#}
      <p>
      Because many functions in Zig return a possible error, Zig supports inferring the error set.
      To infer the error set for a function, prepend the {#syntax#}!{#endsyntax#} operator to the function’s return type, like {#syntax#}!T{#endsyntax#}:
      </p>
      {#code|test_inferred_error_sets.zig#}

      <p>
      When a function has an inferred error set, that function becomes generic and thus it becomes
      trickier to do certain things with it, such as obtain a function pointer, or have an error
      set that is consistent across different build targets. Additionally, inferred error sets
      are incompatible with recursion.
      </p>
      <p>
      In these situations, it is recommended to use an explicit error set. You can generally start
      with an empty error set and let compile errors guide you toward completing the set.
      </p>
      <p>
      These limitations may be overcome in a future version of Zig.
      </p>
      {#header_close#}
      {#header_close#}
      {#header_open|Error Return Traces#}
      <p>
      Error Return Traces show all the points in the code that an error was returned to the calling function. This makes it practical to use {#link|try#} everywhere and then still be able to know what happened if an error ends up bubbling all the way out of your application.
      </p>
      {#code|error_return_trace.zig#}

      <p>
      Look closely at this example. This is no stack trace.
      </p>
      <p>
      You can see that the final error bubbled up was {#syntax#}PermissionDenied{#endsyntax#},
          but the original error that started this whole thing was {#syntax#}FileNotFound{#endsyntax#}. In the {#syntax#}bar{#endsyntax#} function, the code handles the original error code,
      and then returns another one, from the switch statement. Error Return Traces make this clear, whereas a stack trace would look like this:
      </p>
      {#code|stack_trace.zig#}

      <p>
      Here, the stack trace does not explain how the control
      flow in {#syntax#}bar{#endsyntax#} got to the {#syntax#}hello(){#endsyntax#} call.
      One would have to open a debugger or further instrument the application
      in order to find out. The error return trace, on the other hand,
      shows exactly how the error bubbled up.
      </p>
      <p>
      This debugging feature makes it easier to iterate quickly on code that
      robustly handles all error conditions. This means that Zig developers
      will naturally find themselves writing correct, robust code in order
      to increase their development pace.
      </p>
      <p>
      Error Return Traces are enabled by default in {#link|Debug#} builds and disabled by default in {#link|ReleaseFast#}, {#link|ReleaseSafe#} and {#link|ReleaseSmall#} builds.
      </p>
      <p>
      There are a few ways to activate this error return tracing feature:
      </p>
      <ul>
        <li>Return an error from main</li>
        <li>An error makes its way to {#syntax#}catch unreachable{#endsyntax#} and you have not overridden the default panic handler</li>
        <li>Use {#link|errorReturnTrace#} to access the current return trace. You can use {#syntax#}std.debug.dumpStackTrace{#endsyntax#} to print it. This function returns comptime-known {#link|null#} when building without error return tracing support.</li>
      </ul>
      {#header_open|Implementation Details#}
      <p>
      To analyze performance cost, there are two cases:
      </p>
      <ul>
        <li>when no errors are returned</li>
        <li>when returning errors</li>
      </ul>
      <p>
      For the case when no errors are returned, the cost is a single memory write operation, only in the first non-failable function in the call graph that calls a failable function, i.e. when a function returning {#syntax#}void{#endsyntax#} calls a function returning {#syntax#}error{#endsyntax#}.
      This is to initialize this struct in the stack memory:
      </p>
      {#syntax_block|zig|stack_trace_struct.zig#}
pub const StackTrace = struct {
    index: usize,
    instruction_addresses: [N]usize,
};
      {#end_syntax_block#}
      <p>
      Here, N is the maximum function call depth as determined by call graph analysis. Recursion is ignored and counts for 2.
      </p>
      <p>
      A pointer to {#syntax#}StackTrace{#endsyntax#} is passed as a secret parameter to every function that can return an error, but it's always the first parameter, so it can likely sit in a register and stay there.
      </p>
      <p>
      That's it for the path when no errors occur. It's practically free in terms of performance.
      </p>
      <p>
      When generating the code for a function that returns an error, just before the {#syntax#}return{#endsyntax#} statement (only for the {#syntax#}return{#endsyntax#} statements that return errors), Zig generates a call to this function:
      </p>
      {#syntax_block|zig|zig_return_error_fn.zig#}
// marked as "no-inline" in LLVM IR
fn __zig_return_error(stack_trace: *StackTrace) void {
    stack_trace.instruction_addresses[stack_trace.index] = @returnAddress();
    stack_trace.index = (stack_trace.index + 1) % N;
}
      {#end_syntax_block#}
      <p>
      The cost is 2 math operations plus some memory reads and writes. The memory accessed is constrained and should remain cached for the duration of the error return bubbling.
      </p>
      <p>
      As for code size cost, 1 function call before a return statement is no big deal. Even so,
      I have <a href="https://github.com/ziglang/zig/issues/690">a plan</a> to make the call to
      {#syntax#}__zig_return_error{#endsyntax#} a tail call, which brings the code size cost down to actually zero. What is a return statement in code without error return tracing can become a jump instruction in code with error return tracing.
      </p>
      {#header_close#}
      {#header_close#}
      {#header_close#}
      {#header_open|Optionals#}
      <p>
      One area that Zig provides safety without compromising efficiency or
      readability is with the optional type.
      </p>
      <p>
      The question mark symbolizes the optional type. You can convert a type to an optional
      type by putting a question mark in front of it, like this:
      </p>
      {#code|optional_integer.zig#}

      <p>
      Now the variable {#syntax#}optional_int{#endsyntax#} could be an {#syntax#}i32{#endsyntax#}, or {#syntax#}null{#endsyntax#}.
      </p>
      <p>
      Instead of integers, let's talk about pointers. Null references are the source of many runtime
      exceptions, and even stand accused of being
      <a href="https://www.lucidchart.com/techblog/2015/08/31/the-worst-mistake-of-computer-science/">the worst mistake of computer science</a>.
      </p>
      <p>Zig does not have them.</p>
      <p>
      Instead, you can use an optional pointer. This secretly compiles down to a normal pointer,
      since we know we can use 0 as the null value for the optional type. But the compiler
      can check your work and make sure you don't assign null to something that can't be null.
      </p>
      <p>
      Typically the downside of not having null is that it makes the code more verbose to
      write. But, let's compare some equivalent C code and Zig code.
      </p>
      <p>
      Task: call malloc, if the result is null, return null.
      </p>
      <p>C code</p>
      {#syntax_block|c|call_malloc_in_c.c#}
// malloc prototype included for reference
void *malloc(size_t size);

struct Foo *do_a_thing(void) {
    char *ptr = malloc(1234);
    if (!ptr) return NULL;
    // ...
}
      {#end_syntax_block#}
      <p>Zig code</p>
      {#syntax_block|zig|call_malloc_from_zig.zig#}
// malloc prototype included for reference
extern fn malloc(size: usize) ?[*]u8;

fn doAThing() ?*Foo {
    const ptr = malloc(1234) orelse return null;
    _ = ptr; // ...
}
      {#end_syntax_block#}
      <p>
        Here, Zig is at least as convenient, if not more, than C. And, the type of "ptr"
        is {#syntax#}[*]u8{#endsyntax#} <em>not</em> {#syntax#}?[*]u8{#endsyntax#}. The {#syntax#}orelse{#endsyntax#} keyword
                    unwrapped the optional type and therefore {#syntax#}ptr{#endsyntax#} is guaranteed to be non-null everywhere
        it is used in the function.
      </p>
      <p>
        The other form of checking against NULL you might see looks like this:
      </p>
      {#syntax_block|c|checking_null_in_c.c#}
void do_a_thing(struct Foo *foo) {
    // do some stuff

    if (foo) {
        do_something_with_foo(foo);
    }

    // do some stuff
}
      {#end_syntax_block#}
      <p>
        In Zig you can accomplish the same thing:
      </p>
      {#code|checking_null_in_zig.zig#}

      <p>
      Once again, the notable thing here is that inside the if block,
      {#syntax#}foo{#endsyntax#} is no longer an optional pointer, it is a pointer, which
      cannot be null.
      </p>
      <p>
      One benefit to this is that functions which take pointers as arguments can
      be annotated with the "nonnull" attribute - <code>__attribute__((nonnull))</code> in
      <a href="https://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Function-Attributes.html">GCC</a>.
      The optimizer can sometimes make better decisions knowing that pointer arguments
      cannot be null.
      </p>
      {#header_open|Optional Type#}
      <p>An optional is created by putting {#syntax#}?{#endsyntax#} in front of a type. You can use compile-time
      reflection to access the child type of an optional:</p>
      {#code|test_optional_type.zig#}

      {#header_close#}
      {#header_open|null#}
      <p>
      Just like {#link|undefined#}, {#syntax#}null{#endsyntax#} has its own type, and the only way to use it is to
      cast it to a different type:
      </p>
      {#code|null.zig#}

      {#header_close#}
      {#header_open|Optional Pointers#}
      <p>An optional pointer is guaranteed to be the same size as a pointer. The {#syntax#}null{#endsyntax#} of
      the optional is guaranteed to be address 0.</p>
      {#code|test_optional_pointer.zig#}

      {#header_close#}

      {#see_also|while with Optionals|if with Optionals#}
      {#header_close#}
      {#header_open|Casting#}
      <p>
      A <strong>type cast</strong> converts a value of one type to another.
      Zig has {#link|Type Coercion#} for conversions that are known to be completely safe and unambiguous,
      and {#link|Explicit Casts#} for conversions that one would not want to happen on accident.
      There is also a third kind of type conversion called {#link|Peer Type Resolution#} for
      the case when a result type must be decided given multiple operand types.
      </p>
      {#header_open|Type Coercion#}
      <p>
      Type coercion occurs when one type is expected, but different type is provided:
      </p>
      {#code|test_type_coercion.zig#}

      <p>
      Type coercions are only allowed when it is completely unambiguous how to get from one type to another,
      and the transformation is guaranteed to be safe. There is one exception, which is {#link|C Pointers#}.
      </p>
      {#header_open|Type Coercion: Stricter Qualification#}
      <p>
      Values which have the same representation at runtime can be cast to increase the strictness
      of the qualifiers, no matter how nested the qualifiers are:
      </p>
      <ul>
          <li>{#syntax#}const{#endsyntax#} - non-const to const is allowed</li>
          <li>{#syntax#}volatile{#endsyntax#} - non-volatile to volatile is allowed</li>
          <li>{#syntax#}align{#endsyntax#} - bigger to smaller alignment is allowed </li>
          <li>{#link|error sets|Error Set Type#} to supersets is allowed</li>
      </ul>
      <p>
      These casts are no-ops at runtime since the value representation does not change.
      </p>
      {#code|test_no_op_casts.zig#}

      <p>
      In addition, pointers coerce to const optional pointers:
      </p>
      {#code|test_pointer_coerce_const_optional.zig#}

      {#header_close#}
      {#header_open|Type Coercion: Integer and Float Widening#}
      <p>
      {#link|Integers#} coerce to integer types which can represent every value of the old type, and likewise
      {#link|Floats#} coerce to float types which can represent every value of the old type.
      </p>
      {#code|test_integer_widening.zig#}

      {#header_close#}
      {#header_open|Type Coercion: Float to Int#}
      <p>
      A compiler error is appropriate because this ambiguous expression leaves the compiler
      two choices about the coercion.
      </p>
      <ul>
        <li>Cast {#syntax#}54.0{#endsyntax#} to {#syntax#}comptime_int{#endsyntax#} resulting in {#syntax#}@as(comptime_int, 10){#endsyntax#}, which is casted to {#syntax#}@as(f32, 10){#endsyntax#}</li>
        <li>Cast {#syntax#}5{#endsyntax#} to {#syntax#}comptime_float{#endsyntax#} resulting in {#syntax#}@as(comptime_float, 10.8){#endsyntax#}, which is casted to {#syntax#}@as(f32, 10.8){#endsyntax#}</li>
      </ul>
      {#code|test_ambiguous_coercion.zig#}

      {#header_close#}
      {#header_open|Type Coercion: Slices, Arrays and Pointers#}
      {#code|test_coerce_slices_arrays_and_pointers.zig#}

      {#see_also|C Pointers#}
      {#header_close#}
      {#header_open|Type Coercion: Optionals#}
      <p>
      The payload type of {#link|Optionals#}, as well as {#link|null#}, coerce to the optional type.
      </p>
      {#code|test_coerce_optionals.zig#}

      <p>Optionals work nested inside the {#link|Error Union Type#}, too:</p>
      {#code|test_coerce_optional_wrapped_error_union.zig#}

      {#header_close#}
      {#header_open|Type Coercion: Error Unions#}
      <p>The payload type of an {#link|Error Union Type#} as well as the {#link|Error Set Type#}
      coerce to the error union type:
      </p>
      {#code|test_coerce_to_error_union.zig#}

      {#header_close#}
      {#header_open|Type Coercion: Compile-Time Known Numbers#}
      <p>When a number is {#link|comptime#}-known to be representable in the destination type,
      it may be coerced:
      </p>
      {#code|test_coerce_large_to_small.zig#}

      {#header_close#}
      {#header_open|Type Coercion: Unions and Enums#}
      <p>Tagged unions can be coerced to enums, and enums can be coerced to tagged unions
      when they are {#link|comptime#}-known to be a field of the union that has only one possible value, such as
      {#link|void#}:
      </p>
      {#code|test_coerce_unions_enums.zig#}

      {#see_also|union|enum#}
      {#header_close#}
      {#header_open|Type Coercion: undefined#}
      <p>{#link|undefined#} can be coerced to any type.</p>
      {#header_close#}

      {#header_open|Type Coercion: Tuples to Arrays#}
      <p>{#link|Tuples#} can be coerced to arrays, if all of the fields have the same type.</p>
      {#code|test_coerce_tuples_arrays.zig#}

      {#header_close#}
      {#header_close#}

      {#header_open|Explicit Casts#}
      <p>
      Explicit casts are performed via {#link|Builtin Functions#}.
      Some explicit casts are safe; some are not.
      Some explicit casts perform language-level assertions; some do not.
      Some explicit casts are no-ops at runtime; some are not.
      </p>
      <ul>
          <li>{#link|@bitCast#} - change type but maintain bit representation</li>
          <li>{#link|@alignCast#} - make a pointer have more alignment</li>
          <li>{#link|@enumFromInt#} - obtain an enum value based on its integer tag value</li>
          <li>{#link|@errorFromInt#} - obtain an error code based on its integer value</li>
          <li>{#link|@errorCast#} - convert to a smaller error set</li>
          <li>{#link|@floatCast#} - convert a larger float to a smaller float</li>
          <li>{#link|@floatFromInt#} - convert an integer to a float value</li>
          <li>{#link|@intCast#} - convert between integer types</li>
          <li>{#link|@intFromBool#} - convert true to 1 and false to 0</li>
          <li>{#link|@intFromEnum#} - obtain the integer tag value of an enum or tagged union</li>
          <li>{#link|@intFromError#} - obtain the integer value of an error code</li>
          <li>{#link|@intFromFloat#} - obtain the integer part of a float value</li>
          <li>{#link|@intFromPtr#} - obtain the address of a pointer</li>
          <li>{#link|@ptrFromInt#} - convert an address to a pointer</li>
          <li>{#link|@ptrCast#} - convert between pointer types</li>
          <li>{#link|@truncate#} - convert between integer types, chopping off bits</li>
      </ul>
      {#header_close#}

      {#header_open|Peer Type Resolution#}
      <p>Peer Type Resolution occurs in these places:</p>
      <ul>
        <li>{#link|switch#} expressions</li>
        <li>{#link|if#} expressions</li>
        <li>{#link|while#} expressions</li>
        <li>{#link|for#} expressions</li>
        <li>Multiple break statements in a block</li>
        <li>Some {#link|binary operations|Table of Operators#}</li>
      </ul>
      <p>
      This kind of type resolution chooses a type that all peer types can coerce into. Here are
      some examples:
      </p>
      {#code|test_peer_type_resolution.zig#}

      {#header_close#}
      {#header_close#}

      {#header_open|Zero Bit Types#}
      <p>For some types, {#link|@sizeOf#} is 0:</p>
      <ul>
          <li>{#link|void#}</li>
          <li>The {#link|Integers#} {#syntax#}u0{#endsyntax#} and {#syntax#}i0{#endsyntax#}.</li>
          <li>{#link|Arrays#} and {#link|Vectors#} with len 0, or with an element type that is a zero bit type.</li>
          <li>An {#link|enum#} with only 1 tag.</li>
          <li>A {#link|struct#} with all fields being zero bit types.</li>
          <li>A {#link|union#} with only 1 field which is a zero bit type.</li>
      </ul>
      <p>
      These types can only ever have one possible value, and thus
      require 0 bits to represent. Code that makes use of these types is
      not included in the final generated code:
      </p>
      {#code|zero_bit_types.zig#}

      <p>When this turns into machine code, there is no code generated in the
      body of {#syntax#}entry{#endsyntax#}, even in {#link|Debug#} mode. For example, on x86_64:</p>
      <pre><code>0000000000000010 &lt;entry&gt;:
  10:	55                   	push   %rbp
  11:	48 89 e5             	mov    %rsp,%rbp
  14:	5d                   	pop    %rbp
  15:	c3                   	retq   </code></pre>
      <p>These assembly instructions do not have any code associated with the void values -
      they only perform the function call prologue and epilogue.</p>

      {#header_open|void#}
      <p>
      {#syntax#}void{#endsyntax#} can be useful for instantiating generic types. For example, given a
          {#syntax#}Map(Key, Value){#endsyntax#}, one can pass {#syntax#}void{#endsyntax#} for the {#syntax#}Value{#endsyntax#}
                      type to make it into a {#syntax#}Set{#endsyntax#}:
      </p>
      {#code|test_void_in_hashmap.zig#}

      <p>Note that this is different from using a dummy value for the hash map value.
      By using {#syntax#}void{#endsyntax#} as the type of the value, the hash map entry type has no value field, and
      thus the hash map takes up less space. Further, all the code that deals with storing and loading the
      value is deleted, as seen above.
      </p>
      <p>
      {#syntax#}void{#endsyntax#} is distinct from {#syntax#}anyopaque{#endsyntax#}.
      {#syntax#}void{#endsyntax#} has a known size of 0 bytes, and {#syntax#}anyopaque{#endsyntax#} has an unknown, but non-zero, size.
      </p>
      <p>
      Expressions of type {#syntax#}void{#endsyntax#} are the only ones whose value can be ignored. For example, ignoring
      a non-{#syntax#}void{#endsyntax#} expression is a compile error:
      </p>
      {#code|test_expression_ignored.zig#}

      <p>However, if the expression has type {#syntax#}void{#endsyntax#}, there will be no error. Expression results can be explicitly ignored by assigning them to {#syntax#}_{#endsyntax#}. </p>
      {#code|test_void_ignored.zig#}

      {#header_close#}
      {#header_close#}

      {#header_open|Result Location Semantics#}
      <p>
      During compilation, every Zig expression and sub-expression is assigned optional result location
      information. This information dictates what type the expression should have (its result type), and
      where the resulting value should be placed in memory (its result location). The information is
      optional in the sense that not every expression has this information: assignment to
      {#syntax#}_{#endsyntax#}, for instance, does not provide any information about the type of an
      expression, nor does it provide a concrete memory location to place it in.
      </p>
      <p>
      As a motivating example, consider the statement {#syntax#}const x: u32 = 42;{#endsyntax#}. The type
      annotation here provides a result type of {#syntax#}u32{#endsyntax#} to the initialization expression
      {#syntax#}42{#endsyntax#}, instructing the compiler to coerce this integer (initially of type
      {#syntax#}comptime_int{#endsyntax#}) to this type. We will see more examples shortly.
      </p>
      <p>
      This is not an implementation detail: the logic outlined above is codified into the Zig language
      specification, and is the primary mechanism of type inference in the language. This system is
      collectively referred to as "Result Location Semantics".
      </p>
      {#header_open|Result Types#}
      <p>
      Result types are propagated recursively through expressions where possible. For instance, if the
      expression {#syntax#}&e{#endsyntax#} has result type {#syntax#}*u32{#endsyntax#}, then
      {#syntax#}e{#endsyntax#} is given a result type of {#syntax#}u32{#endsyntax#}, allowing the
      language to perform this coercion before taking a reference.
      </p>
      <p>
      The result type mechanism is utilized by casting builtins such as {#syntax#}@intCast{#endsyntax#}.
      Rather than taking as an argument the type to cast to, these builtins use their result type to
      determine this information. The result type is often known from context; where it is not, the
      {#syntax#}@as{#endsyntax#} builtin can be used to explicitly provide a result type.
      </p>
      <p>
      We can break down the result types for each component of a simple expression as follows:
      </p>
      {#code|result_type_propagation.zig#}

      <p>
      This result type information is useful for the aforementioned cast builtins, as well as to avoid
      the construction of pre-coercion values, and to avoid the need for explicit type coercions in some
      cases. The following table details how some common expressions propagate result types, where
      {#syntax#}x{#endsyntax#} and {#syntax#}y{#endsyntax#} are arbitrary sub-expressions.
      </p>
      <div class="table-wrapper">
      <table>
        <thead>
          <tr>
            <th scope="col">Expression</th>
            <th scope="col">Parent Result Type</th>
            <th scope="col">Sub-expression Result Type</th>
          </tr>
        </thead>
        <tbody>
          <tr>
            <th scope="row">{#syntax#}const val: T = x{#endsyntax#}</th>
            <td>-</td>
            <td>{#syntax#}x{#endsyntax#} is a {#syntax#}T{#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}var val: T = x{#endsyntax#}</th>
            <td>-</td>
            <td>{#syntax#}x{#endsyntax#} is a {#syntax#}T{#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}val = x{#endsyntax#}</th>
            <td>-</td>
            <td>{#syntax#}x{#endsyntax#} is a {#syntax#}@TypeOf(val){#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}@as(T, x){#endsyntax#}</th>
            <td>-</td>
            <td>{#syntax#}x{#endsyntax#} is a {#syntax#}T{#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}&x{#endsyntax#}</th>
            <td>{#syntax#}*T{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} is a {#syntax#}T{#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}&x{#endsyntax#}</th>
            <td>{#syntax#}[]T{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} is some array of {#syntax#}T{#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}f(x){#endsyntax#}</th>
            <td>-</td>
            <td>{#syntax#}x{#endsyntax#} has the type of the first parameter of {#syntax#}f{#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}.{x}{#endsyntax#}</th>
            <td>{#syntax#}T{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} is a {#syntax#}@FieldType(T, "0"){#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}.{ .a = x }{#endsyntax#}</th>
            <td>{#syntax#}T{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} is a {#syntax#}@FieldType(T, "a"){#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}T{x}{#endsyntax#}</th>
            <td>-</td>
            <td>{#syntax#}x{#endsyntax#} is a {#syntax#}@FieldType(T, "0"){#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}T{ .a = x }{#endsyntax#}</th>
            <td>-</td>
            <td>{#syntax#}x{#endsyntax#} is a {#syntax#}@FieldType(T, "a"){#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}@Type(x){#endsyntax#}</th>
            <td>-</td>
            <td>{#syntax#}x{#endsyntax#} is a {#syntax#}std.builtin.Type{#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}@typeInfo(x){#endsyntax#}</th>
            <td>-</td>
            <td>{#syntax#}x{#endsyntax#} is a {#syntax#}type{#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}x << y{#endsyntax#}</th>
            <td>-</td>
            <td>{#syntax#}y{#endsyntax#} is a {#syntax#}std.math.Log2IntCeil(@TypeOf(x)){#endsyntax#}</td>
          </tr>
        </tbody>
      </table>
      </div>
      {#header_close#}
      {#header_open|Result Locations#}
      <p>
      In addition to result type information, every expression may be optionally assigned a result
      location: a pointer to which the value must be directly written. This system can be used to prevent
      intermediate copies when initializing data structures, which can be important for types which must
      have a fixed memory address ("pinned" types).
      </p>
      <p>
      When compiling the simple assignment expression {#syntax#}x = e{#endsyntax#}, many languages would
      create the temporary value {#syntax#}e{#endsyntax#} on the stack, and then assign it to
      {#syntax#}x{#endsyntax#}, potentially performing a type coercion in the process. Zig approaches this
      differently. The expression {#syntax#}e{#endsyntax#} is given a result type matching the type of
      {#syntax#}x{#endsyntax#}, and a result location of {#syntax#}&x{#endsyntax#}. For many syntactic
      forms of {#syntax#}e{#endsyntax#}, this has no practical impact. However, it can have important
      semantic effects when working with more complex syntax forms.
      </p>
      <p>
      For instance, if the expression {#syntax#}.{ .a = x, .b = y }{#endsyntax#} has a result location of
      {#syntax#}ptr{#endsyntax#}, then {#syntax#}x{#endsyntax#} is given a result location of
      {#syntax#}&ptr.a{#endsyntax#}, and {#syntax#}y{#endsyntax#} a result location of {#syntax#}&ptr.b{#endsyntax#}.
      Without this system, this expression would construct a temporary struct value entirely on the stack, and
      only then copy it to the destination address. In essence, Zig desugars the assignment
      {#syntax#}foo = .{ .a = x, .b = y }{#endsyntax#} to the two statements {#syntax#}foo.a = x; foo.b = y;{#endsyntax#}.
      </p>
      <p>
      This can sometimes be important when assigning an aggregate value where the initialization
      expression depends on the previous value of the aggregate. The easiest way to demonstrate this is by
      attempting to swap fields of a struct or array - the following logic looks sound, but in fact is not:
      </p>
      {#code|result_location_interfering_with_swap.zig#}

      <p>
      The following table details how some common expressions propagate result locations, where
      {#syntax#}x{#endsyntax#} and {#syntax#}y{#endsyntax#} are arbitrary sub-expressions. Note that
      some expressions cannot provide meaningful result locations to sub-expressions, even if they
      themselves have a result location.
      </p>
      <div class="table-wrapper">
      <table>
        <thead>
          <tr>
            <th scope="col">Expression</th>
            <th scope="col">Result Location</th>
            <th scope="col">Sub-expression Result Locations</th>
          </tr>
        </thead>
        <tbody>
          <tr>
            <th scope="row">{#syntax#}const val: T = x{#endsyntax#}</th>
            <td>-</td>
            <td>{#syntax#}x{#endsyntax#} has result location {#syntax#}&val{#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}var val: T = x{#endsyntax#}</th>
            <td>-</td>
            <td>{#syntax#}x{#endsyntax#} has result location {#syntax#}&val{#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}val = x{#endsyntax#}</th>
            <td>-</td>
            <td>{#syntax#}x{#endsyntax#} has result location {#syntax#}&val{#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}@as(T, x){#endsyntax#}</th>
            <td>{#syntax#}ptr{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} has no result location</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}&x{#endsyntax#}</th>
            <td>{#syntax#}ptr{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} has no result location</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}f(x){#endsyntax#}</th>
            <td>{#syntax#}ptr{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} has no result location</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}.{x}{#endsyntax#}</th>
            <td>{#syntax#}ptr{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} has result location {#syntax#}&ptr[0]{#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}.{ .a = x }{#endsyntax#}</th>
            <td>{#syntax#}ptr{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} has result location {#syntax#}&ptr.a{#endsyntax#}</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}T{x}{#endsyntax#}</th>
            <td>{#syntax#}ptr{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} has no result location (typed initializers do not propagate result locations)</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}T{ .a = x }{#endsyntax#}</th>
            <td>{#syntax#}ptr{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} has no result location (typed initializers do not propagate result locations)</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}@Type(x){#endsyntax#}</th>
            <td>{#syntax#}ptr{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} has no result location</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}@typeInfo(x){#endsyntax#}</th>
            <td>{#syntax#}ptr{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} has no result location</td>
          </tr>
          <tr>
            <th scope="row">{#syntax#}x << y{#endsyntax#}</th>
            <td>{#syntax#}ptr{#endsyntax#}</td>
            <td>{#syntax#}x{#endsyntax#} and {#syntax#}y{#endsyntax#} do not have result locations</td>
          </tr>
        </tbody>
      </table>
      </div>
      {#header_close#}
      {#header_close#}

      {#header_open|comptime#}
      <p>
      Zig places importance on the concept of whether an expression is known at compile-time.
      There are a few different places this concept is used, and these building blocks are used
      to keep the language small, readable, and powerful.
      </p>
      {#header_open|Introducing the Compile-Time Concept#}
      {#header_open|Compile-Time Parameters#}
      <p>
      Compile-time parameters is how Zig implements generics. It is compile-time duck typing.
      </p>
      {#code|compile-time_duck_typing.zig#}

      <p>
      In Zig, types are first-class citizens. They can be assigned to variables, passed as parameters to functions,
      and returned from functions. However, they can only be used in expressions which are known at <em>compile-time</em>,
      which is why the parameter {#syntax#}T{#endsyntax#} in the above snippet must be marked with {#syntax#}comptime{#endsyntax#}.
      </p>
      <p>
      A {#syntax#}comptime{#endsyntax#} parameter means that:
      </p>
      <ul>
        <li>At the callsite, the value must be known at compile-time, or it is a compile error.</li>
        <li>In the function definition, the value is known at compile-time.</li>
      </ul>
      <p>
      For example, if we were to introduce another function to the above snippet:
      </p>
      {#code|test_unresolved_comptime_value.zig#}

      <p>
      This is an error because the programmer attempted to pass a value only known at run-time
      to a function which expects a value known at compile-time.
      </p>
      <p>
      Another way to get an error is if we pass a type that violates the type checker when the
      function is analyzed. This is what it means to have <em>compile-time duck typing</em>.
      </p>
      <p>
      For example:
      </p>
      {#code|test_comptime_mismatched_type.zig#}

      <p>
      On the flip side, inside the function definition with the {#syntax#}comptime{#endsyntax#} parameter, the
      value is known at compile-time. This means that we actually could make this work for the bool type
      if we wanted to:
      </p>
      {#code|test_comptime_max_with_bool.zig#}

      <p>
      This works because Zig implicitly inlines {#syntax#}if{#endsyntax#} expressions when the condition
      is known at compile-time, and the compiler guarantees that it will skip analysis of
      the branch not taken.
      </p>
      <p>
      This means that the actual function generated for {#syntax#}max{#endsyntax#} in this situation looks like
      this:
      </p>
      {#code|compiler_generated_function.zig#}

      <p>
      All the code that dealt with compile-time known values is eliminated and we are left with only
      the necessary run-time code to accomplish the task.
      </p>
      <p>
      This works the same way for {#syntax#}switch{#endsyntax#} expressions - they are implicitly inlined
      when the target expression is compile-time known.
      </p>
      {#header_close#}
      {#header_open|Compile-Time Variables#}
      <p>
      In Zig, the programmer can label variables as {#syntax#}comptime{#endsyntax#}. This guarantees to the compiler
      that every load and store of the variable is performed at compile-time. Any violation of this results in a
      compile error.
      </p>
      <p>
      This combined with the fact that we can {#syntax#}inline{#endsyntax#} loops allows us to write
      a function which is partially evaluated at compile-time and partially at run-time.
      </p>
      <p>
      For example:
      </p>
      {#code|test_comptime_evaluation.zig#}

      <p>
      This example is a bit contrived, because the compile-time evaluation component is unnecessary;
      this code would work fine if it was all done at run-time. But it does end up generating
      different code. In this example, the function {#syntax#}performFn{#endsyntax#} is generated three different times,
          for the different values of {#syntax#}prefix_char{#endsyntax#} provided:
      </p>
      {#syntax_block|zig|performFn_1#}
// From the line:
// expect(performFn('t', 1) == 6);
fn performFn(start_value: i32) i32 {
    var result: i32 = start_value;
    result = two(result);
    result = three(result);
    return result;
}
      {#end_syntax_block#}
      {#syntax_block|zig|performFn_2#}
// From the line:
// expect(performFn('o', 0) == 1);
fn performFn(start_value: i32) i32 {
    var result: i32 = start_value;
    result = one(result);
    return result;
}
      {#end_syntax_block#}
      {#syntax_block|zig|performFn_3#}
// From the line:
// expect(performFn('w', 99) == 99);
fn performFn(start_value: i32) i32 {
    var result: i32 = start_value;
    _ = &result;
    return result;
}
      {#end_syntax_block#}
      <p>
      Note that this happens even in a debug build.
      This is not a way to write more optimized code, but it is a way to make sure that what <em>should</em> happen
      at compile-time, <em>does</em> happen at compile-time. This catches more errors and allows expressiveness
      that in other languages requires using macros, generated code, or a preprocessor to accomplish.
      </p>
      {#header_close#}
      {#header_open|Compile-Time Expressions#}
      <p>
      In Zig, it matters whether a given expression is known at compile-time or run-time. A programmer can
      use a {#syntax#}comptime{#endsyntax#} expression to guarantee that the expression will be evaluated at compile-time.
      If this cannot be accomplished, the compiler will emit an error. For example:
      </p>
      {#code|test_comptime_call_extern_function.zig#}

      <p>
      It doesn't make sense that a program could call {#syntax#}exit(){#endsyntax#} (or any other external function)
          at compile-time, so this is a compile error. However, a {#syntax#}comptime{#endsyntax#} expression does much
      more than sometimes cause a compile error.
      </p>
      <p>
      Within a {#syntax#}comptime{#endsyntax#} expression:
      </p>
      <ul>
          <li>All variables are {#syntax#}comptime{#endsyntax#} variables.</li>
          <li>All {#syntax#}if{#endsyntax#}, {#syntax#}while{#endsyntax#}, {#syntax#}for{#endsyntax#}, and {#syntax#}switch{#endsyntax#}
          expressions are evaluated at compile-time, or emit a compile error if this is not possible.</li>
          <li>All {#syntax#}return{#endsyntax#} and {#syntax#}try{#endsyntax#} expressions are invalid (unless the function itself is called at compile-time).</li>
          <li>All code with runtime side effects or depending on runtime values emits a compile error.</li>
          <li>All function calls cause the compiler to interpret the function at compile-time, emitting a
          compile error if the function tries to do something that has global runtime side effects.</li>
      </ul>
      <p>
      This means that a programmer can create a function which is called both at compile-time and run-time, with
      no modification to the function required.
      </p>
      <p>
      Let's look at an example:
      </p>
      {#code|test_fibonacci_recursion.zig#}

      <p>
      Imagine if we had forgotten the base case of the recursive function and tried to run the tests:
      </p>
      {#code|test_fibonacci_comptime_overflow.zig#}

      <p>
      The compiler produces an error which is a stack trace from trying to evaluate the
      function at compile-time.
      </p>
      <p>
      Luckily, we used an unsigned integer, and so when we tried to subtract 1 from 0, it triggered
      {#link|Illegal Behavior#}, which is always a compile error if the compiler knows it happened.
      But what would have happened if we used a signed integer?
      </p>
      {#code|fibonacci_comptime_infinite_recursion.zig#}

      <p>
      The compiler is supposed to notice that evaluating this function at
      compile-time took more than 1000 branches, and thus emits an error and
      gives up. If the programmer wants to increase the budget for compile-time
      computation, they can use a built-in function called
      {#link|@setEvalBranchQuota#} to change the default number 1000 to
      something else.
      </p>
      <p>
      However, there is a <a href="https://github.com/ziglang/zig/issues/13724">design
      flaw in the compiler</a> causing it to stack overflow instead of having the proper
      behavior here. I'm terribly sorry about that. I hope to get this resolved
      before the next release.
      </p>
      <p>
      What if we fix the base case, but put the wrong value in the
      {#syntax#}expect{#endsyntax#} line?
      </p>
      {#code|test_fibonacci_comptime_unreachable.zig#}


      <p>
      At {#link|container|Containers#} level (outside of any function), all expressions are implicitly
      {#syntax#}comptime{#endsyntax#} expressions. This means that we can use functions to
      initialize complex static data. For example:
      </p>
      {#code|test_container-level_comptime_expressions.zig#}

      <p>
      When we compile this program, Zig generates the constants
      with the answer pre-computed. Here are the lines from the generated LLVM IR:
      </p>
      <pre><code class="llvm">@0 = internal unnamed_addr constant [25 x i32] [i32 2, i32 3, i32 5, i32 7, i32 11, i32 13, i32 17, i32 19, i32 23, i32 29, i32 31, i32 37, i32 41, i32 43, i32 47, i32 53, i32 59, i32 61, i32 67, i32 71, i32 73, i32 79, i32 83, i32 89, i32 97]
@1 = internal unnamed_addr constant i32 1060</code></pre>
      <p>
      Note that we did not have to do anything special with the syntax of these functions. For example,
      we could call the {#syntax#}sum{#endsyntax#} function as is with a slice of numbers whose length and values were
      only known at run-time.
      </p>
      {#header_close#}
      {#header_close#}
      {#header_open|Generic Data Structures#}
      <p>
      Zig uses comptime capabilities to implement generic data structures without introducing any
      special-case syntax.
      </p>
      <p>
			Here is an example of a generic {#syntax#}List{#endsyntax#} data structure.
      </p>
      {#code|generic_data_structure.zig#}

      <p>
      That's it. It's a function that returns an anonymous {#syntax#}struct{#endsyntax#}.
      For the purposes of error messages and debugging, Zig infers the name
      {#syntax#}"List(i32)"{#endsyntax#} from the function name and parameters invoked when creating
      the anonymous struct.
      </p>
      <p>
      To explicitly give a type a name, we assign it to a constant.
      </p>
      {#code|anonymous_struct_name.zig#}

      <p>
      In this example, the {#syntax#}Node{#endsyntax#} struct refers to itself.
      This works because all top level declarations are order-independent.
      As long as the compiler can determine the size of the struct, it is free to refer to itself.
      In this case, {#syntax#}Node{#endsyntax#} refers to itself as a pointer, which has a
      well-defined size at compile time, so it works fine.
      </p>
      {#header_close#}
      {#header_open|Case Study: print in Zig#}
      <p>
      Putting all of this together, let's see how {#syntax#}print{#endsyntax#} works in Zig.
      </p>
      {#code|print.zig#}


      <p>
      Let's crack open the implementation of this and see how it works:
      </p>

      {#code|poc_print_fn.zig#}

      <p>
      This is a proof of concept implementation; the actual function in the standard library has more
      formatting capabilities.
      </p>
      <p>
      Note that this is not hard-coded into the Zig compiler; this is userland code in the standard library.
      </p>
      <p>
      When this function is analyzed from our example code above, Zig partially evaluates the function
      and emits a function that actually looks like this:
      </p>
      {#syntax_block|zig|Emitted print Function#}
pub fn print(self: *Writer, arg0: []const u8, arg1: i32) !void {
    try self.write("here is a string: '");
    try self.printValue(arg0);
    try self.write("' here is a number: ");
    try self.printValue(arg1);
    try self.write("\n");
    try self.flush();
}
      {#end_syntax_block#}
      <p>
      {#syntax#}printValue{#endsyntax#} is a function that takes a parameter of any type, and does different things depending
      on the type:
      </p>
      {#code|poc_printValue_fn.zig#}

      <p>
      And now, what happens if we give too many arguments to {#syntax#}print{#endsyntax#}?
      </p>
      {#code|test_print_too_many_args.zig#}

      <p>
      Zig gives programmers the tools needed to protect themselves against their own mistakes.
      </p>
      <p>
      Zig doesn't care whether the format argument is a string literal,
      only that it is a compile-time known value that can be coerced to a {#syntax#}[]const u8{#endsyntax#}:
      </p>
      {#code|print_comptime-known_format.zig#}

      <p>
      This works fine.
      </p>
      <p>
      Zig does not special case string formatting in the compiler and instead exposes enough power to accomplish this
      task in userland. It does so without introducing another language on top of Zig, such as
      a macro language or a preprocessor language. It's Zig all the way down.
      </p>
      {#header_close#}
      {#see_also|inline while|inline for#}
      {#header_close#}
      {#header_open|Assembly#}
      <p>
      For some use cases, it may be necessary to directly control the machine code generated
      by Zig programs, rather than relying on Zig's code generation. For these cases, one
      can use inline assembly. Here is an example of implementing Hello, World on x86_64 Linux
      using inline assembly:
      </p>
      {#code|inline_assembly.zig#}

      <p>
      Dissecting the syntax:
      </p>
      {#code|Assembly Syntax Explained.zig#}

      <p>
      For x86 and x86_64 targets, the syntax is AT&amp;T syntax, rather than the more
      popular Intel syntax. This is due to technical constraints; assembly parsing is
      provided by LLVM and its support for Intel syntax is buggy and not well tested.
      </p>
      <p>
      Some day Zig may have its own assembler. This would allow it to integrate more seamlessly
      into the language, as well as be compatible with the popular NASM syntax. This documentation
      section will be updated before 1.0.0 is released, with a conclusive statement about the status
      of AT&amp;T vs Intel/NASM syntax.
      </p>
      {#header_open|Output Constraints#}
      <p>
      Output constraints are still considered to be unstable in Zig, and
      so
      <a href="http://releases.llvm.org/10.0.0/docs/LangRef.html#inline-asm-constraint-string">LLVM documentation</a>
      and
      <a href="https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html">GCC documentation</a>
      must be used to understand the semantics.
      </p>
      <p>
      Note that some breaking changes to output constraints are planned with
      <a href="https://github.com/ziglang/zig/issues/215">issue #215</a>.
      </p>
      {#header_close#}

      {#header_open|Input Constraints#}
      <p>
      Input constraints are still considered to be unstable in Zig, and
      so
      <a href="http://releases.llvm.org/10.0.0/docs/LangRef.html#inline-asm-constraint-string">LLVM documentation</a>
      and
      <a href="https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html">GCC documentation</a>
      must be used to understand the semantics.
      </p>
      <p>
      Note that some breaking changes to input constraints are planned with
      <a href="https://github.com/ziglang/zig/issues/215">issue #215</a>.
      </p>
      {#header_close#}

      {#header_open|Clobbers#}
      <p>
      Clobbers are the set of registers whose values will not be preserved by the execution of
      the assembly code. These do not include output or input registers. The special clobber
      value of {#syntax#}"memory"{#endsyntax#} means that the assembly causes writes to
      arbitrary undeclared memory locations - not only the memory pointed to by a declared
      indirect output.
      </p>
      <p>
      Failure to declare the full set of clobbers for a given inline assembly
      expression is unchecked {#link|Illegal Behavior#}.
      </p>
      {#header_close#}

      {#header_open|Global Assembly#}
      <p>
      When an assembly expression occurs in a {#link|container|Containers#} level {#link|comptime#} block, this is
      <strong>global assembly</strong>.
      </p>
      <p>
      This kind of assembly has different rules than inline assembly. First, {#syntax#}volatile{#endsyntax#}
      is not valid because all global assembly is unconditionally included.
      Second, there are no inputs, outputs, or clobbers. All global assembly is concatenated
      verbatim into one long string and assembled together. There are no template substitution rules regarding
      <code>%</code> as there are in inline assembly expressions.
      </p>
      {#code|test_global_assembly.zig#}

      {#header_close#}
      {#header_close#}

      {#header_open|Atomics#}
      <p>TODO: @atomic rmw</p>
      <p>TODO: builtin atomic memory ordering enum</p>

      {#see_also|@atomicLoad|@atomicStore|@atomicRmw|@cmpxchgWeak|@cmpxchgStrong#}

      {#header_close#}

      {#header_open|Async Functions#}
      <p>Async functions regressed with the release of 0.11.0. The current plan is to
      reintroduce them as a lower level primitive that powers I/O implementations.</p>
      <p>Tracking issue: <a href="https://github.com/ziglang/zig/issues/23446">Proposal: stackless coroutines as low-level primitives</a></p>
      {#header_close#}

      {#header_open|Builtin Functions|2col#}
      <p>
      Builtin functions are provided by the compiler and are prefixed with <code>@</code>.
      The {#syntax#}comptime{#endsyntax#} keyword on a parameter means that the parameter must be known
      at compile time.
      </p>
      {#header_open|@addrSpaceCast#}
      <pre>{#syntax#}@addrSpaceCast(ptr: anytype) anytype{#endsyntax#}</pre>
      <p>
      Converts a pointer from one address space to another. The new address space is inferred
			based on the result type. Depending on the current target and address spaces, this cast
			may be a no-op, a complex operation, or illegal. If the cast is legal, then the resulting
			pointer points to the same memory location as the pointer operand. It is always valid to
			cast a pointer between the same address spaces.
      </p>
      {#header_close#}
      {#header_open|@addWithOverflow#}
      <pre>{#syntax#}@addWithOverflow(a: anytype, b: anytype) struct { @TypeOf(a, b), u1 }{#endsyntax#}</pre>
      <p>
      Performs {#syntax#}a + b{#endsyntax#} and returns a tuple with the result and a possible overflow bit.
      </p>
      {#header_close#}
      {#header_open|@alignCast#}
      <pre>{#syntax#}@alignCast(ptr: anytype) anytype{#endsyntax#}</pre>
      <p>
      {#syntax#}ptr{#endsyntax#} can be {#syntax#}*T{#endsyntax#}, {#syntax#}?*T{#endsyntax#}, or {#syntax#}[]T{#endsyntax#}.
			Changes the alignment of a pointer. The alignment to use is inferred based on the result type.
      </p>
      <p>A {#link|pointer alignment safety check|Incorrect Pointer Alignment#} is added
      to the generated code to make sure the pointer is aligned as promised.</p>

      {#header_close#}
      {#header_open|@alignOf#}
      <pre>{#syntax#}@alignOf(comptime T: type) comptime_int{#endsyntax#}</pre>
      <p>
      This function returns the number of bytes that this type should be aligned to
      for the current target to match the C ABI. When the child type of a pointer has
      this alignment, the alignment can be omitted from the type.
      </p>
      <pre>{#syntax#}const assert = @import("std").debug.assert;
comptime {
    assert(*u32 == *align(@alignOf(u32)) u32);
}{#endsyntax#}</pre>
      <p>
      The result is a target-specific compile time constant. It is guaranteed to be
      less than or equal to {#link|@sizeOf(T)|@sizeOf#}.
      </p>
      {#see_also|Alignment#}
      {#header_close#}

      {#header_open|@as#}
      <pre>{#syntax#}@as(comptime T: type, expression) T{#endsyntax#}</pre>
      <p>
      Performs {#link|Type Coercion#}. This cast is allowed when the conversion is unambiguous and safe,
      and is the preferred way to convert between types, whenever possible.
      </p>
      {#header_close#}

      {#header_open|@atomicLoad#}
      <pre>{#syntax#}@atomicLoad(comptime T: type, ptr: *const T, comptime ordering: AtomicOrder) T{#endsyntax#}</pre>
      <p>
      This builtin function atomically dereferences a pointer to a {#syntax#}T{#endsyntax#} and returns the value.
      </p>
      <p>
      {#syntax#}T{#endsyntax#} must be a pointer, a {#syntax#}bool{#endsyntax#}, a float,
      an integer, an enum, or a packed struct.
      </p>
      <p>{#syntax#}AtomicOrder{#endsyntax#} can be found with {#syntax#}@import("std").builtin.AtomicOrder{#endsyntax#}.</p>
      {#see_also|@atomicStore|@atomicRmw||@cmpxchgWeak|@cmpxchgStrong#}
      {#header_close#}

      {#header_open|@atomicRmw#}
      <pre>{#syntax#}@atomicRmw(comptime T: type, ptr: *T, comptime op: AtomicRmwOp, operand: T, comptime ordering: AtomicOrder) T{#endsyntax#}</pre>
      <p>
      This builtin function dereferences a pointer to a {#syntax#}T{#endsyntax#} and atomically
      modifies the value and returns the previous value.
      </p>
      <p>
      {#syntax#}T{#endsyntax#} must be a pointer, a {#syntax#}bool{#endsyntax#}, a float,
      an integer, an enum, or a packed struct.
      </p>
      <p>{#syntax#}AtomicOrder{#endsyntax#} can be found with {#syntax#}@import("std").builtin.AtomicOrder{#endsyntax#}.</p>
      <p>{#syntax#}AtomicRmwOp{#endsyntax#} can be found with {#syntax#}@import("std").builtin.AtomicRmwOp{#endsyntax#}.</p>
      {#see_also|@atomicStore|@atomicLoad|@cmpxchgWeak|@cmpxchgStrong#}
      {#header_close#}

      {#header_open|@atomicStore#}
      <pre>{#syntax#}@atomicStore(comptime T: type, ptr: *T, value: T, comptime ordering: AtomicOrder) void{#endsyntax#}</pre>
      <p>
      This builtin function dereferences a pointer to a {#syntax#}T{#endsyntax#} and atomically stores the given value.
      </p>
      <p>
      {#syntax#}T{#endsyntax#} must be a pointer, a {#syntax#}bool{#endsyntax#}, a float,
      an integer, an enum, or a packed struct.
      </p>
      <p>{#syntax#}AtomicOrder{#endsyntax#} can be found with {#syntax#}@import("std").builtin.AtomicOrder{#endsyntax#}.</p>
      {#see_also|@atomicLoad|@atomicRmw|@cmpxchgWeak|@cmpxchgStrong#}
      {#header_close#}

      {#header_open|@bitCast#}
      <pre>{#syntax#}@bitCast(value: anytype) anytype{#endsyntax#}</pre>
      <p>
      Converts a value of one type to another type. The return type is the
			inferred result type.
      </p>
      <p>
      Asserts that {#syntax#}@sizeOf(@TypeOf(value)) == @sizeOf(DestType){#endsyntax#}.
      </p>
      <p>
      Asserts that {#syntax#}@typeInfo(DestType) != .pointer{#endsyntax#}. Use {#syntax#}@ptrCast{#endsyntax#} or {#syntax#}@ptrFromInt{#endsyntax#} if you need this.
      </p>
      <p>
      Can be used for these things for example:
      </p>
      <ul>
          <li>Convert {#syntax#}f32{#endsyntax#} to {#syntax#}u32{#endsyntax#} bits</li>
          <li>Convert {#syntax#}i32{#endsyntax#} to {#syntax#}u32{#endsyntax#} preserving twos complement</li>
      </ul>
      <p>
      Works at compile-time if {#syntax#}value{#endsyntax#} is known at compile time. It's a compile error to bitcast a value of undefined layout; this means that, besides the restriction from types which possess dedicated casting builtins (enums, pointers, error sets), bare structs, error unions, slices, optionals, and any other type without a well-defined memory layout, also cannot be used in this operation.
      </p>
      {#header_close#}

      {#header_open|@bitOffsetOf#}
      <pre>{#syntax#}@bitOffsetOf(comptime T: type, comptime field_name: []const u8) comptime_int{#endsyntax#}</pre>
      <p>
      Returns the bit offset of a field relative to its containing struct.
      </p>
      <p>
      For non {#link|packed structs|packed struct#}, this will always be divisible by {#syntax#}8{#endsyntax#}.
      For packed structs, non-byte-aligned fields will share a byte offset, but they will have different
      bit offsets.
      </p>
      {#see_also|@offsetOf#}
      {#header_close#}

      {#header_open|@bitSizeOf#}
      <pre>{#syntax#}@bitSizeOf(comptime T: type) comptime_int{#endsyntax#}</pre>
      <p>
      This function returns the number of bits it takes to store {#syntax#}T{#endsyntax#} in memory if the type
      were a field in a packed struct/union.
      The result is a target-specific compile time constant.
      </p>
      <p>
      This function measures the size at runtime. For types that are disallowed at runtime, such as
      {#syntax#}comptime_int{#endsyntax#} and {#syntax#}type{#endsyntax#}, the result is {#syntax#}0{#endsyntax#}.
      </p>
      {#see_also|@sizeOf|@typeInfo#}
      {#header_close#}

      {#header_open|@branchHint#}
      <pre>{#syntax#}@branchHint(hint: BranchHint) void{#endsyntax#}</pre>
      <p>Hints to the optimizer how likely a given branch of control flow is to be reached.</p>
      <p>{#syntax#}BranchHint{#endsyntax#} can be found with {#syntax#}@import("std").builtin.BranchHint{#endsyntax#}.</p>
      <p>This function is only valid as the first statement in a control flow branch, or the first statement in a function.</p>
      {#header_close#}

      {#header_open|@breakpoint#}
      <pre>{#syntax#}@breakpoint() void{#endsyntax#}</pre>
      <p>
      This function inserts a platform-specific debug trap instruction which causes
      debuggers to break there.
      Unlike for {#syntax#}@trap(){#endsyntax#}, execution may continue after this point if the program is resumed.
      </p>
      <p>
      This function is only valid within function scope.
      </p>
      {#see_also|@trap#}
      {#header_close#}

      {#header_open|@mulAdd#}
      <pre>{#syntax#}@mulAdd(comptime T: type, a: T, b: T, c: T) T{#endsyntax#}</pre>
      <p>
      Fused multiply-add, similar to {#syntax#}(a * b) + c{#endsyntax#}, except
      only rounds once, and is thus more accurate.
      </p>
      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}

      {#header_open|@byteSwap#}
      <pre>{#syntax#}@byteSwap(operand: anytype) T{#endsyntax#}</pre>
      <p>{#syntax#}@TypeOf(operand){#endsyntax#} must be an integer type or an integer vector type with bit count evenly divisible by 8.</p>
      <p>{#syntax#}operand{#endsyntax#} may be an {#link|integer|Integers#} or {#link|vector|Vectors#}.</p>
      <p>
      Swaps the byte order of the integer. This converts a big endian integer to a little endian integer,
      and converts a little endian integer to a big endian integer.
      </p>
      <p>
      Note that for the purposes of memory layout with respect to endianness, the integer type should be
      related to the number of bytes reported by {#link|@sizeOf#} bytes. This is demonstrated with
      {#syntax#}u24{#endsyntax#}. {#syntax#}@sizeOf(u24) == 4{#endsyntax#}, which means that a
      {#syntax#}u24{#endsyntax#} stored in memory takes 4 bytes, and those 4 bytes are what are swapped on
      a little vs big endian system. On the other hand, if {#syntax#}T{#endsyntax#} is specified to
      be {#syntax#}u24{#endsyntax#}, then only 3 bytes are reversed.
      </p>
      {#header_close#}

      {#header_open|@bitReverse#}
      <pre>{#syntax#}@bitReverse(integer: anytype) T{#endsyntax#}</pre>
      <p>{#syntax#}@TypeOf(anytype){#endsyntax#} accepts any integer type or integer vector type.</p>
      <p>
      Reverses the bitpattern of an integer value, including the sign bit if applicable.
      </p>
      <p>
      For example 0b10110110 ({#syntax#}u8 = 182{#endsyntax#}, {#syntax#}i8 = -74{#endsyntax#})
      becomes 0b01101101 ({#syntax#}u8 = 109{#endsyntax#}, {#syntax#}i8 = 109{#endsyntax#}).
      </p>
      {#header_close#}

      {#header_open|@offsetOf#}
      <pre>{#syntax#}@offsetOf(comptime T: type, comptime field_name: []const u8) comptime_int{#endsyntax#}</pre>
      <p>
      Returns the byte offset of a field relative to its containing struct.
      </p>
      {#see_also|@bitOffsetOf#}
      {#header_close#}

      {#header_open|@call#}
      <pre>{#syntax#}@call(modifier: std.builtin.CallModifier, function: anytype, args: anytype) anytype{#endsyntax#}</pre>
      <p>
      Calls a function, in the same way that invoking an expression with parentheses does:
      </p>
      {#code|test_call_builtin.zig#}

      <p>
      {#syntax#}@call{#endsyntax#} allows more flexibility than normal function call syntax does. The
      {#syntax#}CallModifier{#endsyntax#} enum is reproduced here:
      </p>
      {#code|builtin.CallModifier struct.zig#}

      {#header_close#}

      {#header_open|@cDefine#}
      <pre>{#syntax#}@cDefine(comptime name: []const u8, value) void{#endsyntax#}</pre>
      <p>
      This function can only occur inside {#syntax#}@cImport{#endsyntax#}.
      </p>
      <p>
      This appends <code>#define $name $value</code> to the {#syntax#}@cImport{#endsyntax#}
      temporary buffer.
      </p>
      <p>
      To define without a value, like this:
      </p>
      <pre><code class="c">#define _GNU_SOURCE</code></pre>
      <p>
      Use the void value, like this:
      </p>
      <pre>{#syntax#}@cDefine("_GNU_SOURCE", {}){#endsyntax#}</pre>
      {#see_also|Import from C Header File|@cInclude|@cImport|@cUndef|void#}
      {#header_close#}
      {#header_open|@cImport#}
      <pre>{#syntax#}@cImport(expression) type{#endsyntax#}</pre>
      <p>
      This function parses C code and imports the functions, types, variables,
      and compatible macro definitions into a new empty struct type, and then
      returns that type.
      </p>
      <p>
      {#syntax#}expression{#endsyntax#} is interpreted at compile time. The builtin functions
          {#syntax#}@cInclude{#endsyntax#}, {#syntax#}@cDefine{#endsyntax#}, and {#syntax#}@cUndef{#endsyntax#} work
      within this expression, appending to a temporary buffer which is then parsed as C code.
      </p>
      <p>
      Usually you should only have one {#syntax#}@cImport{#endsyntax#} in your entire application, because it saves the compiler
      from invoking clang multiple times, and prevents inline functions from being duplicated.
      </p>
      <p>
      Reasons for having multiple {#syntax#}@cImport{#endsyntax#} expressions would be:
      </p>
      <ul>
          <li>To avoid a symbol collision, for example if foo.h and bar.h both <code>#define CONNECTION_COUNT</code></li>
        <li>To analyze the C code with different preprocessor defines</li>
      </ul>
      {#see_also|Import from C Header File|@cInclude|@cDefine|@cUndef#}
      {#header_close#}
      {#header_open|@cInclude#}
      <pre>{#syntax#}@cInclude(comptime path: []const u8) void{#endsyntax#}</pre>
      <p>
      This function can only occur inside {#syntax#}@cImport{#endsyntax#}.
      </p>
      <p>
      This appends <code>#include &lt;$path&gt;\n</code> to the {#syntax#}c_import{#endsyntax#}
      temporary buffer.
      </p>
      {#see_also|Import from C Header File|@cImport|@cDefine|@cUndef#}
      {#header_close#}

      {#header_open|@clz#}
      <pre>{#syntax#}@clz(operand: anytype) anytype{#endsyntax#}</pre>
      <p>{#syntax#}@TypeOf(operand){#endsyntax#} must be an integer type or an integer vector type.</p>
      <p>{#syntax#}operand{#endsyntax#} may be an {#link|integer|Integers#} or {#link|vector|Vectors#}.</p>
      <p>
      Counts the number of most-significant (leading in a big-endian sense) zeroes in an integer - "count leading zeroes".
      </p>
      <p>
      The return type is an unsigned integer or vector of unsigned integers with the minimum number
      of bits that can represent the bit count of the integer type.
      </p>
      <p>
      If {#syntax#}operand{#endsyntax#} is zero, {#syntax#}@clz{#endsyntax#} returns the bit width
      of integer type {#syntax#}T{#endsyntax#}.
      </p>
      {#see_also|@ctz|@popCount#}
      {#header_close#}

      {#header_open|@cmpxchgStrong#}
      <pre>{#syntax#}@cmpxchgStrong(comptime T: type, ptr: *T, expected_value: T, new_value: T, success_order: AtomicOrder, fail_order: AtomicOrder) ?T{#endsyntax#}</pre>
      <p>
      This function performs a strong atomic compare-and-exchange operation, returning {#syntax#}null{#endsyntax#}
      if the current value is the given expected value. It's the equivalent of this code,
      except atomic:
      </p>
      {#code|not_atomic_cmpxchgStrong.zig#}

      <p>
      If you are using cmpxchg in a retry loop, {#link|@cmpxchgWeak#} is the better choice, because it can be implemented
      more efficiently in machine instructions.
      </p>
      <p>
      {#syntax#}T{#endsyntax#} must be a pointer, a {#syntax#}bool{#endsyntax#},
      an integer, an enum, or a packed struct.
      </p>
      <p>{#syntax#}@typeInfo(@TypeOf(ptr)).pointer.alignment{#endsyntax#} must be {#syntax#}>= @sizeOf(T).{#endsyntax#}</p>
      <p>{#syntax#}AtomicOrder{#endsyntax#} can be found with {#syntax#}@import("std").builtin.AtomicOrder{#endsyntax#}.</p>
      {#see_also|@atomicStore|@atomicLoad|@atomicRmw|@cmpxchgWeak#}
      {#header_close#}

      {#header_open|@cmpxchgWeak#}
      <pre>{#syntax#}@cmpxchgWeak(comptime T: type, ptr: *T, expected_value: T, new_value: T, success_order: AtomicOrder, fail_order: AtomicOrder) ?T{#endsyntax#}</pre>
      <p>
      This function performs a weak atomic compare-and-exchange operation, returning {#syntax#}null{#endsyntax#}
      if the current value is the given expected value. It's the equivalent of this code,
      except atomic:
      </p>
      {#syntax_block|zig|cmpxchgWeakButNotAtomic#}
fn cmpxchgWeakButNotAtomic(comptime T: type, ptr: *T, expected_value: T, new_value: T) ?T {
    const old_value = ptr.*;
    if (old_value == expected_value and usuallyTrueButSometimesFalse()) {
        ptr.* = new_value;
        return null;
    } else {
        return old_value;
    }
}
      {#end_syntax_block#}
      <p>
      If you are using cmpxchg in a retry loop, the sporadic failure will be no problem, and {#syntax#}cmpxchgWeak{#endsyntax#}
      is the better choice, because it can be implemented more efficiently in machine instructions.
      However if you need a stronger guarantee, use {#link|@cmpxchgStrong#}.
      </p>
      <p>
      {#syntax#}T{#endsyntax#} must be a pointer, a {#syntax#}bool{#endsyntax#},
      an integer, an enum, or a packed struct.
      </p>
      <p>{#syntax#}@typeInfo(@TypeOf(ptr)).pointer.alignment{#endsyntax#} must be {#syntax#}>= @sizeOf(T).{#endsyntax#}</p>
      <p>{#syntax#}AtomicOrder{#endsyntax#} can be found with {#syntax#}@import("std").builtin.AtomicOrder{#endsyntax#}.</p>
      {#see_also|@atomicStore|@atomicLoad|@atomicRmw|@cmpxchgStrong#}
      {#header_close#}

      {#header_open|@compileError#}
      <pre>{#syntax#}@compileError(comptime msg: []const u8) noreturn{#endsyntax#}</pre>
      <p>
      This function, when semantically analyzed, causes a compile error with the
      message {#syntax#}msg{#endsyntax#}.
      </p>
      <p>
      There are several ways that code avoids being semantically checked, such as
      using {#syntax#}if{#endsyntax#} or {#syntax#}switch{#endsyntax#} with compile time constants,
              and {#syntax#}comptime{#endsyntax#} functions.
      </p>
      {#header_close#}

      {#header_open|@compileLog#}
      <pre>{#syntax#}@compileLog(...) void{#endsyntax#}</pre>
      <p>
      This function prints the arguments passed to it at compile-time.
      </p>
      <p>
      To prevent accidentally leaving compile log statements in a codebase,
      a compilation error is added to the build, pointing to the compile
      log statement. This error prevents code from being generated, but
      does not otherwise interfere with analysis.
      </p>
      <p>
      This function can be used to do "printf debugging" on
      compile-time executing code.
      </p>
      {#code|test_compileLog_builtin.zig#}

      {#header_close#}

      {#header_open|@constCast#}
      <pre>{#syntax#}@constCast(value: anytype) DestType{#endsyntax#}</pre>
      <p>
      Remove {#syntax#}const{#endsyntax#} qualifier from a pointer.
      </p>
      {#header_close#}

      {#header_open|@ctz#}
      <pre>{#syntax#}@ctz(operand: anytype) anytype{#endsyntax#}</pre>
      <p>{#syntax#}@TypeOf(operand){#endsyntax#} must be an integer type or an integer vector type.</p>
      <p>{#syntax#}operand{#endsyntax#} may be an {#link|integer|Integers#} or {#link|vector|Vectors#}.</p>
      <p>
      Counts the number of least-significant (trailing in a big-endian sense) zeroes in an integer - "count trailing zeroes".
      </p>
      <p>
      The return type is an unsigned integer or vector of unsigned integers with the minimum number
      of bits that can represent the bit count of the integer type.
      </p>
      <p>
      If {#syntax#}operand{#endsyntax#} is zero, {#syntax#}@ctz{#endsyntax#} returns
      the bit width of integer type {#syntax#}T{#endsyntax#}.
      </p>
      {#see_also|@clz|@popCount#}
      {#header_close#}

      {#header_open|@cUndef#}
      <pre>{#syntax#}@cUndef(comptime name: []const u8) void{#endsyntax#}</pre>
      <p>
      This function can only occur inside {#syntax#}@cImport{#endsyntax#}.
      </p>
      <p>
      This appends <code>#undef $name</code> to the {#syntax#}@cImport{#endsyntax#}
      temporary buffer.
      </p>
      {#see_also|Import from C Header File|@cImport|@cDefine|@cInclude#}
      {#header_close#}

      {#header_open|@cVaArg#}
      <pre>{#syntax#}@cVaArg(operand: *std.builtin.VaList, comptime T: type) T{#endsyntax#}</pre>
      <p>
      Implements the C macro {#syntax#}va_arg{#endsyntax#}.
      </p>
      {#see_also|@cVaCopy|@cVaEnd|@cVaStart#}
      {#header_close#}
      {#header_open|@cVaCopy#}
      <pre>{#syntax#}@cVaCopy(src: *std.builtin.VaList) std.builtin.VaList{#endsyntax#}</pre>
      <p>
      Implements the C macro {#syntax#}va_copy{#endsyntax#}.
      </p>
      {#see_also|@cVaArg|@cVaEnd|@cVaStart#}
      {#header_close#}
      {#header_open|@cVaEnd#}
      <pre>{#syntax#}@cVaEnd(src: *std.builtin.VaList) void{#endsyntax#}</pre>
      <p>
      Implements the C macro {#syntax#}va_end{#endsyntax#}.
      </p>
      {#see_also|@cVaArg|@cVaCopy|@cVaStart#}
      {#header_close#}
      {#header_open|@cVaStart#}
      <pre>{#syntax#}@cVaStart() std.builtin.VaList{#endsyntax#}</pre>
      <p>
      Implements the C macro {#syntax#}va_start{#endsyntax#}. Only valid inside a variadic function.
      </p>
      {#see_also|@cVaArg|@cVaCopy|@cVaEnd#}
      {#header_close#}

      {#header_open|@divExact#}
      <pre>{#syntax#}@divExact(numerator: T, denominator: T) T{#endsyntax#}</pre>
      <p>
      Exact division. Caller guarantees {#syntax#}denominator != 0{#endsyntax#} and
          {#syntax#}@divTrunc(numerator, denominator) * denominator == numerator{#endsyntax#}.
      </p>
      <ul>
          <li>{#syntax#}@divExact(6, 3) == 2{#endsyntax#}</li>
          <li>{#syntax#}@divExact(a, b) * b == a{#endsyntax#}</li>
      </ul>
      <p>For a function that returns a possible error code, use {#syntax#}@import("std").math.divExact{#endsyntax#}.</p>
      {#see_also|@divTrunc|@divFloor#}
      {#header_close#}
      {#header_open|@divFloor#}
      <pre>{#syntax#}@divFloor(numerator: T, denominator: T) T{#endsyntax#}</pre>
      <p>
      Floored division. Rounds toward negative infinity. For unsigned integers it is
      the same as {#syntax#}numerator / denominator{#endsyntax#}. Caller guarantees {#syntax#}denominator != 0{#endsyntax#} and
              {#syntax#}!(@typeInfo(T) == .int and T.is_signed and numerator == std.math.minInt(T) and denominator == -1){#endsyntax#}.
      </p>
      <ul>
          <li>{#syntax#}@divFloor(-5, 3) == -2{#endsyntax#}</li>
          <li>{#syntax#}(@divFloor(a, b) * b) + @mod(a, b) == a{#endsyntax#}</li>
      </ul>
      <p>For a function that returns a possible error code, use {#syntax#}@import("std").math.divFloor{#endsyntax#}.</p>
      {#see_also|@divTrunc|@divExact#}
      {#header_close#}
      {#header_open|@divTrunc#}
      <pre>{#syntax#}@divTrunc(numerator: T, denominator: T) T{#endsyntax#}</pre>
      <p>
      Truncated division. Rounds toward zero. For unsigned integers it is
      the same as {#syntax#}numerator / denominator{#endsyntax#}. Caller guarantees {#syntax#}denominator != 0{#endsyntax#} and
              {#syntax#}!(@typeInfo(T) == .int and T.is_signed and numerator == std.math.minInt(T) and denominator == -1){#endsyntax#}.
      </p>
      <ul>
          <li>{#syntax#}@divTrunc(-5, 3) == -1{#endsyntax#}</li>
          <li>{#syntax#}(@divTrunc(a, b) * b) + @rem(a, b) == a{#endsyntax#}</li>
      </ul>
      <p>For a function that returns a possible error code, use {#syntax#}@import("std").math.divTrunc{#endsyntax#}.</p>
      {#see_also|@divFloor|@divExact#}
      {#header_close#}

      {#header_open|@embedFile#}
      <pre>{#syntax#}@embedFile(comptime path: []const u8) *const [N:0]u8{#endsyntax#}</pre>
      <p>
      This function returns a compile time constant pointer to null-terminated,
      fixed-size array with length equal to the byte count of the file given by
      {#syntax#}path{#endsyntax#}. The contents of the array are the contents of the file.
      This is equivalent to a {#link|string literal|String Literals and Unicode Code Point Literals#}
      with the file contents.
      </p>
      <p>
      {#syntax#}path{#endsyntax#} is absolute or relative to the current file, just like {#syntax#}@import{#endsyntax#}.
      </p>
      {#see_also|@import#}
      {#header_close#}

      {#header_open|@enumFromInt#}
      <pre>{#syntax#}@enumFromInt(integer: anytype) anytype{#endsyntax#}</pre>
      <p>
      Converts an integer into an {#link|enum#} value. The return type is the inferred result type.
      </p>
      <p>
      Attempting to convert an integer with no corresponding value in the enum invokes
      safety-checked {#link|Illegal Behavior#}.
      Note that a {#link|non-exhaustive enum|Non-exhaustive enum#} has corresponding values for all
      integers in the enum's integer tag type: the {#syntax#}_{#endsyntax#} value represents all
      the remaining unnamed integers in the enum's tag type.
      </p>
      {#see_also|@intFromEnum#}
      {#header_close#}

      {#header_open|@errorFromInt#}
      <pre>{#syntax#}@errorFromInt(value: std.meta.Int(.unsigned, @bitSizeOf(anyerror))) anyerror{#endsyntax#}</pre>
      <p>
      Converts from the integer representation of an error into {#link|The Global Error Set#} type.
      </p>
      <p>
      It is generally recommended to avoid this
      cast, as the integer representation of an error is not stable across source code changes.
      </p>
      <p>
      Attempting to convert an integer that does not correspond to any error results in
      safety-checked {#link|Illegal Behavior#}.
      </p>
      {#see_also|@intFromError#}
      {#header_close#}

      {#header_open|@errorName#}
      <pre>{#syntax#}@errorName(err: anyerror) [:0]const u8{#endsyntax#}</pre>
      <p>
      This function returns the string representation of an error. The string representation
      of {#syntax#}error.OutOfMem{#endsyntax#} is {#syntax#}"OutOfMem"{#endsyntax#}.
      </p>
      <p>
      If there are no calls to {#syntax#}@errorName{#endsyntax#} in an entire application,
      or all calls have a compile-time known value for {#syntax#}err{#endsyntax#}, then no
      error name table will be generated.
      </p>
      {#header_close#}

      {#header_open|@errorReturnTrace#}
      <pre>{#syntax#}@errorReturnTrace() ?*builtin.StackTrace{#endsyntax#}</pre>
      <p>
      If the binary is built with error return tracing, and this function is invoked in a
      function that calls a function with an error or error union return type, returns a
      stack trace object. Otherwise returns {#link|null#}.
      </p>
      {#header_close#}

      {#header_open|@errorCast#}
      <pre>{#syntax#}@errorCast(value: anytype) anytype{#endsyntax#}</pre>
      <p>
      Converts an error set or error union value from one error set to another error set. The return type is the
			inferred result type. Attempting to convert an error which is not in the destination error
			set results in safety-checked {#link|Illegal Behavior#}.
      </p>
      {#header_close#}

      {#header_open|@export#}
      <pre>{#syntax#}@export(comptime ptr: *const anyopaque, comptime options: std.builtin.ExportOptions) void{#endsyntax#}</pre>
      <p>Creates a symbol in the output object file which refers to the target of <code>ptr</code>.</p>
      <p><code>ptr</code> must point to a global variable or a comptime-known constant.</p>
      <p>
      This builtin can be called from a {#link|comptime#} block to conditionally export symbols.
      When <code>ptr</code> points to a function with the C calling convention and
      {#syntax#}options.linkage{#endsyntax#} is {#syntax#}.strong{#endsyntax#}, this is equivalent to
      the {#syntax#}export{#endsyntax#} keyword used on a function:
      </p>
      {#code|export_builtin.zig#}

      <p>This is equivalent to:</p>
      {#code|export_builtin_equivalent_code.zig#}

      <p>Note that even when using {#syntax#}export{#endsyntax#}, the {#syntax#}@"foo"{#endsyntax#} syntax for
      {#link|identifiers|Identifiers#} can be used to choose any string for the symbol name:</p>
      {#code|export_any_symbol_name.zig#}

      <p>
      When looking at the resulting object, you can see the symbol is used verbatim:
      </p>
      <pre><code>00000000000001f0 T A function name that is a complete sentence.</code></pre>
      {#see_also|Exporting a C Library#}
      {#header_close#}

      {#header_open|@extern#}
      <pre>{#syntax#}@extern(T: type, comptime options: std.builtin.ExternOptions) T{#endsyntax#}</pre>
      <p>
      Creates a reference to an external symbol in the output object file.
      T must be a pointer type.
      </p>
      {#see_also|@export#}
      {#header_close#}

      {#header_open|@field#}
      <pre>{#syntax#}@field(lhs: anytype, comptime field_name: []const u8) (field){#endsyntax#}</pre>
      <p>Performs field access by a compile-time string. Works on both fields and declarations.
      </p>
      {#code|test_field_builtin.zig#}


      {#header_close#}

      {#header_open|@fieldParentPtr#}
      <pre>{#syntax#}@fieldParentPtr(comptime field_name: []const u8, field_ptr: *T) anytype{#endsyntax#}</pre>
      <p>
      Given a pointer to a struct or union field, returns a pointer to the struct or union containing that field.
      The return type (pointer to the parent struct or union in question) is the inferred result type.
      </p>
      <p>
      If {#syntax#}field_ptr{#endsyntax#} does not point to the {#syntax#}field_name{#endsyntax#} field of an instance of
      the result type, and the result type has ill-defined layout, invokes unchecked {#link|Illegal Behavior#}.
      </p>
      {#header_close#}

      {#header_open|@FieldType#}
      <pre>{#syntax#}@FieldType(comptime Type: type, comptime field_name: []const u8) type{#endsyntax#}</pre>
      <p>
      Given a type and the name of one of its fields, returns the type of that field.
      </p>
      {#header_close#}

      {#header_open|@floatCast#}
      <pre>{#syntax#}@floatCast(value: anytype) anytype{#endsyntax#}</pre>
      <p>
      Convert from one float type to another. This cast is safe, but may cause the
      numeric value to lose precision. The return type is the inferred result type.
      </p>
      {#header_close#}

      {#header_open|@floatFromInt#}
      <pre>{#syntax#}@floatFromInt(int: anytype) anytype{#endsyntax#}</pre>
      <p>
      Converts an integer to the closest floating point representation. The return type is the inferred result type.
			To convert the other way, use {#link|@intFromFloat#}. This operation is legal
      for all values of all integer types.
      </p>
      {#header_close#}

      {#header_open|@frameAddress#}
      <pre>{#syntax#}@frameAddress() usize{#endsyntax#}</pre>
      <p>
      This function returns the base pointer of the current stack frame.
      </p>
      <p>
      The implications of this are target-specific and not consistent across all
      platforms. The frame address may not be available in release mode due to
      aggressive optimizations.
      </p>
      <p>
      This function is only valid within function scope.
      </p>
      {#header_close#}

      {#header_open|@hasDecl#}
      <pre>{#syntax#}@hasDecl(comptime Container: type, comptime name: []const u8) bool{#endsyntax#}</pre>
      <p>
      Returns whether or not a {#link|container|Containers#} has a declaration
      matching {#syntax#}name{#endsyntax#}.
      </p>
      {#code|test_hasDecl_builtin.zig#}

      {#see_also|@hasField#}
      {#header_close#}

      {#header_open|@hasField#}
      <pre>{#syntax#}@hasField(comptime Container: type, comptime name: []const u8) bool{#endsyntax#}</pre>
      <p>Returns whether the field name of a struct, union, or enum exists.</p>
      <p>
      The result is a compile time constant.
      </p>
      <p>
      It does not include functions, variables, or constants.
      </p>
      {#see_also|@hasDecl#}
      {#header_close#}

      {#header_open|@import#}
      <pre>{#syntax#}@import(comptime target: []const u8) anytype{#endsyntax#}</pre>
      <p>Imports the file at {#syntax#}target{#endsyntax#}, adding it to the compilation if it is not already
      added. {#syntax#}target{#endsyntax#} is either a relative path to another file from the file containing
      the {#syntax#}@import{#endsyntax#} call, or it is the name of a {#link|module|Compilation Model#}, with
      the import referring to the root source file of that module. Either way, the file path must end in
      either <code>.zig</code> (for a Zig source file) or <code>.zon</code> (for a ZON data file).</p>
      <p>If {#syntax#}target{#endsyntax#} refers to a Zig source file, then {#syntax#}@import{#endsyntax#} returns
      that file's {#link|corresponding struct type|Source File Structs#}, essentially as if the builtin call was
      replaced by {#syntax#}struct { FILE_CONTENTS }{#endsyntax#}. The return type is {#syntax#}type{#endsyntax#}.</p>
      <p>If {#syntax#}target{#endsyntax#} refers to a ZON file, then {#syntax#}@import{#endsyntax#} returns the value
      of the literal in the file. If there is an inferred {#link|result type|Result Types#}, then the return type
      is that type, and the ZON literal is interpreted as that type ({#link|Result Types#} are propagated through
      the ZON expression). Otherwise, the return type is the type of the equivalent Zig expression, essentially as
      if the builtin call was replaced by the ZON file contents.</p>
      <p>The following modules are always available for import:</p>
      <ul>
          <li>{#syntax#}@import("std"){#endsyntax#} - Zig Standard Library</li>
          <li>{#syntax#}@import("builtin"){#endsyntax#} - Target-specific information. The command <code>zig build-exe --show-builtin</code> outputs the source to stdout for reference.</li>
          <li>{#syntax#}@import("root"){#endsyntax#} - Alias for the root module. In typical project structures, this means it refers back to <code>src/main.zig</code>.
          </li>
      </ul>
      {#see_also|Compile Variables|@embedFile#}
      {#header_close#}

      {#header_open|@inComptime#}
      <pre>{#syntax#}@inComptime() bool{#endsyntax#}</pre>
      <p>
      Returns whether the builtin was run in a {#syntax#}comptime{#endsyntax#} context. The result is a compile-time constant.
      </p>
      <p>
      This can be used to provide alternative, comptime-friendly implementations of functions. It should not be used, for instance, to exclude certain functions from being evaluated at comptime.
      </p>
      {#see_also|comptime#}
      {#header_close#}

      {#header_open|@intCast#}
      <pre>{#syntax#}@intCast(int: anytype) anytype{#endsyntax#}</pre>
      <p>
      Converts an integer to another integer while keeping the same numerical value.
			The return type is the inferred result type.
      Attempting to convert a number which is out of range of the destination type results in
      safety-checked {#link|Illegal Behavior#}.
      </p>
      {#code|test_intCast_builtin.zig#}

      <p>
      To truncate the significant bits of a number out of range of the destination type, use {#link|@truncate#}.
      </p>
      <p>
      If {#syntax#}T{#endsyntax#} is {#syntax#}comptime_int{#endsyntax#},
      then this is semantically equivalent to {#link|Type Coercion#}.
      </p>
      {#header_close#}

      {#header_open|@intFromBool#}
      <pre>{#syntax#}@intFromBool(value: bool) u1{#endsyntax#}</pre>
      <p>
      Converts {#syntax#}true{#endsyntax#} to {#syntax#}@as(u1, 1){#endsyntax#} and {#syntax#}false{#endsyntax#} to
                  {#syntax#}@as(u1, 0){#endsyntax#}.
      </p>
      {#header_close#}

      {#header_open|@intFromEnum#}
      <pre>{#syntax#}@intFromEnum(enum_or_tagged_union: anytype) anytype{#endsyntax#}</pre>
      <p>
      Converts an enumeration value into its integer tag type. When a tagged union is passed,
      the tag value is used as the enumeration value.
      </p>
      <p>
      If there is only one possible enum value, the result is a {#syntax#}comptime_int{#endsyntax#}
      known at {#link|comptime#}.
      </p>
      {#see_also|@enumFromInt#}
      {#header_close#}

      {#header_open|@intFromError#}
      <pre>{#syntax#}@intFromError(err: anytype) std.meta.Int(.unsigned, @bitSizeOf(anyerror)){#endsyntax#}</pre>
      <p>
      Supports the following types:
      </p>
      <ul>
          <li>{#link|The Global Error Set#}</li>
          <li>{#link|Error Set Type#}</li>
          <li>{#link|Error Union Type#}</li>
      </ul>
      <p>
      Converts an error to the integer representation of an error.
      </p>
      <p>
      It is generally recommended to avoid this
      cast, as the integer representation of an error is not stable across source code changes.
      </p>
      {#see_also|@errorFromInt#}
      {#header_close#}

      {#header_open|@intFromFloat#}
      <pre>{#syntax#}@intFromFloat(float: anytype) anytype{#endsyntax#}</pre>
      <p>
      Converts the integer part of a floating point number to the inferred result type.
      </p>
      <p>
      If the integer part of the floating point number cannot fit in the destination type,
      it invokes safety-checked {#link|Illegal Behavior#}.
      </p>
      {#see_also|@floatFromInt#}
      {#header_close#}

      {#header_open|@intFromPtr#}
      <pre>{#syntax#}@intFromPtr(value: anytype) usize{#endsyntax#}</pre>
      <p>
      Converts {#syntax#}value{#endsyntax#} to a {#syntax#}usize{#endsyntax#} which is the address of the pointer.
      {#syntax#}value{#endsyntax#} can be {#syntax#}*T{#endsyntax#} or {#syntax#}?*T{#endsyntax#}.
      </p>
      <p>To convert the other way, use {#link|@ptrFromInt#}</p>
      {#header_close#}

      {#header_open|@max#}
      <pre>{#syntax#}@max(...) T{#endsyntax#}</pre>
      <p>
      Takes two or more arguments and returns the biggest value included (the maximum). This builtin accepts integers, floats, and vectors of either. In the latter case, the operation is performed element wise.
      </p>
      <p>
      NaNs are handled as follows: return the biggest non-NaN value included. If all operands are NaN, return NaN.
      </p>
      {#see_also|@min|Vectors#}
      {#header_close#}

      {#header_open|@memcpy#}
      <pre>{#syntax#}@memcpy(noalias dest, noalias source) void{#endsyntax#}</pre>
      <p>This function copies bytes from one region of memory to another.</p>
      <p>{#syntax#}dest{#endsyntax#} must be a mutable slice, a mutable pointer to an array, or
        a mutable many-item {#link|pointer|Pointers#}. It may have any
        alignment, and it may have any element type.</p>
      <p>{#syntax#}source{#endsyntax#} must be a slice, a pointer to
        an array, or a many-item {#link|pointer|Pointers#}. It may
        have any alignment, and it may have any element type.</p>
      <p>The {#syntax#}source{#endsyntax#} element type must have the same in-memory
        representation as the {#syntax#}dest{#endsyntax#} element type.</p>
      <p>Similar to {#link|for#} loops, at least one of {#syntax#}source{#endsyntax#} and
        {#syntax#}dest{#endsyntax#} must provide a length, and if two lengths are provided,
        they must be equal.</p>
      <p>Finally, the two memory regions must not overlap.</p>
      {#header_close#}

      {#header_open|@memset#}
      <pre>{#syntax#}@memset(dest, elem) void{#endsyntax#}</pre>
      <p>This function sets all the elements of a memory region to {#syntax#}elem{#endsyntax#}.</p>
      <p>{#syntax#}dest{#endsyntax#} must be a mutable slice or a mutable pointer to an array.
      It may have any alignment, and it may have any element type.</p>
      <p>{#syntax#}elem{#endsyntax#} is coerced to the element type of {#syntax#}dest{#endsyntax#}.</p>
      <p>For securely zeroing out sensitive contents from memory, you should use
      {#syntax#}std.crypto.secureZero{#endsyntax#}</p>
      {#header_close#}

      {#header_open|@memmove#}
      <pre>{#syntax#}@memmove(dest, source) void{#endsyntax#}</pre>
      <p>This function copies bytes from one region of memory to another, but unlike
      {#link|@memcpy#} the regions may overlap.</p>
      <p>{#syntax#}dest{#endsyntax#} must be a mutable slice, a mutable pointer to an array, or
        a mutable many-item {#link|pointer|Pointers#}. It may have any
        alignment, and it may have any element type.</p>
      <p>{#syntax#}source{#endsyntax#} must be a slice, a pointer to
        an array, or a many-item {#link|pointer|Pointers#}. It may
        have any alignment, and it may have any element type.</p>
      <p>The {#syntax#}source{#endsyntax#} element type must have the same in-memory
        representation as the {#syntax#}dest{#endsyntax#} element type.</p>
      <p>Similar to {#link|for#} loops, at least one of {#syntax#}source{#endsyntax#} and
        {#syntax#}dest{#endsyntax#} must provide a length, and if two lengths are provided,
        they must be equal.</p>
      {#header_close#}

      {#header_open|@min#}
      <pre>{#syntax#}@min(...) T{#endsyntax#}</pre>
      <p>
      Takes two or more arguments and returns the smallest value included (the minimum). This builtin accepts integers, floats, and vectors of either. In the latter case, the operation is performed element wise.
      </p>
      <p>
      NaNs are handled as follows: return the smallest non-NaN value included. If all operands are NaN, return NaN.
      </p>
      {#see_also|@max|Vectors#}
      {#header_close#}

      {#header_open|@wasmMemorySize#}
      <pre>{#syntax#}@wasmMemorySize(index: u32) usize{#endsyntax#}</pre>
      <p>
      This function returns the size of the Wasm memory identified by {#syntax#}index{#endsyntax#} as
      an unsigned value in units of Wasm pages. Note that each Wasm page is 64KB in size.
      </p>
      <p>
      This function is a low level intrinsic with no safety mechanisms usually useful for allocator
      designers targeting Wasm. So unless you are writing a new allocator from scratch, you should use
      something like {#syntax#}@import("std").heap.WasmPageAllocator{#endsyntax#}.
      </p>
      {#see_also|@wasmMemoryGrow#}
      {#header_close#}

      {#header_open|@wasmMemoryGrow#}
      <pre>{#syntax#}@wasmMemoryGrow(index: u32, delta: usize) isize{#endsyntax#}</pre>
      <p>
      This function increases the size of the Wasm memory identified by {#syntax#}index{#endsyntax#} by
      {#syntax#}delta{#endsyntax#} in units of unsigned number of Wasm pages. Note that each Wasm page
      is 64KB in size. On success, returns previous memory size; on failure, if the allocation fails,
      returns -1.
      </p>
      <p>
      This function is a low level intrinsic with no safety mechanisms usually useful for allocator
      designers targeting Wasm. So unless you are writing a new allocator from scratch, you should use
      something like {#syntax#}@import("std").heap.WasmPageAllocator{#endsyntax#}.
      </p>
      {#code|test_wasmMemoryGrow_builtin.zig#}

      {#see_also|@wasmMemorySize#}
      {#header_close#}

      {#header_open|@mod#}
      <pre>{#syntax#}@mod(numerator: T, denominator: T) T{#endsyntax#}</pre>
      <p>
      Modulus division. For unsigned integers this is the same as
      {#syntax#}numerator % denominator{#endsyntax#}. Caller guarantees {#syntax#}denominator != 0{#endsyntax#}, otherwise the
      operation will result in a {#link|Remainder Division by Zero#} when runtime safety checks are enabled.
      </p>
      <ul>
          <li>{#syntax#}@mod(-5, 3) == 1{#endsyntax#}</li>
          <li>{#syntax#}(@divFloor(a, b) * b) + @mod(a, b) == a{#endsyntax#}</li>
      </ul>
      <p>For a function that returns an error code, see {#syntax#}@import("std").math.mod{#endsyntax#}.</p>
      {#see_also|@rem#}
      {#header_close#}

      {#header_open|@mulWithOverflow#}
      <pre>{#syntax#}@mulWithOverflow(a: anytype, b: anytype) struct { @TypeOf(a, b), u1 }{#endsyntax#}</pre>
      <p>
      Performs {#syntax#}a * b{#endsyntax#} and returns a tuple with the result and a possible overflow bit.
      </p>
      {#header_close#}

      {#header_open|@panic#}
      <pre>{#syntax#}@panic(message: []const u8) noreturn{#endsyntax#}</pre>
      <p>
      Invokes the panic handler function. By default the panic handler function
      calls the public {#syntax#}panic{#endsyntax#} function exposed in the root source file, or
      if there is not one specified, the {#syntax#}std.builtin.default_panic{#endsyntax#}
      function from {#syntax#}std/builtin.zig{#endsyntax#}.
      </p>
      <p>Generally it is better to use {#syntax#}@import("std").debug.panic{#endsyntax#}.
          However, {#syntax#}@panic{#endsyntax#} can be useful for 2 scenarios:
      </p>
      <ul>
        <li>From library code, calling the programmer's panic function if they exposed one in the root source file.</li>
        <li>When mixing C and Zig code, calling the canonical panic implementation across multiple .o files.</li>
      </ul>
      {#see_also|Panic Handler#}
      {#header_close#}

      {#header_open|@popCount#}
      <pre>{#syntax#}@popCount(operand: anytype) anytype{#endsyntax#}</pre>
      <p>{#syntax#}@TypeOf(operand){#endsyntax#} must be an integer type.</p>
      <p>{#syntax#}operand{#endsyntax#} may be an {#link|integer|Integers#} or {#link|vector|Vectors#}.</p>
      <p>
      Counts the number of bits set in an integer - "population count".
      </p>
      <p>
      The return type is an unsigned integer or vector of unsigned integers with the minimum number
      of bits that can represent the bit count of the integer type.
      </p>
      {#see_also|@ctz|@clz#}
      {#header_close#}

      {#header_open|@prefetch#}
      <pre>{#syntax#}@prefetch(ptr: anytype, comptime options: PrefetchOptions) void{#endsyntax#}</pre>
      <p>
      This builtin tells the compiler to emit a prefetch instruction if supported by the
      target CPU. If the target CPU does not support the requested prefetch instruction,
      this builtin is a no-op. This function has no effect on the behavior of the program,
      only on the performance characteristics.
      </p>
      <p>
      The {#syntax#}ptr{#endsyntax#} argument may be any pointer type and determines the memory
      address to prefetch. This function does not dereference the pointer, it is perfectly legal
      to pass a pointer to invalid memory to this function and no Illegal Behavior will result.
      </p>
      <p>{#syntax#}PrefetchOptions{#endsyntax#} can be found with {#syntax#}@import("std").builtin.PrefetchOptions{#endsyntax#}.</p>
      {#header_close#}

      {#header_open|@ptrCast#}
      <pre>{#syntax#}@ptrCast(value: anytype) anytype{#endsyntax#}</pre>
      <p>
      Converts a pointer of one type to a pointer of another type. The return type is the inferred result type.
      </p>
      <p>
      {#link|Optional Pointers#} are allowed. Casting an optional pointer which is {#link|null#}
      to a non-optional pointer invokes safety-checked {#link|Illegal Behavior#}.
      </p>
      <p>
      {#syntax#}@ptrCast{#endsyntax#} cannot be used for:
      </p>
      <ul>
          <li>Removing {#syntax#}const{#endsyntax#} qualifier, use {#link|@constCast#}.</li>
          <li>Removing {#syntax#}volatile{#endsyntax#} qualifier, use {#link|@volatileCast#}.</li>
          <li>Changing pointer address space, use {#link|@addrSpaceCast#}.</li>
          <li>Increasing pointer alignment, use {#link|@alignCast#}.</li>
          <li>Casting a non-slice pointer to a slice, use slicing syntax {#syntax#}ptr[start..end]{#endsyntax#}.</li>
      </ul>
      {#header_close#}

      {#header_open|@ptrFromInt#}
      <pre>{#syntax#}@ptrFromInt(address: usize) anytype{#endsyntax#}</pre>
      <p>
      Converts an integer to a {#link|pointer|Pointers#}. The return type is the inferred result type.
			To convert the other way, use {#link|@intFromPtr#}. Casting an address of 0 to a destination type
      which in not {#link|optional|Optional Pointers#} and does not have the {#syntax#}allowzero{#endsyntax#} attribute will result in a
      {#link|Pointer Cast Invalid Null#} panic when runtime safety checks are enabled.
      </p>
      <p>
      If the destination pointer type does not allow address zero and {#syntax#}address{#endsyntax#}
      is zero, this invokes safety-checked {#link|Illegal Behavior#}.
      </p>
      {#header_close#}

      {#header_open|@rem#}
      <pre>{#syntax#}@rem(numerator: T, denominator: T) T{#endsyntax#}</pre>
      <p>
      Remainder division. For unsigned integers this is the same as
      {#syntax#}numerator % denominator{#endsyntax#}. Caller guarantees {#syntax#}denominator != 0{#endsyntax#}, otherwise the
      operation will result in a {#link|Remainder Division by Zero#} when runtime safety checks are enabled.
      </p>
      <ul>
          <li>{#syntax#}@rem(-5, 3) == -2{#endsyntax#}</li>
          <li>{#syntax#}(@divTrunc(a, b) * b) + @rem(a, b) == a{#endsyntax#}</li>
      </ul>
      <p>For a function that returns an error code, see {#syntax#}@import("std").math.rem{#endsyntax#}.</p>
      {#see_also|@mod#}
      {#header_close#}

      {#header_open|@returnAddress#}
      <pre>{#syntax#}@returnAddress() usize{#endsyntax#}</pre>
      <p>
      This function returns the address of the next machine code instruction that will be executed
      when the current function returns.
      </p>
      <p>
      The implications of this are target-specific and not consistent across
      all platforms.
      </p>
      <p>
      This function is only valid within function scope. If the function gets inlined into
      a calling function, the returned address will apply to the calling function.
      </p>
      {#header_close#}

      {#header_open|@select#}
      <pre>{#syntax#}@select(comptime T: type, pred: @Vector(len, bool), a: @Vector(len, T), b: @Vector(len, T)) @Vector(len, T){#endsyntax#}</pre>
      <p>
      Selects values element-wise from {#syntax#}a{#endsyntax#} or {#syntax#}b{#endsyntax#} based on {#syntax#}pred{#endsyntax#}. If {#syntax#}pred[i]{#endsyntax#} is {#syntax#}true{#endsyntax#}, the corresponding element in the result will be {#syntax#}a[i]{#endsyntax#} and otherwise {#syntax#}b[i]{#endsyntax#}.
      </p>
      {#see_also|Vectors#}
      {#header_close#}

      {#header_open|@setEvalBranchQuota#}
      <pre>{#syntax#}@setEvalBranchQuota(comptime new_quota: u32) void{#endsyntax#}</pre>
      <p>
      Increase the maximum number of backwards branches that compile-time code
      execution can use before giving up and making a compile error.
      </p>
      <p>
      If the {#syntax#}new_quota{#endsyntax#} is smaller than the default quota ({#syntax#}1000{#endsyntax#}) or
      a previously explicitly set quota, it is ignored.
      </p>
      <p>
      Example:
      </p>
      {#code|test_without_setEvalBranchQuota_builtin.zig#}

      <p>Now we use {#syntax#}@setEvalBranchQuota{#endsyntax#}:</p>
      {#code|test_setEvalBranchQuota_builtin.zig#}


      {#see_also|comptime#}
      {#header_close#}

      {#header_open|@setFloatMode#}
      <pre>{#syntax#}@setFloatMode(comptime mode: FloatMode) void{#endsyntax#}</pre>
      <p>Changes the current scope's rules about how floating point operations are defined.</p>
      <ul>
        <li>
            {#syntax#}Strict{#endsyntax#} (default) - Floating point operations follow strict IEEE compliance.
        </li>
        <li>
            {#syntax#}Optimized{#endsyntax#} - Floating point operations may do all of the following:
          <ul>
            <li>Assume the arguments and result are not NaN. Optimizations are required to retain legal behavior over NaNs, but the value of the result is undefined.</li>
            <li>Assume the arguments and result are not +/-Inf. Optimizations are required to retain legal behavior over +/-Inf, but the value of the result is undefined.</li>
            <li>Treat the sign of a zero argument or result as insignificant.</li>
            <li>Use the reciprocal of an argument rather than perform division.</li>
            <li>Perform floating-point contraction (e.g. fusing a multiply followed by an addition into a fused multiply-add).</li>
            <li>Perform algebraically equivalent transformations that may change results in floating point (e.g. reassociate).</li>
          </ul>
          This is equivalent to <code>-ffast-math</code> in GCC.
        </li>
      </ul>
      <p>
      The floating point mode is inherited by child scopes, and can be overridden in any scope.
      You can set the floating point mode in a struct or module scope by using a comptime block.
      </p>
      <p>{#syntax#}FloatMode{#endsyntax#} can be found with {#syntax#}@import("std").builtin.FloatMode{#endsyntax#}.</p>
      {#see_also|Floating Point Operations#}
      {#header_close#}

      {#header_open|@setRuntimeSafety#}
      <pre>{#syntax#}@setRuntimeSafety(comptime safety_on: bool) void{#endsyntax#}</pre>
      <p>
      Sets whether runtime safety checks are enabled for the scope that contains the function call.
      </p>
      {#code|test_setRuntimeSafety_builtin.zig#}

      <p>Note: it is <a href="https://github.com/ziglang/zig/issues/978">planned</a> to replace
      {#syntax#}@setRuntimeSafety{#endsyntax#} with <code>@optimizeFor</code></p>

      {#header_close#}

      {#header_open|@shlExact#}
      <pre>{#syntax#}@shlExact(value: T, shift_amt: Log2T) T{#endsyntax#}</pre>
      <p>
      Performs the left shift operation ({#syntax#}<<{#endsyntax#}).
      For unsigned integers, the result is {#link|undefined#} if any 1 bits
      are shifted out. For signed integers, the result is {#link|undefined#} if
      any bits that disagree with the resultant sign bit are shifted out.
      </p>
      <p>
      The type of {#syntax#}shift_amt{#endsyntax#} is an unsigned integer with {#syntax#}log2(@typeInfo(T).int.bits){#endsyntax#} bits.
      This is because {#syntax#}shift_amt >= @typeInfo(T).int.bits{#endsyntax#} triggers safety-checked {#link|Illegal Behavior#}.
      </p>
      <p>
      {#syntax#}comptime_int{#endsyntax#} is modeled as an integer with an infinite number of bits,
      meaning that in such case, {#syntax#}@shlExact{#endsyntax#} always produces a result and
      cannot produce a compile error.
      </p>
      {#see_also|@shrExact|@shlWithOverflow#}
      {#header_close#}

      {#header_open|@shlWithOverflow#}
      <pre>{#syntax#}@shlWithOverflow(a: anytype, shift_amt: Log2T) struct { @TypeOf(a), u1 }{#endsyntax#}</pre>
      <p>
      Performs {#syntax#}a << b{#endsyntax#} and returns a tuple with the result and a possible overflow bit.
      </p>
      <p>
      The type of {#syntax#}shift_amt{#endsyntax#} is an unsigned integer with {#syntax#}log2(@typeInfo(@TypeOf(a)).int.bits){#endsyntax#} bits.
      This is because {#syntax#}shift_amt >= @typeInfo(@TypeOf(a)).int.bits{#endsyntax#} triggers safety-checked {#link|Illegal Behavior#}.
      </p>
      {#see_also|@shlExact|@shrExact#}
      {#header_close#}

      {#header_open|@shrExact#}
      <pre>{#syntax#}@shrExact(value: T, shift_amt: Log2T) T{#endsyntax#}</pre>
      <p>
      Performs the right shift operation ({#syntax#}>>{#endsyntax#}). Caller guarantees
      that the shift will not shift any 1 bits out.
      </p>
      <p>
      The type of {#syntax#}shift_amt{#endsyntax#} is an unsigned integer with {#syntax#}log2(@typeInfo(T).int.bits){#endsyntax#} bits.
      This is because {#syntax#}shift_amt >= @typeInfo(T).int.bits{#endsyntax#} triggers safety-checked {#link|Illegal Behavior#}.
      </p>
      {#see_also|@shlExact|@shlWithOverflow#}
      {#header_close#}

      {#header_open|@shuffle#}
      <pre>{#syntax#}@shuffle(comptime E: type, a: @Vector(a_len, E), b: @Vector(b_len, E), comptime mask: @Vector(mask_len, i32)) @Vector(mask_len, E){#endsyntax#}</pre>
      <p>
      Constructs a new {#link|vector|Vectors#} by selecting elements from {#syntax#}a{#endsyntax#} and
      {#syntax#}b{#endsyntax#} based on {#syntax#}mask{#endsyntax#}.
      </p>
      <p>
      Each element in {#syntax#}mask{#endsyntax#} selects an element from either {#syntax#}a{#endsyntax#} or
      {#syntax#}b{#endsyntax#}. Positive numbers select from {#syntax#}a{#endsyntax#} starting at 0.
      Negative values select from {#syntax#}b{#endsyntax#}, starting at {#syntax#}-1{#endsyntax#} and going down.
      It is recommended to use the {#syntax#}~{#endsyntax#} operator for indexes from {#syntax#}b{#endsyntax#}
      so that both indexes can start from {#syntax#}0{#endsyntax#} (i.e. {#syntax#}~@as(i32, 0){#endsyntax#} is
      {#syntax#}-1{#endsyntax#}).
      </p>
      <p>
      For each element of {#syntax#}mask{#endsyntax#}, if it or the selected value from
      {#syntax#}a{#endsyntax#} or {#syntax#}b{#endsyntax#} is {#syntax#}undefined{#endsyntax#},
      then the resulting element is {#syntax#}undefined{#endsyntax#}.
      </p>
      <p>
      {#syntax#}a_len{#endsyntax#} and {#syntax#}b_len{#endsyntax#} may differ in length. Out-of-bounds element
      indexes in {#syntax#}mask{#endsyntax#} result in compile errors.
      </p>
      <p>
      If {#syntax#}a{#endsyntax#} or {#syntax#}b{#endsyntax#} is {#syntax#}undefined{#endsyntax#}, it
      is equivalent to a vector of all {#syntax#}undefined{#endsyntax#} with the same length as the other vector.
      If both vectors are {#syntax#}undefined{#endsyntax#}, {#syntax#}@shuffle{#endsyntax#} returns
      a vector with all elements {#syntax#}undefined{#endsyntax#}.
      </p>
      <p>
      {#syntax#}E{#endsyntax#} must be an {#link|integer|Integers#}, {#link|float|Floats#},
      {#link|pointer|Pointers#}, or {#syntax#}bool{#endsyntax#}. The mask may be any vector length, and its
      length determines the result length.
      </p>
      {#code|test_shuffle_builtin.zig#}

      {#see_also|Vectors#}
      {#header_close#}

      {#header_open|@sizeOf#}
      <pre>{#syntax#}@sizeOf(comptime T: type) comptime_int{#endsyntax#}</pre>
      <p>
      This function returns the number of bytes it takes to store {#syntax#}T{#endsyntax#} in memory.
      The result is a target-specific compile time constant.
      </p>
      <p>
      This size may contain padding bytes. If there were two consecutive T in memory, the padding would be the offset
      in bytes between element at index 0 and the element at index 1. For {#link|integer|Integers#},
      consider whether you want to use {#syntax#}@sizeOf(T){#endsyntax#} or
      {#syntax#}@typeInfo(T).int.bits{#endsyntax#}.
      </p>
      <p>
      This function measures the size at runtime. For types that are disallowed at runtime, such as
      {#syntax#}comptime_int{#endsyntax#} and {#syntax#}type{#endsyntax#}, the result is {#syntax#}0{#endsyntax#}.
      </p>
      {#see_also|@bitSizeOf|@typeInfo#}
      {#header_close#}

      {#header_open|@splat#}
      <pre>{#syntax#}@splat(scalar: anytype) anytype{#endsyntax#}</pre>
      <p>
      Produces an array or vector where each element is the value
      {#syntax#}scalar{#endsyntax#}. The return type and thus the length of the
      vector is inferred.
      </p>
      {#code|test_splat_builtin.zig#}

      <p>
      {#syntax#}scalar{#endsyntax#} must be an {#link|integer|Integers#}, {#link|bool|Primitive Types#},
      {#link|float|Floats#}, or {#link|pointer|Pointers#}.
      </p>
      {#see_also|Vectors|@shuffle#}
      {#header_close#}

      {#header_open|@reduce#}
      <pre>{#syntax#}@reduce(comptime op: std.builtin.ReduceOp, value: anytype) E{#endsyntax#}</pre>
      <p>
      Transforms a {#link|vector|Vectors#} into a scalar value (of type <code>E</code>)
      by performing a sequential horizontal reduction of its elements using the
      specified operator {#syntax#}op{#endsyntax#}.
      </p>
      <p>
      Not every operator is available for every vector element type:
      </p>
      <ul>
          <li>Every operator is available for {#link|integer|Integers#} vectors.</li>
          <li>{#syntax#}.And{#endsyntax#}, {#syntax#}.Or{#endsyntax#},
            {#syntax#}.Xor{#endsyntax#} are additionally available for
            {#syntax#}bool{#endsyntax#} vectors,</li>
          <li>{#syntax#}.Min{#endsyntax#}, {#syntax#}.Max{#endsyntax#},
            {#syntax#}.Add{#endsyntax#}, {#syntax#}.Mul{#endsyntax#} are
            additionally available for {#link|floating point|Floats#} vectors,</li>
      </ul>
      <p>
      Note that {#syntax#}.Add{#endsyntax#} and {#syntax#}.Mul{#endsyntax#}
      reductions on integral types are wrapping; when applied on floating point
      types the operation associativity is preserved, unless the float mode is
      set to {#syntax#}Optimized{#endsyntax#}.
      </p>
      {#code|test_reduce_builtin.zig#}

      {#see_also|Vectors|@setFloatMode#}
      {#header_close#}

      {#header_open|@src#}
      <pre>{#syntax#}@src() std.builtin.SourceLocation{#endsyntax#}</pre>
      <p>
      Returns a {#syntax#}SourceLocation{#endsyntax#} struct representing the function's name and location in the source code. This must be called in a function.
      </p>
      {#code|test_src_builtin.zig#}

      {#header_close#}
      {#header_open|@sqrt#}
      <pre>{#syntax#}@sqrt(value: anytype) @TypeOf(value){#endsyntax#}</pre>
      <p>
      Performs the square root of a floating point number. Uses a dedicated hardware instruction
      when available.
      </p>
      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}
      {#header_open|@sin#}
      <pre>{#syntax#}@sin(value: anytype) @TypeOf(value){#endsyntax#}</pre>
      <p>
      Sine trigonometric function on a floating point number in radians. Uses a dedicated hardware instruction
      when available.
      </p>
      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}

      {#header_open|@cos#}
      <pre>{#syntax#}@cos(value: anytype) @TypeOf(value){#endsyntax#}</pre>
      <p>
      Cosine trigonometric function on a floating point number in radians. Uses a dedicated hardware instruction
      when available.
      </p>
      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}

      {#header_open|@tan#}
      <pre>{#syntax#}@tan(value: anytype) @TypeOf(value){#endsyntax#}</pre>
      <p>
      Tangent trigonometric function on a floating point number in radians.
      Uses a dedicated hardware instruction when available.
      </p>
      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}

      {#header_open|@exp#}
      <pre>{#syntax#}@exp(value: anytype) @TypeOf(value){#endsyntax#}</pre>
      <p>
      Base-e exponential function on a floating point number. Uses a dedicated hardware instruction
      when available.
      </p>
      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}
      {#header_open|@exp2#}
      <pre>{#syntax#}@exp2(value: anytype) @TypeOf(value){#endsyntax#}</pre>
      <p>
      Base-2 exponential function on a floating point number. Uses a dedicated hardware instruction
      when available.
      </p>
      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}
      {#header_open|@log#}
      <pre>{#syntax#}@log(value: anytype) @TypeOf(value){#endsyntax#}</pre>
      <p>
      Returns the natural logarithm of a floating point number. Uses a dedicated hardware instruction
      when available.
      </p>
      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}
      {#header_open|@log2#}
      <pre>{#syntax#}@log2(value: anytype) @TypeOf(value){#endsyntax#}</pre>
      <p>
      Returns the logarithm to the base 2 of a floating point number. Uses a dedicated hardware instruction
      when available.
      </p>
      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}
      {#header_open|@log10#}
      <pre>{#syntax#}@log10(value: anytype) @TypeOf(value){#endsyntax#}</pre>
      <p>
      Returns the logarithm to the base 10 of a floating point number. Uses a dedicated hardware instruction
      when available.
      </p>
      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}
      {#header_open|@abs#}
      <pre>{#syntax#}@abs(value: anytype) anytype{#endsyntax#}</pre>
      <p>
      Returns the absolute value of an integer or a floating point number. Uses a dedicated hardware instruction
      when available.

      The return type is always an unsigned integer of the same bit width as the operand if the operand is an integer.
      Unsigned integer operands are supported. The builtin cannot overflow for signed integer operands.
      </p>
      <p>
      Supports {#link|Floats#}, {#link|Integers#} and {#link|Vectors#} of floats or integers.
      </p>
      {#header_close#}
      {#header_open|@floor#}
      <pre>{#syntax#}@floor(value: anytype) @TypeOf(value){#endsyntax#}</pre>
      <p>
      Returns the largest integral value not greater than the given floating point number.
      Uses a dedicated hardware instruction when available.
      </p>
      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}
      {#header_open|@ceil#}
      <pre>{#syntax#}@ceil(value: anytype) @TypeOf(value){#endsyntax#}</pre>
      <p>
      Returns the smallest integral value not less than the given floating point number.
      Uses a dedicated hardware instruction when available.
      </p>
      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}
      {#header_open|@trunc#}
      <pre>{#syntax#}@trunc(value: anytype) @TypeOf(value){#endsyntax#}</pre>
      <p>
      Rounds the given floating point number to an integer, towards zero.
      Uses a dedicated hardware instruction when available.
      </p>
      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}
      {#header_open|@round#}
      <pre>{#syntax#}@round(value: anytype) @TypeOf(value){#endsyntax#}</pre>
      <p>
      Rounds the given floating point number to the nearest integer. If two integers are equally close, rounds away from zero.
      Uses a dedicated hardware instruction when available.
      </p>
      {#code|test_round_builtin.zig#}

      <p>
      Supports {#link|Floats#} and {#link|Vectors#} of floats.
      </p>
      {#header_close#}

      {#header_open|@subWithOverflow#}
      <pre>{#syntax#}@subWithOverflow(a: anytype, b: anytype) struct { @TypeOf(a, b), u1 }{#endsyntax#}</pre>
      <p>
      Performs {#syntax#}a - b{#endsyntax#} and returns a tuple with the result and a possible overflow bit.
      </p>
      {#header_close#}

      {#header_open|@tagName#}
      <pre>{#syntax#}@tagName(value: anytype) [:0]const u8{#endsyntax#}</pre>
      <p>
      Converts an enum value or union value to a string literal representing the name.</p><p>If the enum is non-exhaustive and the tag value does not map to a name, it invokes safety-checked {#link|Illegal Behavior#}.
      </p>
      {#header_close#}

      {#header_open|@This#}
      <pre>{#syntax#}@This() type{#endsyntax#}</pre>
      <p>
      Returns the innermost struct, enum, or union that this function call is inside.
      This can be useful for an anonymous struct that needs to refer to itself:
      </p>
      {#code|test_this_builtin.zig#}

      <p>
      When {#syntax#}@This(){#endsyntax#} is used at file scope, it returns a reference to the
      struct that corresponds to the current file.
      </p>
      {#header_close#}

      {#header_open|@trap#}
      <pre>{#syntax#}@trap() noreturn{#endsyntax#}</pre>
      <p>
      This function inserts a platform-specific trap/jam instruction which can be used to exit the program abnormally.
      This may be implemented by explicitly emitting an invalid instruction which may cause an illegal instruction exception of some sort.
      Unlike for {#syntax#}@breakpoint(){#endsyntax#}, execution does not continue after this point.
      </p>
      <p>
      Outside function scope, this builtin causes a compile error.
      </p>
      {#see_also|@breakpoint#}
      {#header_close#}

      {#header_open|@truncate#}
      <pre>{#syntax#}@truncate(integer: anytype) anytype{#endsyntax#}</pre>
      <p>
      This function truncates bits from an integer type, resulting in a smaller
      or same-sized integer type. The return type is the inferred result type.
      </p>
      <p>
      This function always truncates the significant bits of the integer, regardless
      of endianness on the target platform.
      </p>
      <p>
      Calling {#syntax#}@truncate{#endsyntax#} on a number out of range of the destination type is well defined and working code:
      </p>
      {#code|test_truncate_builtin.zig#}

      <p>
      Use {#link|@intCast#} to convert numbers guaranteed to fit the destination type.
      </p>
      {#header_close#}

      {#header_open|@Type#}
      <pre>{#syntax#}@Type(comptime info: std.builtin.Type) type{#endsyntax#}</pre>
      <p>
      This function is the inverse of {#link|@typeInfo#}. It reifies type information
      into a {#syntax#}type{#endsyntax#}.
      </p>
      <p>
      It is available for the following types:
      </p>
      <ul>
          <li>{#syntax#}type{#endsyntax#}</li>
          <li>{#syntax#}noreturn{#endsyntax#}</li>
          <li>{#syntax#}void{#endsyntax#}</li>
          <li>{#syntax#}bool{#endsyntax#}</li>
          <li>{#link|Integers#} - The maximum bit count for an integer type is {#syntax#}65535{#endsyntax#}.</li>
          <li>{#link|Floats#}</li>
          <li>{#link|Pointers#}</li>
          <li>{#syntax#}comptime_int{#endsyntax#}</li>
          <li>{#syntax#}comptime_float{#endsyntax#}</li>
          <li>{#syntax#}@TypeOf(undefined){#endsyntax#}</li>
          <li>{#syntax#}@TypeOf(null){#endsyntax#}</li>
          <li>{#link|Arrays#}</li>
          <li>{#link|Optionals#}</li>
          <li>{#link|Error Set Type#}</li>
          <li>{#link|Error Union Type#}</li>
          <li>{#link|Vectors#}</li>
          <li>{#link|opaque#}</li>
          <li>{#syntax#}anyframe{#endsyntax#}</li>
          <li>{#link|struct#}</li>
          <li>{#link|enum#}</li>
          <li>{#link|Enum Literals#}</li>
          <li>{#link|union#}</li>
          <li>{#link|Functions#}</li>
      </ul>
      {#header_close#}
      {#header_open|@typeInfo#}
      <pre>{#syntax#}@typeInfo(comptime T: type) std.builtin.Type{#endsyntax#}</pre>
      <p>
      Provides type reflection.
      </p>
      <p>
      Type information of {#link|structs|struct#}, {#link|unions|union#}, {#link|enums|enum#}, and
      {#link|error sets|Error Set Type#} has fields which are guaranteed to be in the same
      order as appearance in the source file.
      </p>
      <p>
      Type information of {#link|structs|struct#}, {#link|unions|union#}, {#link|enums|enum#}, and
      {#link|opaques|opaque#} has declarations, which are also guaranteed to be in the same
      order as appearance in the source file.
      </p>
      {#header_close#}

      {#header_open|@typeName#}
      <pre>{#syntax#}@typeName(T: type) *const [N:0]u8{#endsyntax#}</pre>
      <p>
      This function returns the string representation of a type, as
      an array. It is equivalent to a string literal of the type name.
      The returned type name is fully qualified with the parent namespace included
      as part of the type name with a series of dots.
      </p>
      {#header_close#}

      {#header_open|@TypeOf#}
      <pre>{#syntax#}@TypeOf(...) type{#endsyntax#}</pre>
      <p>
      {#syntax#}@TypeOf{#endsyntax#} is a special builtin function that takes any (non-zero) number of expressions
      as parameters and returns the type of the result, using {#link|Peer Type Resolution#}.
      </p>
      <p>
      The expressions are evaluated, however they are guaranteed to have no <em>runtime</em> side-effects:
      </p>
      {#code|test_TypeOf_builtin.zig#}

      {#header_close#}

      {#header_open|@unionInit#}
      <pre>{#syntax#}@unionInit(comptime Union: type, comptime active_field_name: []const u8, init_expr) Union{#endsyntax#}</pre>
      <p>
      This is the same thing as {#link|union#} initialization syntax, except that the field name is a
      {#link|comptime#}-known value rather than an identifier token.
      </p>
      <p>
      {#syntax#}@unionInit{#endsyntax#} forwards its {#link|result location|Result Location Semantics#} to {#syntax#}init_expr{#endsyntax#}.
      </p>
      {#header_close#}


      {#header_open|@Vector#}
      <pre>{#syntax#}@Vector(len: comptime_int, Element: type) type{#endsyntax#}</pre>
      <p>Creates {#link|Vectors#}.</p>
      {#header_close#}

      {#header_open|@volatileCast#}
      <pre>{#syntax#}@volatileCast(value: anytype) DestType{#endsyntax#}</pre>
      <p>
      Remove {#syntax#}volatile{#endsyntax#} qualifier from a pointer.
      </p>
      {#header_close#}

      {#header_open|@workGroupId#}
      <pre>{#syntax#}@workGroupId(comptime dimension: u32) u32{#endsyntax#}</pre>
      <p>
      Returns the index of the work group in the current kernel invocation in dimension {#syntax#}dimension{#endsyntax#}.
      </p>
      {#header_close#}

      {#header_open|@workGroupSize#}
      <pre>{#syntax#}@workGroupSize(comptime dimension: u32) u32{#endsyntax#}</pre>
      <p>
      Returns the number of work items that a work group has in dimension {#syntax#}dimension{#endsyntax#}.
      </p>
      {#header_close#}

      {#header_open|@workItemId#}
      <pre>{#syntax#}@workItemId(comptime dimension: u32) u32{#endsyntax#}</pre>
      <p>
      Returns the index of the work item in the work group in dimension {#syntax#}dimension{#endsyntax#}. This function returns values between {#syntax#}0{#endsyntax#} (inclusive) and {#syntax#}@workGroupSize(dimension){#endsyntax#} (exclusive).
      </p>
      {#header_close#}

      {#header_close#}

      {#header_open|Build Mode#}
      <p>
      Zig has four build modes:
      </p>
      <ul>
        <li>{#link|Debug#} (default)</li>
        <li>{#link|ReleaseFast#}</li>
        <li>{#link|ReleaseSafe#}</li>
        <li>{#link|ReleaseSmall#}</li>
      </ul>
      <p>
      To add standard build options to a <code class="file">build.zig</code> file:
      </p>
      {#code|build.zig#}

      <p>
      This causes these options to be available:
      </p>
      <dl>
        <dt><kbd>-Doptimize=Debug</kbd></dt><dd>Optimizations off and safety on (default)</dd>
        <dt><kbd>-Doptimize=ReleaseSafe</kbd></dt><dd>Optimizations on and safety on</dd>
        <dt><kbd>-Doptimize=ReleaseFast</kbd></dt><dd>Optimizations on and safety off</dd>
        <dt><kbd>-Doptimize=ReleaseSmall</kbd></dt><dd>Size optimizations on and safety off</dd>
      </dl>
      {#header_open|Debug#}
      {#shell_samp#}$ zig build-exe example.zig{#end_shell_samp#}
      <ul>
        <li>Fast compilation speed</li>
        <li>Safety checks enabled</li>
        <li>Slow runtime performance</li>
        <li>Large binary size</li>
        <li>No reproducible build requirement</li>
      </ul>
      {#header_close#}
      {#header_open|ReleaseFast#}
      {#shell_samp#}$ zig build-exe example.zig -O ReleaseFast{#end_shell_samp#}
      <ul>
        <li>Fast runtime performance</li>
        <li>Safety checks disabled</li>
        <li>Slow compilation speed</li>
        <li>Large binary size</li>
        <li>Reproducible build</li>
      </ul>
      {#header_close#}
      {#header_open|ReleaseSafe#}
      {#shell_samp#}$ zig build-exe example.zig -O ReleaseSafe{#end_shell_samp#}
      <ul>
        <li>Medium runtime performance</li>
        <li>Safety checks enabled</li>
        <li>Slow compilation speed</li>
        <li>Large binary size</li>
        <li>Reproducible build</li>
      </ul>
      {#header_close#}
      {#header_open|ReleaseSmall#}
      {#shell_samp#}$ zig build-exe example.zig -O ReleaseSmall{#end_shell_samp#}
      <ul>
        <li>Medium runtime performance</li>
        <li>Safety checks disabled</li>
        <li>Slow compilation speed</li>
        <li>Small binary size</li>
        <li>Reproducible build</li>
      </ul>
      {#header_close#}
      {#see_also|Compile Variables|Zig Build System|Illegal Behavior#}
      {#header_close#}

      {#header_open|Single Threaded Builds#}
      <p>Zig has a compile option <kbd>-fsingle-threaded</kbd> which has the following effects:</p>
      <ul>
        <li>All {#link|Thread Local Variables#} are treated as regular {#link|Container Level Variables#}.</li>
        <li>The overhead of {#link|Async Functions#} becomes equivalent to function call overhead.</li>
        <li>The {#syntax#}@import("builtin").single_threaded{#endsyntax#} becomes {#syntax#}true{#endsyntax#}
          and therefore various userland APIs which read this variable become more efficient.
          For example {#syntax#}std.Mutex{#endsyntax#} becomes
          an empty data structure and all of its functions become no-ops.</li>
      </ul>
      {#header_close#}

      {#header_open|Illegal Behavior#}
      <p>
      Many operations in Zig trigger what is known as "Illegal Behavior" (IB). If Illegal Behavior is detected at
      compile-time, Zig emits a compile error and refuses to continue. Otherwise, when Illegal Behavior is not caught
      at compile-time, it falls into one of two categories.
      </p>
      <p>
      Some Illegal Behavior is <em>safety-checked</em>: this means that the compiler will insert "safety checks"
      anywhere that the Illegal Behavior may occur at runtime, to determine whether it is about to happen. If it
      is, the safety check "fails", which triggers a panic.
      </p>
      <p>
      All other Illegal Behavior is <em>unchecked</em>, meaning the compiler is unable to insert safety checks for
      it. If Unchecked Illegal Behavior is invoked at runtime, anything can happen: usually that will be some kind of
      crash, but the optimizer is free to make Unchecked Illegal Behavior do anything, such as calling arbitrary functions
      or clobbering arbitrary data. This is similar to the concept of "undefined behavior" in some other languages. Note that
      Unchecked Illegal Behavior still always results in a compile error if evaluated at {#link|comptime#}, because the Zig
      compiler is able to perform more sophisticated checks at compile-time than at runtime.
      </p>
      <p>
      Most Illegal Behavior is safety-checked. However, to facilitate optimizations, safety checks are disabled by default
      in the {#link|ReleaseFast#} and {#link|ReleaseSmall#} optimization modes. Safety checks can also be enabled or disabled
      on a per-block basis, overriding the default for the current optimization mode, using {#link|@setRuntimeSafety#}. When
      safety checks are disabled, Safety-Checked Illegal Behavior behaves like Unchecked Illegal Behavior; that is, any behavior
      may result from invoking it.
      </p>
      <p>
      When a safety check fails, Zig's default panic handler crashes with a stack trace, like this:
      </p>
      {#code|test_illegal_behavior.zig#}

      {#header_open|Reaching Unreachable Code#}
      <p>At compile-time:</p>
      {#code|test_comptime_reaching_unreachable.zig#}

      <p>At runtime:</p>
      {#code|runtime_reaching_unreachable.zig#}

      {#header_close#}
      {#header_open|Index out of Bounds#}
      <p>At compile-time:</p>
      {#code|test_comptime_index_out_of_bounds.zig#}

      <p>At runtime:</p>
      {#code|runtime_index_out_of_bounds.zig#}

      {#header_close#}
      {#header_open|Cast Negative Number to Unsigned Integer#}
      <p>At compile-time:</p>
      {#code|test_comptime_invalid_cast.zig#}

      <p>At runtime:</p>
      {#code|runtime_invalid_cast.zig#}

      <p>
      To obtain the maximum value of an unsigned integer, use {#syntax#}std.math.maxInt{#endsyntax#}.
      </p>
      {#header_close#}
      {#header_open|Cast Truncates Data#}
      <p>At compile-time:</p>
      {#code|test_comptime_invalid_cast_truncate.zig#}

      <p>At runtime:</p>
      {#code|runtime_invalid_cast_truncate.zig#}

      <p>
      To truncate bits, use {#link|@truncate#}.
      </p>
      {#header_close#}
      {#header_open|Integer Overflow#}
      {#header_open|Default Operations#}
      <p>The following operators can cause integer overflow:</p>
      <ul>
          <li>{#syntax#}+{#endsyntax#} (addition)</li>
          <li>{#syntax#}-{#endsyntax#} (subtraction)</li>
          <li>{#syntax#}-{#endsyntax#} (negation)</li>
          <li>{#syntax#}*{#endsyntax#} (multiplication)</li>
          <li>{#syntax#}/{#endsyntax#} (division)</li>
        <li>{#link|@divTrunc#} (division)</li>
        <li>{#link|@divFloor#} (division)</li>
        <li>{#link|@divExact#} (division)</li>
      </ul>
      <p>Example with addition at compile-time:</p>
      {#code|test_comptime_overflow.zig#}

      <p>At runtime:</p>
      {#code|runtime_overflow.zig#}

      {#header_close#}
      {#header_open|Standard Library Math Functions#}
      <p>These functions provided by the standard library return possible errors.</p>
      <ul>
          <li>{#syntax#}@import("std").math.add{#endsyntax#}</li>
          <li>{#syntax#}@import("std").math.sub{#endsyntax#}</li>
          <li>{#syntax#}@import("std").math.mul{#endsyntax#}</li>
          <li>{#syntax#}@import("std").math.divTrunc{#endsyntax#}</li>
          <li>{#syntax#}@import("std").math.divFloor{#endsyntax#}</li>
          <li>{#syntax#}@import("std").math.divExact{#endsyntax#}</li>
          <li>{#syntax#}@import("std").math.shl{#endsyntax#}</li>
      </ul>
      <p>Example of catching an overflow for addition:</p>
      {#code|math_add.zig#}

      {#header_close#}
      {#header_open|Builtin Overflow Functions#}
      <p>
      These builtins return a tuple containing whether there was an overflow
      (as a {#syntax#}u1{#endsyntax#}) and the possibly overflowed bits of the operation:
      </p>
      <ul>
          <li>{#link|@addWithOverflow#}</li>
          <li>{#link|@subWithOverflow#}</li>
          <li>{#link|@mulWithOverflow#}</li>
          <li>{#link|@shlWithOverflow#}</li>
      </ul>
      <p>
      Example of {#link|@addWithOverflow#}:
      </p>
      {#code|addWithOverflow_builtin.zig#}

      {#header_close#}
      {#header_open|Wrapping Operations#}
      <p>
      These operations have guaranteed wraparound semantics.
      </p>
      <ul>
          <li>{#syntax#}+%{#endsyntax#} (wraparound addition)</li>
          <li>{#syntax#}-%{#endsyntax#} (wraparound subtraction)</li>
          <li>{#syntax#}-%{#endsyntax#} (wraparound negation)</li>
          <li>{#syntax#}*%{#endsyntax#} (wraparound multiplication)</li>
      </ul>
      {#code|test_wraparound_semantics.zig#}

      {#header_close#}
      {#header_close#}
      {#header_open|Exact Left Shift Overflow#}
      <p>At compile-time:</p>
      {#code|test_comptime_shlExact_overflow.zig#}

      <p>At runtime:</p>
      {#code|runtime_shlExact_overflow.zig#}

      {#header_close#}
      {#header_open|Exact Right Shift Overflow#}
      <p>At compile-time:</p>
      {#code|test_comptime_shrExact_overflow.zig#}

      <p>At runtime:</p>
      {#code|runtime_shrExact_overflow.zig#}

      {#header_close#}
      {#header_open|Division by Zero#}
      <p>At compile-time:</p>
      {#code|test_comptime_division_by_zero.zig#}

      <p>At runtime:</p>
      {#code|runtime_division_by_zero.zig#}

      {#header_close#}
      {#header_open|Remainder Division by Zero#}
      <p>At compile-time:</p>
      {#code|test_comptime_remainder_division_by_zero.zig#}

      <p>At runtime:</p>
      {#code|runtime_remainder_division_by_zero.zig#}

      {#header_close#}
      {#header_open|Exact Division Remainder#}
      <p>At compile-time:</p>
      {#code|test_comptime_divExact_remainder.zig#}

      <p>At runtime:</p>
      {#code|runtime_divExact_remainder.zig#}

      {#header_close#}
      {#header_open|Attempt to Unwrap Null#}
      <p>At compile-time:</p>
      {#code|test_comptime_unwrap_null.zig#}

      <p>At runtime:</p>
      {#code|runtime_unwrap_null.zig#}

      <p>One way to avoid this crash is to test for null instead of assuming non-null, with
      the {#syntax#}if{#endsyntax#} expression:</p>
      {#code|testing_null_with_if.zig#}

      {#see_also|Optionals#}
      {#header_close#}
      {#header_open|Attempt to Unwrap Error#}
      <p>At compile-time:</p>
      {#code|test_comptime_unwrap_error.zig#}

      <p>At runtime:</p>
      {#code|runtime_unwrap_error.zig#}

      <p>One way to avoid this crash is to test for an error instead of assuming a successful result, with
      the {#syntax#}if{#endsyntax#} expression:</p>
      {#code|testing_error_with_if.zig#}

      {#see_also|Errors#}
      {#header_close#}
      {#header_open|Invalid Error Code#}
      <p>At compile-time:</p>
      {#code|test_comptime_invalid_error_code.zig#}

      <p>At runtime:</p>
      {#code|runtime_invalid_error_code.zig#}

      {#header_close#}
      {#header_open|Invalid Enum Cast#}
      <p>At compile-time:</p>
      {#code|test_comptime_invalid_enum_cast.zig#}

      <p>At runtime:</p>
      {#code|runtime_invalid_enum_cast.zig#}

      {#header_close#}

      {#header_open|Invalid Error Set Cast#}
      <p>At compile-time:</p>
      {#code|test_comptime_invalid_error_set_cast.zig#}

      <p>At runtime:</p>
      {#code|runtime_invalid_error_set_cast.zig#}

      {#header_close#}

      {#header_open|Incorrect Pointer Alignment#}
      <p>At compile-time:</p>
      {#code|test_comptime_incorrect_pointer_alignment.zig#}

      <p>At runtime:</p>
      {#code|runtime_incorrect_pointer_alignment.zig#}

      {#header_close#}
      {#header_open|Wrong Union Field Access#}
      <p>At compile-time:</p>
      {#code|test_comptime_wrong_union_field_access.zig#}

      <p>At runtime:</p>
      {#code|runtime_wrong_union_field_access.zig#}

      <p>
      This safety is not available for {#syntax#}extern{#endsyntax#} or {#syntax#}packed{#endsyntax#} unions.
      </p>
      <p>
      To change the active field of a union, assign the entire union, like this:
      </p>
      {#code|change_active_union_field.zig#}

      <p>
      To change the active field of a union when a meaningful value for the field is not known,
      use {#link|undefined#}, like this:
      </p>
      {#code|undefined_active_union_field.zig#}

      {#see_also|union|extern union#}
      {#header_close#}

      {#header_open|Out of Bounds Float to Integer Cast#}
      <p>
      This happens when casting a float to an integer where the float has a value outside the
      integer type's range.
      </p>
      <p>At compile-time:</p>
      {#code|test_comptime_out_of_bounds_float_to_integer_cast.zig#}

      <p>At runtime:</p>
      {#code|runtime_out_of_bounds_float_to_integer_cast.zig#}

      {#header_close#}

      {#header_open|Pointer Cast Invalid Null#}
      <p>
      This happens when casting a pointer with the address 0 to a pointer which may not have the address 0.
      For example, {#link|C Pointers#}, {#link|Optional Pointers#}, and {#link|allowzero#} pointers
      allow address zero, but normal {#link|Pointers#} do not.
      </p>
      <p>At compile-time:</p>
      {#code|test_comptime_invalid_null_pointer_cast.zig#}

      <p>At runtime:</p>
      {#code|runtime_invalid_null_pointer_cast.zig#}

      {#header_close#}

      {#header_close#}
      {#header_open|Memory#}
      <p>
      The Zig language performs no memory management on behalf of the programmer. This is
      why Zig has no runtime, and why Zig code works seamlessly in so many environments,
      including real-time software, operating system kernels, embedded devices, and
      low latency servers. As a consequence, Zig programmers must always be able to answer
      the question:
      </p>
      <p>{#link|Where are the bytes?#}</p>
      <p>
      Like Zig, the C programming language has manual memory management. However, unlike Zig,
      C has a default allocator - <code>malloc</code>, <code>realloc</code>, and <code>free</code>.
      When linking against libc, Zig exposes this allocator with {#syntax#}std.heap.c_allocator{#endsyntax#}.
      However, by convention, there is no default allocator in Zig. Instead, functions which need to
      allocate accept an {#syntax#}Allocator{#endsyntax#} parameter. Likewise, some data structures
      accept an {#syntax#}Allocator{#endsyntax#} parameter in their initialization functions:
      </p>
      {#code|test_allocator.zig#}

      <p>
      In the above example, 100 bytes of stack memory are used to initialize a
      {#syntax#}FixedBufferAllocator{#endsyntax#}, which is then passed to a function.
      As a convenience there is a global {#syntax#}FixedBufferAllocator{#endsyntax#}
      available for quick tests at {#syntax#}std.testing.allocator{#endsyntax#},
      which will also perform basic leak detection.
      </p>
      <p>
      Zig has a general purpose allocator available to be imported
      with {#syntax#}std.heap.GeneralPurposeAllocator{#endsyntax#}. However, it is still recommended to
      follow the {#link|Choosing an Allocator#} guide.
      </p>

      {#header_open|Choosing an Allocator#}
      <p>What allocator to use depends on a number of factors. Here is a flow chart to help you decide:
      </p>
      <ol>
          <li>
              Are you making a library? In this case, best to accept an {#syntax#}Allocator{#endsyntax#}
              as a parameter and allow your library's users to decide what allocator to use.
          </li>
          <li>Are you linking libc? In this case, {#syntax#}std.heap.c_allocator{#endsyntax#} is likely
              the right choice, at least for your main allocator.</li>
          <li>
              Is the maximum number of bytes that you will need bounded by a number known at
              {#link|comptime#}? In this case, use {#syntax#}std.heap.FixedBufferAllocator{#endsyntax#}.
          </li>
          <li>
              Is your program a command line application which runs from start to end without any fundamental
              cyclical pattern (such as a video game main loop, or a web server request handler),
              such that it would make sense to free everything at once at the end?
              In this case, it is recommended to follow this pattern:
              {#code|cli_allocation.zig#}

              When using this kind of allocator, there is no need to free anything manually. Everything
              gets freed at once with the call to {#syntax#}arena.deinit(){#endsyntax#}.
          </li>
          <li>
              Are the allocations part of a cyclical pattern such as a video game main loop, or a web
              server request handler? If the allocations can all be freed at once, at the end of the cycle,
              for example once the video game frame has been fully rendered, or the web server request has
              been served, then {#syntax#}std.heap.ArenaAllocator{#endsyntax#} is a great candidate. As
              demonstrated in the previous bullet point, this allows you to free entire arenas at once.
              Note also that if an upper bound of memory can be established, then
              {#syntax#}std.heap.FixedBufferAllocator{#endsyntax#} can be used as a further optimization.
          </li>
          <li>
              Are you writing a test, and you want to make sure {#syntax#}error.OutOfMemory{#endsyntax#}
              is handled correctly? In this case, use {#syntax#}std.testing.FailingAllocator{#endsyntax#}.
          </li>
          <li>
              Are you writing a test? In this case, use {#syntax#}std.testing.allocator{#endsyntax#}.
          </li>
          <li>
              Finally, if none of the above apply, you need a general purpose allocator.
              If you are in Debug mode, {#syntax#}std.heap.DebugAllocator{#endsyntax#} is available as a
              function that takes a {#link|comptime#} {#link|struct#} of configuration options and returns a type.
              Generally, you will set up exactly one in your main function, and
              then pass it or sub-allocators around to various parts of your
              application.
          </li>
          <li>
              If you are compiling in ReleaseFast mode, {#syntax#}std.heap.smp_allocator{#endsyntax#} is
              a solid choice for a general purpose allocator.
          </li>
          <li>
              You can also consider implementing an allocator.
          </li>
      </ol>
      {#header_close#}

      {#header_open|Where are the bytes?#}
      <p>String literals such as {#syntax#}"hello"{#endsyntax#} are in the global constant data section.
      This is why it is an error to pass a string literal to a mutable slice, like this:
      </p>
      {#code|test_string_literal_to_slice.zig#}

      <p>However if you make the slice constant, then it works:</p>
      {#code|test_string_literal_to_const_slice.zig#}

      <p>
      Just like string literals, {#syntax#}const{#endsyntax#} declarations, when the value is known at {#link|comptime#},
      are stored in the global constant data section. Also {#link|Compile Time Variables#} are stored
      in the global constant data section.
      </p>
      <p>
      {#syntax#}var{#endsyntax#} declarations inside functions are stored in the function's stack frame. Once a function returns,
      any {#link|Pointers#} to variables in the function's stack frame become invalid references, and
      dereferencing them becomes unchecked {#link|Illegal Behavior#}.
      </p>
      <p>
      {#syntax#}var{#endsyntax#} declarations at the top level or in {#link|struct#} declarations are stored in the global
      data section.
      </p>
      <p>
      The location of memory allocated with {#syntax#}allocator.alloc{#endsyntax#} or
      {#syntax#}allocator.create{#endsyntax#} is determined by the allocator's implementation.
      </p>
      <p>TODO: thread local variables</p>
      {#header_close#}

      {#header_open|Heap Allocation Failure#}
      <p>
      Many programming languages choose to handle the possibility of heap allocation failure by
      unconditionally crashing. By convention, Zig programmers do not consider this to be a
      satisfactory solution. Instead, {#syntax#}error.OutOfMemory{#endsyntax#} represents
      heap allocation failure, and Zig libraries return this error code whenever heap allocation
      failure prevented an operation from completing successfully.
      </p>
      <p>
      Some have argued that because some operating systems such as Linux have memory overcommit enabled by
      default, it is pointless to handle heap allocation failure. There are many problems with this reasoning:
      </p>
      <ul>
          <li>Only some operating systems have an overcommit feature.
              <ul>
                  <li>Linux has it enabled by default, but it is configurable.</li>
                  <li>Windows does not overcommit.</li>
                  <li>Embedded systems do not have overcommit.</li>
                  <li>Hobby operating systems may or may not have overcommit.</li>
              </ul>
          </li>
          <li>
              For real-time systems, not only is there no overcommit, but typically the maximum amount
              of memory per application is determined ahead of time.
          </li>
          <li>
              When writing a library, one of the main goals is code reuse. By making code handle
              allocation failure correctly, a library becomes eligible to be reused in
              more contexts.
          </li>
          <li>
              Although some software has grown to depend on overcommit being enabled, its existence
              is the source of countless user experience disasters. When a system with overcommit enabled,
              such as Linux on default settings, comes close to memory exhaustion, the system locks up
              and becomes unusable. At this point, the OOM Killer selects an application to kill
              based on heuristics. This non-deterministic decision often results in an important process
              being killed, and often fails to return the system back to working order.
          </li>
      </ul>
      {#header_close#}

      {#header_open|Recursion#}
      <p>
      Recursion is a fundamental tool in modeling software. However it has an often-overlooked problem:
      unbounded memory allocation.
      </p>
      <p>
      Recursion is an area of active experimentation in Zig and so the documentation here is not final.
      You can read a
      <a href="https://ziglang.org/download/0.3.0/release-notes.html#recursion">summary of recursion status in the 0.3.0 release notes</a>.
      </p>
      <p>
      The short summary is that currently recursion works normally as you would expect. Although Zig code
      is not yet protected from stack overflow, it is planned that a future version of Zig will provide
      such protection, with some degree of cooperation from Zig code required.
      </p>
      {#header_close#}

      {#header_open|Lifetime and Ownership#}
      <p>
      It is the Zig programmer's responsibility to ensure that a {#link|pointer|Pointers#} is not
      accessed when the memory pointed to is no longer available. Note that a {#link|slice|Slices#}
      is a form of pointer, in that it references other memory.
      </p>
      <p>
      In order to prevent bugs, there are some helpful conventions to follow when dealing with pointers.
      In general, when a function returns a pointer, the documentation for the function should explain
      who "owns" the pointer. This concept helps the programmer decide when it is appropriate, if ever,
      to free the pointer.
      </p>
      <p>
      For example, the function's documentation may say "caller owns the returned memory", in which case
      the code that calls the function must have a plan for when to free that memory. Probably in this situation,
      the function will accept an {#syntax#}Allocator{#endsyntax#} parameter.
      </p>
      <p>
      Sometimes the lifetime of a pointer may be more complicated. For example, the
      {#syntax#}std.ArrayList(T).items{#endsyntax#} slice has a lifetime that remains
      valid until the next time the list is resized, such as by appending new elements.
      </p>
      <p>
      The API documentation for functions and data structures should take great care to explain
      the ownership and lifetime semantics of pointers. Ownership determines whose responsibility it
      is to free the memory referenced by the pointer, and lifetime determines the point at which
      the memory becomes inaccessible (lest {#link|Illegal Behavior#} occur).
      </p>
      {#header_close#}

      {#header_close#}
      {#header_open|Compile Variables#}
      <p>
      Compile variables are accessible by importing the {#syntax#}"builtin"{#endsyntax#} package,
      which the compiler makes available to every Zig source file. It contains
      compile-time constants such as the current target, endianness, and release mode.
      </p>
      {#code|compile_variables.zig#}

      <p>
      Example of what is imported with {#syntax#}@import("builtin"){#endsyntax#}:
      </p>
      {#builtin#}
      {#see_also|Build Mode#}
      {#header_close#}
      {#header_open|Compilation Model#}
      <p>
      A Zig compilation is separated into <em>modules</em>. Each module is a collection of Zig source files,
      one of which is the module's <em>root source file</em>. Each module can <em>depend</em> on any number of
      other modules, forming a directed graph (dependency loops between modules are allowed). If module A
      depends on module B, then any Zig source file in module A can import the <em>root source file</em> of
      module B using {#syntax#}@import{#endsyntax#} with the module's name. In essence, a module acts as an
      alias to import a Zig source file (which might exist in a completely separate part of the filesystem).
      </p>
      <p>
      A simple Zig program compiled with <code>zig build-exe</code> has two key modules: the one containing your
      code, known as the "main" or "root" module, and the standard library. Your module <em>depends on</em>
      the standard library module under the name "std", which is what allows you to write
      {#syntax#}@import("std"){#endsyntax#}! In fact, every single module in a Zig compilation &mdash; including
      the standard library itself &mdash; implicitly depends on the standard library module under the name "std".
      </p>
      <p>
      The "root module" (the one provided by you in the <code>zig build-exe</code> example) has a special
      property. Like the standard library, it is implicitly made available to all modules (including itself),
      this time under the name "root". So, {#syntax#}@import("root"){#endsyntax#} will always be equivalent to
      {#syntax#}@import{#endsyntax#} of your "main" source file (often, but not necessarily, named
      <code>main.zig</code>).
      </p>
      {#header_open|Source File Structs#}
      <p>
      Every Zig source file is implicitly a {#syntax#}struct{#endsyntax#} declaration; you can imagine that
      the file's contents are literally surrounded by {#syntax#}struct { ... }{#endsyntax#}. This means that
      as well as declarations, the top level of a file is permitted to contain fields:
      </p>
      {#code|TopLevelFields.zig#}
      <p>
      Such files can be instantiated just like any other {#syntax#}struct{#endsyntax#} type. A file's "root
      struct type" can be referred to within that file using {#link|@This#}.
      </p>
      {#header_close#}
      {#header_open|File and Declaration Discovery#}
      <p>
      Zig places importance on the concept of whether any piece of code is <em>semantically analyzed</em>; in
      essence, whether the compiler "looks at" it. What code is analyzed is based on what files and
      declarations are "discovered" from a certain point. This process of "discovery" is based on a simple set
      of recursive rules:
      </p>
      <ul>
        <li>If a call to {#syntax#}@import{#endsyntax#} is analyzed, the file being imported is analyzed.</li>
        <li>If a type (including a file) is analyzed, all {#syntax#}comptime{#endsyntax#} and {#syntax#}export{#endsyntax#} declarations within it are analyzed.</li>
        <li>If a type (including a file) is analyzed, and the compilation is for a {#link|test|Zig Test#}, and the module the type is within is the root module of the compilation, then all {#syntax#}test{#endsyntax#} declarations within it are also analyzed.</li>
        <li>If a reference to a named declaration (i.e. a usage of it) is analyzed, the declaration being referenced is analyzed. Declarations are order-independent, so this reference may be above or below the declaration being referenced, or even in another file entirely.</li>
      </ul>
      <p>
      That's it! Those rules define how Zig files and declarations are discovered. All that remains is to
      understand where this process <em>starts</em>.
      </p>
      <p>
      The answer to that is the root of the standard library: every Zig compilation begins by analyzing the
      file <code>lib/std/std.zig</code>. This file contains a {#syntax#}comptime{#endsyntax#} declaration
      which imports {#syntax#}lib/std/start.zig{#endsyntax#}, and that file in turn uses
      {#syntax#}@import("root"){#endsyntax#} to reference the "root module"; so, the file you provide as your
      main module's root source file is effectively also a root, because the standard library will always
      reference it.
      </p>
      <p>
      It is often desirable to make sure that certain declarations &mdash; particularly {#syntax#}test{#endsyntax#}
      or {#syntax#}export{#endsyntax#} declarations &mdash; are discovered. Based on the above rules, a common
      strategy for this is to use {#syntax#}@import{#endsyntax#} within a {#syntax#}comptime{#endsyntax#} or
      {#syntax#}test{#endsyntax#} block:
      </p>
      {#syntax_block|zig|force_file_discovery.zig#}
comptime {
    // This will ensure that the file 'api.zig' is always discovered (as long as this file is discovered).
    // It is useful if 'api.zig' contains important exported declarations.
    _ = @import("api.zig");

    // We could also have a file which contains declarations we only want to export depending on a comptime
    // condition. In that case, we can use an `if` statement here:
    if (builtin.os.tag == .windows) {
        _ = @import("windows_api.zig");
    }
}

test {
    // This will ensure that the file 'tests.zig' is always discovered (as long as this file is discovered),
    // if this compilation is a test. It is useful if 'tests.zig' contains tests we want to ensure are run.
    _ = @import("tests.zig");

    // We could also have a file which contains tests we only want to run depending on a comptime condition.
    // In that case, we can use an `if` statement here:
    if (builtin.os.tag == .windows) {
        _ = @import("windows_tests.zig");
    }
}

const builtin = @import("builtin");
      {#end_syntax_block#}
      {#header_close#}
      {#header_open|Special Root Declarations#}
      <p>
      Because the root module's root source file is always accessible using
      {#syntax#}@import("root"){#endsyntax#}, is is sometimes used by libraries &mdash; including the Zig Standard
      Library &mdash; as a place for the program to expose some "global" information to that library. The Zig
      Standard Library will look for several declarations in this file.
      </p>
      {#header_open|Entry Point#}
      <p>
      When building an executable, the most important thing to be looked up in this file is the program's
      <em>entry point</em>. Most commonly, this is a function named {#syntax#}main{#endsyntax#}, which
      {#syntax#}std.start{#endsyntax#} will call just after performing important initialization work.
      </p>
      <p>
      Alternatively, the presence of a declaration named {#syntax#}_start{#endsyntax#} (for instance,
      {#syntax#}pub const _start = {};{#endsyntax#}) will disable the default {#syntax#}std.start{#endsyntax#}
      logic, allowing your root source file to export a low-level entry point as needed.
      </p>
      {#code|entry_point.zig#}
      <p>
      If the Zig compilation links libc, the {#syntax#}main{#endsyntax#} function can optionally be an
      {#syntax#}export fn{#endsyntax#} which matches the signature of the C <code>main</code> function:
      </p>
      {#code|libc_export_entry_point.zig#}
      <p>
      {#syntax#}std.start{#endsyntax#} may also use other entry point declarations in certain situations, such
      as {#syntax#}wWinMain{#endsyntax#} or {#syntax#}EfiMain{#endsyntax#}. Refer to the
      {#syntax#}lib/std/start.zig{#endsyntax#} logic for details of these declarations.
      </p>
      {#header_close#}
      {#header_open|Standard Library Options#}
      <p>
      The standard library also looks for a declaration in the root module's root source file named
      {#syntax#}std_options{#endsyntax#}. If present, this declaration is expected to be a struct of type
      {#syntax#}std.Options{#endsyntax#}, and allows the program to customize some standard library
      functionality, such as the {#syntax#}std.log{#endsyntax#} implementation.
      </p>
      {#code|std_options.zig#}
      {#header_close#}
      {#header_open|Panic Handler#}
      <p>
      The Zig Standard Library looks for a declaration named {#syntax#}panic{#endsyntax#} in the root module's
      root source file. If present, it is expected to be a namespace (container type) with declarations
      providing different panic handlers.
      </p>
      <p>
      See {#syntax#}std.debug.simple_panic{#endsyntax#} for a basic implementation of this namespace.
      </p>
      <p>
      Overriding how the panic handler actually outputs messages, but keeping the formatted safety panics
      which are enabled by default, can be easily achieved with {#syntax#}std.debug.FullPanic{#endsyntax#}:
      </p>
      {#code|panic_handler.zig#}
      {#header_close#}
      {#header_close#}
      {#header_close#}
      {#header_open|Zig Build System#}
      <p>
      The Zig Build System provides a cross-platform, dependency-free way to declare
      the logic required to build a project. With this system, the logic to build
      a project is written in a build.zig file, using the Zig Build System API to
      declare and configure build artifacts and other tasks.
      </p>
      <p>
      Some examples of tasks the build system can help with:
      </p>
      <ul>
        <li>Performing tasks in parallel and caching the results.</li>
        <li>Depending on other projects.</li>
        <li>Providing a package for other projects to depend on.</li>
        <li>Creating build artifacts by executing the Zig compiler. This includes
          building Zig source code as well as C and C++ source code.</li>
        <li>Capturing user-configured options and using those options to configure
          the build.</li>
        <li>Surfacing build configuration as {#link|comptime#} values by providing a
          file that can be {#link|imported|@import#} by Zig code.</li>
        <li>Caching build artifacts to avoid unnecessarily repeating steps.</li>
        <li>Executing build artifacts or system-installed tools.</li>
        <li>Running tests and verifying the output of executing a build artifact matches
        the expected value.</li>
        <li>Running <code>zig fmt</code> on a codebase or a subset of it.</li>
        <li>Custom tasks.</li>
      </ul>
      <p>
      To use the build system, run <kbd>zig build --help</kbd>
      to see a command-line usage help menu. This will include project-specific
      options that were declared in the build.zig script.
      </p>
      <p>
      For the time being, the build system documentation is hosted externally:
      <a href="https://ziglang.org/learn/build-system/">Build System Documentation</a>
      </p>
      {#header_close#}
      {#header_open|C#}
      <p>
      Although Zig is independent of C, and, unlike most other languages, does not depend on libc,
      Zig acknowledges the importance of interacting with existing C code.
      </p>
      <p>
      There are a few ways that Zig facilitates C interop.
      </p>
      {#header_open|C Type Primitives#}
      <p>
      These have guaranteed C ABI compatibility and can be used like any other type.
      </p>
      <ul>
          <li>{#syntax#}c_char{#endsyntax#}</li>
          <li>{#syntax#}c_short{#endsyntax#}</li>
          <li>{#syntax#}c_ushort{#endsyntax#}</li>
          <li>{#syntax#}c_int{#endsyntax#}</li>
          <li>{#syntax#}c_uint{#endsyntax#}</li>
          <li>{#syntax#}c_long{#endsyntax#}</li>
          <li>{#syntax#}c_ulong{#endsyntax#}</li>
          <li>{#syntax#}c_longlong{#endsyntax#}</li>
          <li>{#syntax#}c_ulonglong{#endsyntax#}</li>
          <li>{#syntax#}c_longdouble{#endsyntax#}</li>
      </ul>
      <p>
      To interop with the C {#syntax#}void{#endsyntax#} type, use {#syntax#}anyopaque{#endsyntax#}.
      </p>
      {#see_also|Primitive Types#}
      {#header_close#}
      {#header_open|Import from C Header File#}
      <p>
      The {#syntax#}@cImport{#endsyntax#} builtin function can be used
      to directly import symbols from <code class="file">.h</code> files:
      </p>
      {#code|cImport_builtin.zig#}

      <p>
      The {#syntax#}@cImport{#endsyntax#} function takes an expression as a parameter.
      This expression is evaluated at compile-time and is used to control
      preprocessor directives and include multiple <code class="file">.h</code> files:
      </p>
      {#syntax_block|zig|@cImport Expression#}
const builtin = @import("builtin");

const c = @cImport({
    @cDefine("NDEBUG", builtin.mode == .ReleaseFast);
    if (something) {
        @cDefine("_GNU_SOURCE", {});
    }
    @cInclude("stdlib.h");
    if (something) {
        @cUndef("_GNU_SOURCE");
    }
    @cInclude("soundio.h");
});
      {#end_syntax_block#}
      {#see_also|@cImport|@cInclude|@cDefine|@cUndef|@import#}
      {#header_close#}

      {#header_open|C Translation CLI#}
      <p>
      Zig's C translation capability is available as a CLI tool via <kbd>zig translate-c</kbd>.
      It requires a single filename as an argument. It may also take a set of optional flags that are
      forwarded to clang. It writes the translated file to stdout.
      </p>
      {#header_open|Command line flags#}
      <ul>
        <li>
          <kbd>-I</kbd>:
          Specify a search directory for include files. May be used multiple times. Equivalent to
          <a href="https://releases.llvm.org/12.0.0/tools/clang/docs/ClangCommandLineReference.html#cmdoption-clang-i-dir">
          clang's <kbd>-I</kbd> flag</a>. The current directory is <em>not</em> included by default;
          use <kbd>-I.</kbd> to include it.
        </li>
        <li>
          <kbd>-D</kbd>: Define a preprocessor macro. Equivalent to
          <a href="https://releases.llvm.org/12.0.0/tools/clang/docs/ClangCommandLineReference.html#cmdoption-clang-d-macro">
          clang's <kbd>-D</kbd> flag</a>.
        </li>
        <li>
          <kbd>-cflags [flags] --</kbd>: Pass arbitrary additional
          <a href="https://releases.llvm.org/12.0.0/tools/clang/docs/ClangCommandLineReference.html">command line
          flags</a> to clang. Note: the list of flags must end with <kbd>--</kbd>
        </li>
        <li>
          <kbd>-target</kbd>: The {#link|target triple|Targets#} for the translated Zig code.
          If no target is specified, the current host target will be used.
        </li>
      </ul>
      {#header_close#}
      {#header_open|Using -target and -cflags#}
      <p>
        <strong>Important!</strong> When translating C code with <kbd>zig translate-c</kbd>,
        you <strong>must</strong> use the same <kbd>-target</kbd> triple that you will use when compiling
        the translated code. In addition, you <strong>must</strong> ensure that the <kbd>-cflags</kbd> used,
        if any, match the cflags used by code on the target system. Using the incorrect <kbd>-target</kbd>
        or <kbd>-cflags</kbd> could result in clang or Zig parse failures, or subtle ABI incompatibilities
        when linking with C code.
      </p>
      {#syntax_block|c|varytarget.h#}
long FOO = __LONG_MAX__;
      {#end_syntax_block#}
      {#shell_samp#}$ zig translate-c -target thumb-freestanding-gnueabihf varytarget.h|grep FOO
pub export var FOO: c_long = 2147483647;
$ zig translate-c -target x86_64-macos-gnu varytarget.h|grep FOO
pub export var FOO: c_long = 9223372036854775807;{#end_shell_samp#}
      {#syntax_block|c|varycflags.h#}
enum FOO { BAR };
int do_something(enum FOO foo);
      {#end_syntax_block#}
      {#shell_samp#}$ zig translate-c varycflags.h|grep -B1 do_something
pub const enum_FOO = c_uint;
pub extern fn do_something(foo: enum_FOO) c_int;
$ zig translate-c -cflags -fshort-enums -- varycflags.h|grep -B1 do_something
pub const enum_FOO = u8;
pub extern fn do_something(foo: enum_FOO) c_int;{#end_shell_samp#}
      {#header_close#}
      {#header_open|@cImport vs translate-c#}
      <p>{#syntax#}@cImport{#endsyntax#} and <kbd>zig translate-c</kbd> use the same underlying
      C translation functionality, so on a technical level they are equivalent. In practice,
      {#syntax#}@cImport{#endsyntax#} is useful as a way to quickly and easily access numeric constants, typedefs,
      and record types without needing any extra setup. If you need to pass {#link|cflags|Using -target and -cflags#}
      to clang, or if you would like to edit the translated code, it is recommended to use
      <kbd>zig translate-c</kbd> and save the results to a file. Common reasons for editing
      the generated code include: changing {#syntax#}anytype{#endsyntax#} parameters in function-like macros to more
      specific types; changing {#syntax#}[*c]T{#endsyntax#} pointers to {#syntax#}[*]T{#endsyntax#} or
      {#syntax#}*T{#endsyntax#} pointers for improved type safety; and
      {#link|enabling or disabling runtime safety|@setRuntimeSafety#} within specific functions.
      </p>
      {#header_close#}
      {#see_also|Targets|C Type Primitives|Pointers|C Pointers|Import from C Header File|@cInclude|@cImport|@setRuntimeSafety#}
      {#header_close#}
      {#header_open|C Translation Caching#}
      <p>
        The C translation feature (whether used via <kbd>zig translate-c</kbd> or
        {#syntax#}@cImport{#endsyntax#}) integrates with the Zig caching system. Subsequent runs with
        the same source file, target, and cflags will use the cache instead of repeatedly translating
        the same code.
      </p>
      <p>
        To see where the cached files are stored when compiling code that uses {#syntax#}@cImport{#endsyntax#},
        use the <kbd>--verbose-cimport</kbd> flag:
      </p>
      {#code|verbose_cimport_flag.zig#}

      <p>
        <code class="file">cimport.h</code> contains the file to translate (constructed from calls to
        {#syntax#}@cInclude{#endsyntax#}, {#syntax#}@cDefine{#endsyntax#}, and {#syntax#}@cUndef{#endsyntax#}),
        <code class="file">cimport.h.d</code> is the list of file dependencies, and
        <code class="file">cimport.zig</code> contains the translated output.
      </p>
      {#see_also|Import from C Header File|C Translation CLI|@cInclude|@cImport#}
      {#header_close#}
      {#header_open|Translation failures#}
      <p>
        Some C constructs cannot be translated to Zig - for example, <em>goto</em>,
        structs with bitfields, and token-pasting macros. Zig employs <em>demotion</em> to allow translation
        to continue in the face of non-translatable entities.
      </p>
      <p>
        Demotion comes in three varieties - {#link|opaque#}, <em>extern</em>, and
        {#syntax#}@compileError{#endsyntax#}.

        C structs and unions that cannot be translated correctly will be translated as {#syntax#}opaque{}{#endsyntax#}.
        Functions that contain opaque types or code constructs that cannot be translated will be demoted
        to {#syntax#}extern{#endsyntax#} declarations.

        Thus, non-translatable types can still be used as pointers, and non-translatable functions
        can be called so long as the linker is aware of the compiled function.
      </p>
      <p>
        {#syntax#}@compileError{#endsyntax#} is used when top-level definitions (global variables,
        function prototypes, macros) cannot be translated or demoted. Since Zig uses lazy analysis for
        top-level declarations, untranslatable entities will not cause a compile error in your code unless
        you actually use them.
      </p>
      {#see_also|opaque|extern|@compileError#}
      {#header_close#}
      {#header_open|C Macros#}
      <p>
        C Translation makes a best-effort attempt to translate function-like macros into equivalent
        Zig functions. Since C macros operate at the level of lexical tokens, not all C macros
        can be translated to Zig. Macros that cannot be translated will be demoted to
        {#syntax#}@compileError{#endsyntax#}. Note that C code which <em>uses</em> macros will be
        translated without any additional issues (since Zig operates on the pre-processed source
        with macros expanded). It is merely the macros themselves which may not be translatable to
        Zig.
      </p>
      <p>Consider the following example:</p>
      {#syntax_block|c|macro.c#}
#define MAKELOCAL(NAME, INIT) int NAME = INIT
int foo(void) {
   MAKELOCAL(a, 1);
   MAKELOCAL(b, 2);
   return a + b;
}
      {#end_syntax_block#}
      {#shell_samp#}$ zig translate-c macro.c > macro.zig{#end_shell_samp#}
      {#code|macro.zig#}

      <p>Note that {#syntax#}foo{#endsyntax#} was translated correctly despite using a non-translatable
        macro. {#syntax#}MAKELOCAL{#endsyntax#} was demoted to {#syntax#}@compileError{#endsyntax#} since
        it cannot be expressed as a Zig function; this simply means that you cannot directly use
        {#syntax#}MAKELOCAL{#endsyntax#} from Zig.
      </p>
      {#see_also|@compileError#}
      {#header_close#}

      {#header_open|C Pointers#}
      <p>
      This type is to be avoided whenever possible. The only valid reason for using a C pointer is in
      auto-generated code from translating C code.
      </p>
      <p>
      When importing C header files, it is ambiguous whether pointers should be translated as
      single-item pointers ({#syntax#}*T{#endsyntax#}) or many-item pointers ({#syntax#}[*]T{#endsyntax#}).
      C pointers are a compromise so that Zig code can utilize translated header files directly.
      </p>
      <p>{#syntax#}[*c]T{#endsyntax#} - C pointer.</p>
      <ul>
        <li>Supports all the syntax of the other two pointer types ({#syntax#}*T{#endsyntax#}) and ({#syntax#}[*]T{#endsyntax#}).</li>
        <li>Coerces to other pointer types, as well as {#link|Optional Pointers#}.
            When a C pointer is coerced to a non-optional pointer, safety-checked
            {#link|Illegal Behavior#} occurs if the address is 0.
        </li>
        <li>Allows address 0. On non-freestanding targets, dereferencing address 0 is safety-checked
            {#link|Illegal Behavior#}. Optional C pointers introduce another bit to keep track of
            null, just like {#syntax#}?usize{#endsyntax#}. Note that creating an optional C pointer
            is unnecessary as one can use normal {#link|Optional Pointers#}.
        </li>
        <li>Supports {#link|Type Coercion#} to and from integers.</li>
        <li>Supports comparison with integers.</li>
        <li>Does not support Zig-only pointer attributes such as alignment. Use normal {#link|Pointers#}
        please!</li>
      </ul>
      <p>When a C pointer is pointing to a single struct (not an array), dereference the C pointer to
        access the struct's fields or member data. That syntax looks like
        this: </p>
        <p>{#syntax#}ptr_to_struct.*.struct_member{#endsyntax#}</p>
        <p>This is comparable to doing {#syntax#}->{#endsyntax#} in C.</p>
        <p> When a C pointer is pointing to an array of structs, the syntax reverts to this:</p>
        <p>{#syntax#}ptr_to_struct_array[index].struct_member{#endsyntax#}</p>
      {#header_close#}

      {#header_open|C Variadic Functions#}
      <p>Zig supports extern variadic functions.</p>
      {#code|test_variadic_function.zig#}

      <p>
        Variadic functions can be implemented using {#link|@cVaStart#}, {#link|@cVaEnd#}, {#link|@cVaArg#} and {#link|@cVaCopy#}.
      </p>
      {#code|test_defining_variadic_function.zig#}

      {#header_close#}
      {#header_open|Exporting a C Library#}
      <p>
      One of the primary use cases for Zig is exporting a library with the C ABI for other programming languages
      to call into. The {#syntax#}export{#endsyntax#} keyword in front of functions, variables, and types causes them to
      be part of the library API:
      </p>
      {#code|mathtest.zig#}

      <p>To make a static library:</p>
      {#shell_samp#}$ zig build-lib mathtest.zig{#end_shell_samp#}
      <p>To make a shared library:</p>
      {#shell_samp#}$ zig build-lib mathtest.zig -dynamic{#end_shell_samp#}
      <p>Here is an example with the {#link|Zig Build System#}:</p>
      {#syntax_block|c|test.c#}
// This header is generated by zig from mathtest.zig
#include "mathtest.h"
#include <stdio.h>

int main(int argc, char **argv) {
    int32_t result = add(42, 1337);
    printf("%d\n", result);
    return 0;
}
      {#end_syntax_block#}
      {#code|build_c.zig#}

      {#shell_samp#}$ zig build test
1379{#end_shell_samp#}
      {#see_also|export#}
      {#header_close#}
      {#header_open|Mixing Object Files#}
      <p>
      You can mix Zig object files with any other object files that respect the C ABI. Example:
      </p>
      {#code|base64.zig#}

      {#syntax_block|c|test.c#}
// This header is generated by zig from base64.zig
#include "base64.h"

#include <string.h>
#include <stdio.h>

int main(int argc, char **argv) {
    const char *encoded = "YWxsIHlvdXIgYmFzZSBhcmUgYmVsb25nIHRvIHVz";
    char buf[200];

    size_t len = decode_base_64(buf, 200, encoded, strlen(encoded));
    buf[len] = 0;
    puts(buf);

    return 0;
}
      {#end_syntax_block#}
      {#code|build_object.zig#}

      {#shell_samp#}$ zig build
$ ./zig-out/bin/test
all your base are belong to us{#end_shell_samp#}
      {#see_also|Targets|Zig Build System#}
      {#header_close#}
      {#header_close#}
      {#header_open|WebAssembly#}
      <p>Zig supports building for WebAssembly out of the box.</p>
      {#header_open|Freestanding#}
      <p>For host environments like the web browser and nodejs, build as an executable using the freestanding
      OS target. Here's an example of running Zig code compiled to WebAssembly with nodejs.</p>
      {#code|math.zig#}

      {#syntax_block|javascript|test.js#}
const fs = require('fs');
const source = fs.readFileSync("./math.wasm");
const typedArray = new Uint8Array(source);

WebAssembly.instantiate(typedArray, {
  env: {
    print: (result) => { console.log(`The result is ${result}`); }
  }}).then(result => {
  const add = result.instance.exports.add;
  add(1, 2);
});
      {#end_syntax_block#}
      {#shell_samp#}$ node test.js
The result is 3{#end_shell_samp#}
      {#header_close#}
      {#header_open|WASI#}
      <p>Zig's support for WebAssembly System Interface (WASI) is under active development.
      Example of using the standard library and reading command line arguments:</p>
      {#code|wasi_args.zig#}

      {#shell_samp#}$ wasmtime wasi_args.wasm 123 hello
0: wasi_args.wasm
1: 123
2: hello{#end_shell_samp#}
      <p>A more interesting example would be extracting the list of preopens from the runtime.
      This is now supported in the standard library via {#syntax#}std.fs.wasi.Preopens{#endsyntax#}:</p>
      {#code|wasi_preopens.zig#}

      {#shell_samp#}$ wasmtime --dir=. wasi_preopens.wasm
0: stdin
1: stdout
2: stderr
3: .
      {#end_shell_samp#}
      {#header_close#}
      {#header_close#}
      {#header_open|Targets#}
      <p>
      <strong>Target</strong> refers to the computer that will be used to run an executable.
      It is composed of the CPU architecture, the set of enabled CPU features, operating system,
      minimum and maximum operating system version, ABI, and ABI version.
      </p>
      <p>
      Zig is a general-purpose programming language which means that it is designed to
      generate optimal code for a large set of targets. The command <code>zig targets</code>
      provides information about all of the targets the compiler is aware of.</p>
      <p>When no target option is provided to the compiler, the default choice
      is to target the <strong>host computer</strong>, meaning that the
      resulting executable will be <em>unsuitable for copying to a different
      computer</em>. In order to copy an executable to another computer, the compiler
      needs to know about the target requirements via the <code>-target</code> option.
      </p>
      <p>
      The Zig Standard Library ({#syntax#}@import("std"){#endsyntax#}) has
      cross-platform abstractions, making the same source code viable on many targets.
      Some code is more portable than other code. In general, Zig code is extremely
      portable compared to other programming languages.
      </p>
      <p>
      Each platform requires its own implementations to make Zig's
      cross-platform abstractions work. These implementations are at various
      degrees of completion. Each tagged release of the compiler comes with
      release notes that provide the full support table for each target.
      </p>
      {#header_close#}
      {#header_open|Style Guide#}
      <p>
These coding conventions are not enforced by the compiler, but they are shipped in
this documentation along with the compiler in order to provide a point of
reference, should anyone wish to point to an authority on agreed upon Zig
coding style.
      </p>
      {#header_open|Avoid Redundancy in Names#}
      <p>Avoid these words in type names:</p>
      <ul>
        <li>Value</li>
        <li>Data</li>
        <li>Context</li>
        <li>Manager</li>
        <li>utils, misc, or somebody's initials</li>
      </ul>
      <p>Everything is a value, all types are data, everything is context, all logic manages state.
      Nothing is communicated by using a word that applies to all types.</p>
      <p>Temptation to use "utilities", "miscellaneous", or somebody's initials
      is a failure to categorize, or more commonly, overcategorization. Such
      declarations can live at the root of a module that needs them with no
      namespace needed.</p>
      {#header_close#}

      {#header_open|Avoid Redundant Names in Fully-Qualified Namespaces#}
      <p>Every declaration is assigned a <strong>fully qualified
      namespace</strong> by the compiler, creating a tree structure. Choose names based
      on the fully-qualified namespace, and avoid redundant name segments.</p>
      {#code|redundant_fqn.zig#}

      <p>In this example, "json" is repeated in the fully-qualified namespace. The solution
      is to delete <code>Json</code> from <code>JsonValue</code>. In this example we have
      an empty struct named <code>json</code> but remember that files also act
      as part of the fully-qualified namespace.</p>
      <p>This example is an exception to the rule specified in {#link|Avoid Redundancy in Names#}.
      The meaning of the type has been reduced to its core: it is a json value. The name
      cannot be any more specific without being incorrect.</p>
      {#header_close#}

      {#header_open|Whitespace#}
      <ul>
        <li>
          4 space indentation
        </li>
        <li>
          Open braces on same line, unless you need to wrap.
        </li>
        <li>If a list of things is longer than 2, put each item on its own line and
          exercise the ability to put an extra comma at the end.
        </li>
        <li>
          Line length: aim for 100; use common sense.
        </li>
      </ul>
      {#header_close#}
      {#header_open|Names#}
      <p>
      Roughly speaking: {#syntax#}camelCaseFunctionName{#endsyntax#}, {#syntax#}TitleCaseTypeName{#endsyntax#},
              {#syntax#}snake_case_variable_name{#endsyntax#}. More precisely:
      </p>
      <ul>
        <li>
            If {#syntax#}x{#endsyntax#} is a {#syntax#}type{#endsyntax#}
            then {#syntax#}x{#endsyntax#} should be {#syntax#}TitleCase{#endsyntax#}, unless it
            is a {#syntax#}struct{#endsyntax#} with 0 fields and is never meant to be instantiated,
            in which case it is considered to be a "namespace" and uses {#syntax#}snake_case{#endsyntax#}.
        </li>
        <li>
            If {#syntax#}x{#endsyntax#} is callable, and {#syntax#}x{#endsyntax#}'s return type is
            {#syntax#}type{#endsyntax#}, then {#syntax#}x{#endsyntax#} should be {#syntax#}TitleCase{#endsyntax#}.
        </li>
        <li>
            If {#syntax#}x{#endsyntax#} is otherwise callable, then {#syntax#}x{#endsyntax#} should
            be {#syntax#}camelCase{#endsyntax#}.
        </li>
        <li>
            Otherwise, {#syntax#}x{#endsyntax#} should be {#syntax#}snake_case{#endsyntax#}.
        </li>
      </ul>
      <p>
      Acronyms, initialisms, proper nouns, or any other word that has capitalization
      rules in written English are subject to naming conventions just like any other
      word. Even acronyms that are only 2 letters long are subject to these
      conventions.
      </p>
      <p>
      File names fall into two categories: types and namespaces. If the file
      (implicitly a struct) has top level fields, it should be named like any
      other struct with fields using <code class="file">TitleCase</code>. Otherwise,
      it should use <code class="file">snake_case</code>. Directory names should be
      <code class="file">snake_case</code>.
      </p>
      <p>
      These are general rules of thumb; if it makes sense to do something different,
      do what makes sense. For example, if there is an established convention such as
      {#syntax#}ENOENT{#endsyntax#}, follow the established convention.
      </p>
      {#header_close#}
      {#header_open|Examples#}
      {#syntax_block|zig|style_example.zig#}
const namespace_name = @import("dir_name/file_name.zig");
const TypeName = @import("dir_name/TypeName.zig");
var global_var: i32 = undefined;
const const_name = 42;
const primitive_type_alias = f32;
const string_alias = []u8;

const StructName = struct {
    field: i32,
};
const StructAlias = StructName;

fn functionName(param_name: TypeName) void {
    var functionPointer = functionName;
    functionPointer();
    functionPointer = otherFunction;
    functionPointer();
}
const functionAlias = functionName;

fn ListTemplateFunction(comptime ChildType: type, comptime fixed_size: usize) type {
    return List(ChildType, fixed_size);
}

fn ShortList(comptime T: type, comptime n: usize) type {
    return struct {
        field_name: [n]T,
        fn methodName() void {}
    };
}

// The word XML loses its casing when used in Zig identifiers.
const xml_document =
    \\<?xml version="1.0" encoding="UTF-8"?>
    \\<document>
    \\</document>
;
const XmlParser = struct {
    field: i32,
};

// The initials BE (Big Endian) are just another word in Zig identifier names.
fn readU32Be() u32 {}
      {#end_syntax_block#}
      <p>
      See the {#link|Zig Standard Library#} for more examples.
      </p>
      {#header_close#}
      {#header_open|Doc Comment Guidance#}
      <ul>
        <li>Omit any information that is redundant based on the name of the thing being documented.</li>
        <li>Duplicating information onto multiple similar functions is encouraged because it helps IDEs and other tools provide better help text.</li>
        <li>Use the word <strong>assume</strong> to indicate invariants that cause <em>unchecked</em> {#link|Illegal Behavior#} when violated.</li>
        <li>Use the word <strong>assert</strong> to indicate invariants that cause <em>safety-checked</em> {#link|Illegal Behavior#} when violated.</li>
      </ul>
      {#header_close#}
      {#header_close#}
      {#header_open|Source Encoding#}
      <p>Zig source code is encoded in UTF-8. An invalid UTF-8 byte sequence results in a compile error.</p>
      <p>Throughout all zig source code (including in comments), some code points are never allowed:</p>
      <ul>
        <li>Ascii control characters, except for U+000a (LF), U+000d (CR), and U+0009 (HT): U+0000 - U+0008, U+000b - U+000c, U+000e - U+0001f, U+007f.</li>
        <li>Non-Ascii Unicode line endings: U+0085 (NEL), U+2028 (LS), U+2029 (PS).</li>
      </ul>
      <p>
      LF (byte value 0x0a, code point U+000a, {#syntax#}'\n'{#endsyntax#}) is the line terminator in Zig source code.
      This byte value terminates every line of zig source code except the last line of the file.
      It is recommended that non-empty source files end with an empty line, which means the last byte would be 0x0a (LF).
      </p>
      <p>
      Each LF may be immediately preceded by a single CR (byte value 0x0d, code point U+000d, {#syntax#}'\r'{#endsyntax#})
      to form a Windows style line ending, but this is discouraged. Note that in multiline strings, CRLF sequences will
      be encoded as LF when compiled into a zig program.
      A CR in any other context is not allowed.
      </p>
      <p>
      HT hard tabs (byte value 0x09, code point U+0009, {#syntax#}'\t'{#endsyntax#}) are interchangeable with
      SP spaces (byte value 0x20, code point U+0020, {#syntax#}' '{#endsyntax#}) as a token separator,
      but use of hard tabs is discouraged. See {#link|Grammar#}.
      </p>
      <p>
      For compatibility with other tools, the compiler ignores a UTF-8-encoded byte order mark (U+FEFF)
      if it is the first Unicode code point in the source text. A byte order mark is not allowed anywhere else in the source.
      </p>
      <p>
      Note that running <kbd>zig fmt</kbd> on a source file will implement all recommendations mentioned here.
      </p>
      <p>
      Note that a tool reading Zig source code can make assumptions if the source code is assumed to be correct Zig code.
      For example, when identifying the ends of lines, a tool can use a naive search such as <code>/\n/</code>,
      or an <a href="https://msdn.microsoft.com/en-us/library/dd409797.aspx">advanced</a>
      search such as <code>/\r\n?|[\n\u0085\u2028\u2029]/</code>, and in either case line endings will be correctly identified.
      For another example, when identifying the whitespace before the first token on a line,
      a tool can either use a naive search such as <code>/[ \t]/</code>,
      or an <a href="https://tc39.es/ecma262/#sec-characterclassescape">advanced</a> search such as <code>/\s/</code>,
      and in either case whitespace will be correctly identified.
      </p>
      {#header_close#}

      {#header_open|Keyword Reference#}
      <div class="table-wrapper">
      <table>
        <thead>
        <tr>
          <th scope="col">Keyword</th>
          <th scope="col">Description</th>
        </tr>
        </thead>
        <tbody>
        <tr>
          <th scope="row">
            <pre>{#syntax#}addrspace{#endsyntax#}</pre>
          </th>
          <td>
            The {#syntax#}addrspace{#endsyntax#} keyword.
            <ul>
              <li>TODO add documentation for addrspace</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}align{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}align{#endsyntax#} can be used to specify the alignment of a pointer.
            It can also be used after a variable or function declaration to specify the alignment of pointers to that variable or function.
            <ul>
              <li>See also {#link|Alignment#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}allowzero{#endsyntax#}</pre>
          </th>
          <td>
            The pointer attribute {#syntax#}allowzero{#endsyntax#} allows a pointer to have address zero.
            <ul>
              <li>See also {#link|allowzero#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}and{#endsyntax#}</pre>
          </th>
          <td>
            The boolean operator {#syntax#}and{#endsyntax#}.
            <ul>
              <li>See also {#link|Operators#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}anyframe{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}anyframe{#endsyntax#} can be used as a type for variables which hold pointers to function frames.
            <ul>
              <li>See also {#link|Async Functions#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}anytype{#endsyntax#}</pre>
          </th>
          <td>
            Function parameters can be declared with {#syntax#}anytype{#endsyntax#} in place of the type.
            The type will be inferred where the function is called.
            <ul>
              <li>See also {#link|Function Parameter Type Inference#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}asm{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}asm{#endsyntax#} begins an inline assembly expression. This allows for directly controlling the machine code generated on compilation.
            <ul>
              <li>See also {#link|Assembly#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}break{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}break{#endsyntax#} can be used with a block label to return a value from the block.
            It can also be used to exit a loop before iteration completes naturally.
            <ul>
              <li>See also {#link|Blocks#}, {#link|while#}, {#link|for#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}callconv{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}callconv{#endsyntax#} can be used to specify the calling convention in a function type.
            <ul>
              <li>See also {#link|Functions#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}catch{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}catch{#endsyntax#} can be used to evaluate an expression if the expression before it evaluates to an error.
            The expression after the {#syntax#}catch{#endsyntax#} can optionally capture the error value.
            <ul>
              <li>See also {#link|catch#}, {#link|Operators#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}comptime{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}comptime{#endsyntax#} before a declaration can be used to label variables or function parameters as known at compile time.
            It can also be used to guarantee an expression is run at compile time.
            <ul>
              <li>See also {#link|comptime#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}const{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}const{#endsyntax#} declares a variable that can not be modified.
            Used as a pointer attribute, it denotes the value referenced by the pointer cannot be modified.
            <ul>
              <li>See also {#link|Variables#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}continue{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}continue{#endsyntax#} can be used in a loop to jump back to the beginning of the loop.
            <ul>
              <li>See also {#link|while#}, {#link|for#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}defer{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}defer{#endsyntax#} will execute an expression when control flow leaves the current block.
            <ul>
              <li>See also {#link|defer#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}else{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}else{#endsyntax#} can be used to provide an alternate branch for {#syntax#}if{#endsyntax#}, {#syntax#}switch{#endsyntax#},
            {#syntax#}while{#endsyntax#}, and {#syntax#}for{#endsyntax#} expressions.
            <ul>
              <li>If used after an if expression, the else branch will be executed if the test value returns false, null, or an error.</li>
              <li>If used within a switch expression, the else branch will be executed if the test value matches no other cases.</li>
              <li>If used after a loop expression, the else branch will be executed if the loop finishes without breaking.</li>
              <li>See also {#link|if#}, {#link|switch#}, {#link|while#}, {#link|for#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}enum{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}enum{#endsyntax#} defines an enum type.
            <ul>
              <li>See also {#link|enum#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}errdefer{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}errdefer{#endsyntax#} will execute an expression when control flow leaves the current block if the function returns an error, the errdefer expression can capture the unwrapped value.
            <ul>
              <li>See also {#link|errdefer#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}error{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}error{#endsyntax#} defines an error type.
            <ul>
              <li>See also {#link|Errors#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}export{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}export{#endsyntax#} makes a function or variable externally visible in the generated object file.
            Exported functions default to the C calling convention.
            <ul>
              <li>See also {#link|Functions#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}extern{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}extern{#endsyntax#} can be used to declare a function or variable that will be resolved at link time, when linking statically
            or at runtime, when linking dynamically.
            <ul>
              <li>See also {#link|Functions#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}fn{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}fn{#endsyntax#} declares a function.
            <ul>
              <li>See also {#link|Functions#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}for{#endsyntax#}</pre>
          </th>
          <td>
            A {#syntax#}for{#endsyntax#} expression can be used to iterate over the elements of a slice, array, or tuple.
            <ul>
              <li>See also {#link|for#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}if{#endsyntax#}</pre>
          </th>
          <td>
            An {#syntax#}if{#endsyntax#} expression can test boolean expressions, optional values, or error unions.
            For optional values or error unions, the if expression can capture the unwrapped value.
            <ul>
              <li>See also {#link|if#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}inline{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}inline{#endsyntax#} can be used to label a loop expression such that it will be unrolled at compile time.
            It can also be used to force a function to be inlined at all call sites.
            <ul>
              <li>See also {#link|inline while#}, {#link|inline for#}, {#link|Functions#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}linksection{#endsyntax#}</pre>
          </th>
          <td>
            The {#syntax#}linksection{#endsyntax#} keyword can be used to specify what section the function or global variable will be put into (e.g. <code>.text</code>).
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}noalias{#endsyntax#}</pre>
          </th>
          <td>
            The {#syntax#}noalias{#endsyntax#} keyword.
            <ul>
              <li>TODO add documentation for noalias</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}noinline{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}noinline{#endsyntax#} disallows function to be inlined in all call sites.
            <ul>
              <li>See also {#link|Functions#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}nosuspend{#endsyntax#}</pre>
          </th>
          <td>
            The {#syntax#}nosuspend{#endsyntax#} keyword can be used in front of a block, statement or expression, to mark a scope where no suspension points are reached.
            In particular, inside a {#syntax#}nosuspend{#endsyntax#} scope:
            <ul>
              <li>Using the {#syntax#}suspend{#endsyntax#} keyword results in a compile error.</li>
              <li>Using {#syntax#}await{#endsyntax#} on a function frame which hasn't completed yet results in safety-checked {#link|Illegal Behavior#}.</li>
              <li>Calling an async function may result in safety-checked {#link|Illegal Behavior#}, because it's equivalent to <code>await async some_async_fn()</code>, which contains an {#syntax#}await{#endsyntax#}.</li>
            </ul>
            Code inside a {#syntax#}nosuspend{#endsyntax#} scope does not cause the enclosing function to become an {#link|async function|Async Functions#}.
            <ul>
              <li>See also {#link|Async Functions#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}opaque{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}opaque{#endsyntax#} defines an opaque type.
            <ul>
              <li>See also {#link|opaque#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}or{#endsyntax#}</pre>
          </th>
          <td>
            The boolean operator {#syntax#}or{#endsyntax#}.
            <ul>
              <li>See also {#link|Operators#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}orelse{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}orelse{#endsyntax#} can be used to evaluate an expression if the expression before it evaluates to null.
            <ul>
              <li>See also {#link|Optionals#}, {#link|Operators#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}packed{#endsyntax#}</pre>
          </th>
          <td>
            The {#syntax#}packed{#endsyntax#} keyword before a struct definition changes the struct's in-memory layout
            to the guaranteed {#syntax#}packed{#endsyntax#} layout.
            <ul>
              <li>See also {#link|packed struct#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}pub{#endsyntax#}</pre>
          </th>
          <td>
            The {#syntax#}pub{#endsyntax#} in front of a top level declaration makes the declaration available
            to reference from a different file than the one it is declared in.
            <ul>
              <li>See also {#link|import#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}resume{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}resume{#endsyntax#} will continue execution of a function frame after the point the function was suspended.
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}return{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}return{#endsyntax#} exits a function with a value.
            <ul>
              <li>See also {#link|Functions#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}struct{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}struct{#endsyntax#} defines a struct.
            <ul>
              <li>See also {#link|struct#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}suspend{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}suspend{#endsyntax#} will cause control flow to return to the call site or resumer of the function.
            {#syntax#}suspend{#endsyntax#} can also be used before a block within a function,
            to allow the function access to its frame before control flow returns to the call site.
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}switch{#endsyntax#}</pre>
          </th>
          <td>
            A {#syntax#}switch{#endsyntax#} expression can be used to test values of a common type.
            {#syntax#}switch{#endsyntax#} cases can capture field values of a {#link|Tagged union#}.
            <ul>
              <li>See also {#link|switch#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}test{#endsyntax#}</pre>
          </th>
          <td>
            The {#syntax#}test{#endsyntax#} keyword can be used to denote a top-level block of code
            used to make sure behavior meets expectations.
            <ul>
              <li>See also {#link|Zig Test#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}threadlocal{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}threadlocal{#endsyntax#} can be used to specify a variable as thread-local.
            <ul>
              <li>See also {#link|Thread Local Variables#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}try{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}try{#endsyntax#} evaluates an error union expression.
            If it is an error, it returns from the current function with the same error.
            Otherwise, the expression results in the unwrapped value.
            <ul>
              <li>See also {#link|try#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}union{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}union{#endsyntax#} defines a union.
            <ul>
              <li>See also {#link|union#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}unreachable{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}unreachable{#endsyntax#} can be used to assert that control flow will never happen upon a particular location.
            Depending on the build mode, {#syntax#}unreachable{#endsyntax#} may emit a panic.
            <ul>
              <li>Emits a panic in {#syntax#}Debug{#endsyntax#} and {#syntax#}ReleaseSafe{#endsyntax#} mode, or when using <kbd>zig test</kbd>.</li>
              <li>Does not emit a panic in {#syntax#}ReleaseFast{#endsyntax#} and {#syntax#}ReleaseSmall{#endsyntax#} mode.</li>
              <li>See also {#link|unreachable#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}var{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}var{#endsyntax#} declares a variable that may be modified.
            <ul>
              <li>See also {#link|Variables#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}volatile{#endsyntax#}</pre>
          </th>
          <td>
            {#syntax#}volatile{#endsyntax#} can be used to denote loads or stores of a pointer have side effects.
            It can also modify an inline assembly expression to denote it has side effects.
            <ul>
              <li>See also {#link|volatile#}, {#link|Assembly#}</li>
            </ul>
          </td>
        </tr>
        <tr>
          <th scope="row">
            <pre>{#syntax#}while{#endsyntax#}</pre>
          </th>
          <td>
            A {#syntax#}while{#endsyntax#} expression can be used to repeatedly test a boolean, optional, or error union expression,
            and cease looping when that expression evaluates to false, null, or an error, respectively.
            <ul>
              <li>See also {#link|while#}</li>
            </ul>
          </td>
        </tr>
        </tbody>
      </table>
      </div>
      {#header_close#}

      {#header_open|Appendix#}
      {#header_open|Containers#}
      <p>
      A <em>container</em> in Zig is any syntactical construct that acts as a namespace to hold {#link|variable|Container Level Variables#} and {#link|function|Functions#} declarations.
      Containers are also type definitions which can be instantiated.
      {#link|Structs|struct#}, {#link|enums|enum#}, {#link|unions|union#}, {#link|opaques|opaque#}, and even Zig source files themselves are containers.
      </p>
      <p>
      Although containers (except Zig source files) use curly braces to surround their definition, they should not be confused with {#link|blocks|Blocks#} or functions.
      Containers do not contain statements.
      </p>
      {#header_close#}

      {#header_open|Grammar#}
      {#syntax_block|peg|grammar.peg#}
Root <- skip ContainerMembers eof

# *** Top level ***
ContainerMembers <- container_doc_comment? ContainerDeclaration* (ContainerField COMMA)* (ContainerField / ContainerDeclaration*)

ContainerDeclaration <- TestDecl / ComptimeDecl / doc_comment? KEYWORD_pub? Decl

TestDecl <- KEYWORD_test (STRINGLITERALSINGLE / IDENTIFIER)? Block

ComptimeDecl <- KEYWORD_comptime Block

Decl
    <- (KEYWORD_export / KEYWORD_extern STRINGLITERALSINGLE? / KEYWORD_inline / KEYWORD_noinline)? FnProto (SEMICOLON / Block)
     / (KEYWORD_export / KEYWORD_extern STRINGLITERALSINGLE?)? KEYWORD_threadlocal? GlobalVarDecl

FnProto <- KEYWORD_fn IDENTIFIER? LPAREN ParamDeclList RPAREN ByteAlign? AddrSpace? LinkSection? CallConv? EXCLAMATIONMARK? TypeExpr

VarDeclProto <- (KEYWORD_const / KEYWORD_var) IDENTIFIER (COLON TypeExpr)? ByteAlign? AddrSpace? LinkSection?

GlobalVarDecl <- VarDeclProto (EQUAL Expr)? SEMICOLON

ContainerField <- doc_comment? KEYWORD_comptime? !KEYWORD_fn (IDENTIFIER COLON)? TypeExpr ByteAlign? (EQUAL Expr)?

# *** Block Level ***
Statement
    <- KEYWORD_comptime ComptimeStatement
     / KEYWORD_nosuspend BlockExprStatement
     / KEYWORD_suspend BlockExprStatement
     / KEYWORD_defer BlockExprStatement
     / KEYWORD_errdefer Payload? BlockExprStatement
     / IfStatement
     / LabeledStatement
     / VarDeclExprStatement

ComptimeStatement
    <- BlockExpr
     / VarDeclExprStatement

IfStatement
    <- IfPrefix BlockExpr ( KEYWORD_else Payload? Statement )?
     / IfPrefix AssignExpr ( SEMICOLON / KEYWORD_else Payload? Statement )

LabeledStatement <- BlockLabel? (Block / LoopStatement / SwitchExpr)

LoopStatement <- KEYWORD_inline? (ForStatement / WhileStatement)

ForStatement
    <- ForPrefix BlockExpr ( KEYWORD_else Statement )?
     / ForPrefix AssignExpr ( SEMICOLON / KEYWORD_else Statement )

WhileStatement
    <- WhilePrefix BlockExpr ( KEYWORD_else Payload? Statement )?
     / WhilePrefix AssignExpr ( SEMICOLON / KEYWORD_else Payload? Statement )

BlockExprStatement
    <- BlockExpr
     / AssignExpr SEMICOLON

BlockExpr <- BlockLabel? Block

# An expression, assignment, or any destructure, as a statement.
VarDeclExprStatement
    <- VarDeclProto (COMMA (VarDeclProto / Expr))* EQUAL Expr SEMICOLON
     / Expr (AssignOp Expr / (COMMA (VarDeclProto / Expr))+ EQUAL Expr)? SEMICOLON

# *** Expression Level ***

# An assignment or a destructure whose LHS are all lvalue expressions.
AssignExpr <- Expr (AssignOp Expr / (COMMA Expr)+ EQUAL Expr)?

SingleAssignExpr <- Expr (AssignOp Expr)?

Expr <- BoolOrExpr

BoolOrExpr <- BoolAndExpr (KEYWORD_or BoolAndExpr)*

BoolAndExpr <- CompareExpr (KEYWORD_and CompareExpr)*

CompareExpr <- BitwiseExpr (CompareOp BitwiseExpr)?

BitwiseExpr <- BitShiftExpr (BitwiseOp BitShiftExpr)*

BitShiftExpr <- AdditionExpr (BitShiftOp AdditionExpr)*

AdditionExpr <- MultiplyExpr (AdditionOp MultiplyExpr)*

MultiplyExpr <- PrefixExpr (MultiplyOp PrefixExpr)*

PrefixExpr <- PrefixOp* PrimaryExpr

PrimaryExpr
    <- AsmExpr
     / IfExpr
     / KEYWORD_break BreakLabel? Expr?
     / KEYWORD_comptime Expr
     / KEYWORD_nosuspend Expr
     / KEYWORD_continue BreakLabel? Expr?
     / KEYWORD_resume Expr
     / KEYWORD_return Expr?
     / BlockLabel? LoopExpr
     / Block
     / CurlySuffixExpr

IfExpr <- IfPrefix Expr (KEYWORD_else Payload? Expr)?

Block <- LBRACE Statement* RBRACE

LoopExpr <- KEYWORD_inline? (ForExpr / WhileExpr)

ForExpr <- ForPrefix Expr (KEYWORD_else Expr)?

WhileExpr <- WhilePrefix Expr (KEYWORD_else Payload? Expr)?

CurlySuffixExpr <- TypeExpr InitList?

InitList
    <- LBRACE FieldInit (COMMA FieldInit)* COMMA? RBRACE
     / LBRACE Expr (COMMA Expr)* COMMA? RBRACE
     / LBRACE RBRACE

TypeExpr <- PrefixTypeOp* ErrorUnionExpr

ErrorUnionExpr <- SuffixExpr (EXCLAMATIONMARK TypeExpr)?

SuffixExpr
    <- PrimaryTypeExpr (SuffixOp / FnCallArguments)*

PrimaryTypeExpr
    <- BUILTINIDENTIFIER FnCallArguments
     / CHAR_LITERAL
     / ContainerDecl
     / DOT IDENTIFIER
     / DOT InitList
     / ErrorSetDecl
     / FLOAT
     / FnProto
     / GroupedExpr
     / LabeledTypeExpr
     / IDENTIFIER
     / IfTypeExpr
     / INTEGER
     / KEYWORD_comptime TypeExpr
     / KEYWORD_error DOT IDENTIFIER
     / KEYWORD_anyframe
     / KEYWORD_unreachable
     / STRINGLITERAL

ContainerDecl <- (KEYWORD_extern / KEYWORD_packed)? ContainerDeclAuto

ErrorSetDecl <- KEYWORD_error LBRACE IdentifierList RBRACE

GroupedExpr <- LPAREN Expr RPAREN

IfTypeExpr <- IfPrefix TypeExpr (KEYWORD_else Payload? TypeExpr)?

LabeledTypeExpr
    <- BlockLabel Block
     / BlockLabel? LoopTypeExpr
     / BlockLabel? SwitchExpr

LoopTypeExpr <- KEYWORD_inline? (ForTypeExpr / WhileTypeExpr)

ForTypeExpr <- ForPrefix TypeExpr (KEYWORD_else TypeExpr)?

WhileTypeExpr <- WhilePrefix TypeExpr (KEYWORD_else Payload? TypeExpr)?

SwitchExpr <- KEYWORD_switch LPAREN Expr RPAREN LBRACE SwitchProngList RBRACE

# *** Assembly ***
AsmExpr <- KEYWORD_asm KEYWORD_volatile? LPAREN Expr AsmOutput? RPAREN

AsmOutput <- COLON AsmOutputList AsmInput?

AsmOutputItem <- LBRACKET IDENTIFIER RBRACKET STRINGLITERAL LPAREN (MINUSRARROW TypeExpr / IDENTIFIER) RPAREN

AsmInput <- COLON AsmInputList AsmClobbers?

AsmInputItem <- LBRACKET IDENTIFIER RBRACKET STRINGLITERAL LPAREN Expr RPAREN

AsmClobbers <- COLON Expr

# *** Helper grammar ***
BreakLabel <- COLON IDENTIFIER

BlockLabel <- IDENTIFIER COLON

FieldInit <- DOT IDENTIFIER EQUAL Expr

WhileContinueExpr <- COLON LPAREN AssignExpr RPAREN

LinkSection <- KEYWORD_linksection LPAREN Expr RPAREN

AddrSpace <- KEYWORD_addrspace LPAREN Expr RPAREN

# Fn specific
CallConv <- KEYWORD_callconv LPAREN Expr RPAREN

ParamDecl
    <- doc_comment? (KEYWORD_noalias / KEYWORD_comptime)? (IDENTIFIER COLON)? ParamType
     / DOT3

ParamType
    <- KEYWORD_anytype
     / TypeExpr

# Control flow prefixes
IfPrefix <- KEYWORD_if LPAREN Expr RPAREN PtrPayload?

WhilePrefix <- KEYWORD_while LPAREN Expr RPAREN PtrPayload? WhileContinueExpr?

ForPrefix <- KEYWORD_for LPAREN ForArgumentsList RPAREN PtrListPayload

# Payloads
Payload <- PIPE IDENTIFIER PIPE

PtrPayload <- PIPE ASTERISK? IDENTIFIER PIPE

PtrIndexPayload <- PIPE ASTERISK? IDENTIFIER (COMMA IDENTIFIER)? PIPE

PtrListPayload <- PIPE ASTERISK? IDENTIFIER (COMMA ASTERISK? IDENTIFIER)* COMMA? PIPE

# Switch specific
SwitchProng <- KEYWORD_inline? SwitchCase EQUALRARROW PtrIndexPayload? SingleAssignExpr

SwitchCase
    <- SwitchItem (COMMA SwitchItem)* COMMA?
     / KEYWORD_else

SwitchItem <- Expr (DOT3 Expr)?

# For specific
ForArgumentsList <- ForItem (COMMA ForItem)* COMMA?

ForItem <- Expr (DOT2 Expr?)?

# Operators
AssignOp
    <- ASTERISKEQUAL
     / ASTERISKPIPEEQUAL
     / SLASHEQUAL
     / PERCENTEQUAL
     / PLUSEQUAL
     / PLUSPIPEEQUAL
     / MINUSEQUAL
     / MINUSPIPEEQUAL
     / LARROW2EQUAL
     / LARROW2PIPEEQUAL
     / RARROW2EQUAL
     / AMPERSANDEQUAL
     / CARETEQUAL
     / PIPEEQUAL
     / ASTERISKPERCENTEQUAL
     / PLUSPERCENTEQUAL
     / MINUSPERCENTEQUAL
     / EQUAL

CompareOp
    <- EQUALEQUAL
     / EXCLAMATIONMARKEQUAL
     / LARROW
     / RARROW
     / LARROWEQUAL
     / RARROWEQUAL

BitwiseOp
    <- AMPERSAND
     / CARET
     / PIPE
     / KEYWORD_orelse
     / KEYWORD_catch Payload?

BitShiftOp
    <- LARROW2
     / RARROW2
     / LARROW2PIPE

AdditionOp
    <- PLUS
     / MINUS
     / PLUS2
     / PLUSPERCENT
     / MINUSPERCENT
     / PLUSPIPE
     / MINUSPIPE

MultiplyOp
    <- PIPE2
     / ASTERISK
     / SLASH
     / PERCENT
     / ASTERISK2
     / ASTERISKPERCENT
     / ASTERISKPIPE

PrefixOp
    <- EXCLAMATIONMARK
     / MINUS
     / TILDE
     / MINUSPERCENT
     / AMPERSAND
     / KEYWORD_try

PrefixTypeOp
    <- QUESTIONMARK
     / KEYWORD_anyframe MINUSRARROW
     / SliceTypeStart (ByteAlign / AddrSpace / KEYWORD_const / KEYWORD_volatile / KEYWORD_allowzero)*
     / PtrTypeStart (AddrSpace / KEYWORD_align LPAREN Expr (COLON Expr COLON Expr)? RPAREN / KEYWORD_const / KEYWORD_volatile / KEYWORD_allowzero)*
     / ArrayTypeStart

SuffixOp
    <- LBRACKET Expr (DOT2 (Expr? (COLON Expr)?)?)? RBRACKET
     / DOT IDENTIFIER
     / DOTASTERISK
     / DOTQUESTIONMARK

FnCallArguments <- LPAREN ExprList RPAREN

# Ptr specific
SliceTypeStart <- LBRACKET (COLON Expr)? RBRACKET

PtrTypeStart
    <- ASTERISK
     / ASTERISK2
     / LBRACKET ASTERISK (LETTERC / COLON Expr)? RBRACKET

ArrayTypeStart <- LBRACKET Expr (COLON Expr)? RBRACKET

# ContainerDecl specific
ContainerDeclAuto <- ContainerDeclType LBRACE ContainerMembers RBRACE

ContainerDeclType
    <- KEYWORD_struct (LPAREN Expr RPAREN)?
     / KEYWORD_opaque
     / KEYWORD_enum (LPAREN Expr RPAREN)?
     / KEYWORD_union (LPAREN (KEYWORD_enum (LPAREN Expr RPAREN)? / Expr) RPAREN)?

# Alignment
ByteAlign <- KEYWORD_align LPAREN Expr RPAREN

# Lists
IdentifierList <- (doc_comment? IDENTIFIER COMMA)* (doc_comment? IDENTIFIER)?

SwitchProngList <- (SwitchProng COMMA)* SwitchProng?

AsmOutputList <- (AsmOutputItem COMMA)* AsmOutputItem?

AsmInputList <- (AsmInputItem COMMA)* AsmInputItem?

ParamDeclList <- (ParamDecl COMMA)* ParamDecl?

ExprList <- (Expr COMMA)* Expr?

# *** Tokens ***
eof <- !.
bin <- [01]
bin_ <- '_'? bin
oct <- [0-7]
oct_ <- '_'? oct
hex <- [0-9a-fA-F]
hex_ <- '_'? hex
dec <- [0-9]
dec_ <- '_'? dec

bin_int <- bin bin_*
oct_int <- oct oct_*
dec_int <- dec dec_*
hex_int <- hex hex_*

ox80_oxBF <- [\200-\277]
oxF4 <- '\364'
ox80_ox8F <- [\200-\217]
oxF1_oxF3 <- [\361-\363]
oxF0 <- '\360'
ox90_0xBF <- [\220-\277]
oxEE_oxEF <- [\356-\357]
oxED <- '\355'
ox80_ox9F <- [\200-\237]
oxE1_oxEC <- [\341-\354]
oxE0 <- '\340'
oxA0_oxBF <- [\240-\277]
oxC2_oxDF <- [\302-\337]

# From https://lemire.me/blog/2018/05/09/how-quickly-can-you-check-that-a-string-is-valid-unicode-utf-8/
# First Byte      Second Byte     Third Byte      Fourth Byte
# [0x00,0x7F]
# [0xC2,0xDF]     [0x80,0xBF]
#    0xE0         [0xA0,0xBF]     [0x80,0xBF]
# [0xE1,0xEC]     [0x80,0xBF]     [0x80,0xBF]
#    0xED         [0x80,0x9F]     [0x80,0xBF]
# [0xEE,0xEF]     [0x80,0xBF]     [0x80,0xBF]
#    0xF0         [0x90,0xBF]     [0x80,0xBF]     [0x80,0xBF]
# [0xF1,0xF3]     [0x80,0xBF]     [0x80,0xBF]     [0x80,0xBF]
#    0xF4         [0x80,0x8F]     [0x80,0xBF]     [0x80,0xBF]

multibyte_utf8 <-
       oxF4      ox80_ox8F ox80_oxBF ox80_oxBF
     / oxF1_oxF3 ox80_oxBF ox80_oxBF ox80_oxBF
     / oxF0      ox90_0xBF ox80_oxBF ox80_oxBF
     / oxEE_oxEF ox80_oxBF ox80_oxBF
     / oxED      ox80_ox9F ox80_oxBF
     / oxE1_oxEC ox80_oxBF ox80_oxBF
     / oxE0      oxA0_oxBF ox80_oxBF
     / oxC2_oxDF ox80_oxBF

non_control_ascii <- [\040-\176]

char_escape
    <- "\\x" hex hex
     / "\\u{" hex+ "}"
     / "\\" [nr\\t'"]
char_char
    <- multibyte_utf8
     / char_escape
     / ![\\'\n] non_control_ascii

string_char
    <- multibyte_utf8
     / char_escape
     / ![\\"\n] non_control_ascii

container_doc_comment <- ('//!' [^\n]* [ \n]* skip)+
doc_comment <- ('///' [^\n]* [ \n]* skip)+
line_comment <- '//' ![!/][^\n]* / '////' [^\n]*
line_string <- ('\\\\' [^\n]* [ \n]*)+
skip <- ([ \n] / line_comment)*

CHAR_LITERAL <- ['] char_char ['] skip
FLOAT
    <- '0x' hex_int '.' hex_int ([pP] [-+]? dec_int)? skip
     /      dec_int '.' dec_int ([eE] [-+]? dec_int)? skip
     / '0x' hex_int [pP] [-+]? dec_int skip
     /      dec_int [eE] [-+]? dec_int skip
INTEGER
    <- '0b' bin_int skip
     / '0o' oct_int skip
     / '0x' hex_int skip
     /      dec_int   skip
STRINGLITERALSINGLE <- ["] string_char* ["] skip
STRINGLITERAL
    <- STRINGLITERALSINGLE
     / (line_string                 skip)+
IDENTIFIER
    <- !keyword [A-Za-z_] [A-Za-z0-9_]* skip
     / '@' STRINGLITERALSINGLE
BUILTINIDENTIFIER <- '@'[A-Za-z_][A-Za-z0-9_]* skip


AMPERSAND            <- '&'      ![=]      skip
AMPERSANDEQUAL       <- '&='               skip
ASTERISK             <- '*'      ![*%=|]   skip
ASTERISK2            <- '**'               skip
ASTERISKEQUAL        <- '*='               skip
ASTERISKPERCENT      <- '*%'     ![=]      skip
ASTERISKPERCENTEQUAL <- '*%='              skip
ASTERISKPIPE         <- '*|'     ![=]      skip
ASTERISKPIPEEQUAL    <- '*|='              skip
CARET                <- '^'      ![=]      skip
CARETEQUAL           <- '^='               skip
COLON                <- ':'                skip
COMMA                <- ','                skip
DOT                  <- '.'      ![*.?]    skip
DOT2                 <- '..'     ![.]      skip
DOT3                 <- '...'              skip
DOTASTERISK          <- '.*'               skip
DOTQUESTIONMARK      <- '.?'               skip
EQUAL                <- '='      ![>=]     skip
EQUALEQUAL           <- '=='               skip
EQUALRARROW          <- '=>'               skip
EXCLAMATIONMARK      <- '!'      ![=]      skip
EXCLAMATIONMARKEQUAL <- '!='               skip
LARROW               <- '<'      ![<=]     skip
LARROW2              <- '<<'     ![=|]     skip
LARROW2EQUAL         <- '<<='              skip
LARROW2PIPE          <- '<<|'    ![=]      skip
LARROW2PIPEEQUAL     <- '<<|='             skip
LARROWEQUAL          <- '<='               skip
LBRACE               <- '{'                skip
LBRACKET             <- '['                skip
LPAREN               <- '('                skip
MINUS                <- '-'      ![%=>|]   skip
MINUSEQUAL           <- '-='               skip
MINUSPERCENT         <- '-%'     ![=]      skip
MINUSPERCENTEQUAL    <- '-%='              skip
MINUSPIPE            <- '-|'     ![=]      skip
MINUSPIPEEQUAL       <- '-|='              skip
MINUSRARROW          <- '->'               skip
PERCENT              <- '%'      ![=]      skip
PERCENTEQUAL         <- '%='               skip
PIPE                 <- '|'      ![|=]     skip
PIPE2                <- '||'               skip
PIPEEQUAL            <- '|='               skip
PLUS                 <- '+'      ![%+=|]   skip
PLUS2                <- '++'               skip
PLUSEQUAL            <- '+='               skip
PLUSPERCENT          <- '+%'     ![=]      skip
PLUSPERCENTEQUAL     <- '+%='              skip
PLUSPIPE             <- '+|'     ![=]      skip
PLUSPIPEEQUAL        <- '+|='              skip
LETTERC              <- 'c'                skip
QUESTIONMARK         <- '?'                skip
RARROW               <- '>'      ![>=]     skip
RARROW2              <- '>>'     ![=]      skip
RARROW2EQUAL         <- '>>='              skip
RARROWEQUAL          <- '>='               skip
RBRACE               <- '}'                skip
RBRACKET             <- ']'                skip
RPAREN               <- ')'                skip
SEMICOLON            <- ';'                skip
SLASH                <- '/'      ![=]      skip
SLASHEQUAL           <- '/='               skip
TILDE                <- '~'                skip

end_of_word <- ![a-zA-Z0-9_] skip
KEYWORD_addrspace   <- 'addrspace'   end_of_word
KEYWORD_align       <- 'align'       end_of_word
KEYWORD_allowzero   <- 'allowzero'   end_of_word
KEYWORD_and         <- 'and'         end_of_word
KEYWORD_anyframe    <- 'anyframe'    end_of_word
KEYWORD_anytype     <- 'anytype'     end_of_word
KEYWORD_asm         <- 'asm'         end_of_word
KEYWORD_break       <- 'break'       end_of_word
KEYWORD_callconv    <- 'callconv'    end_of_word
KEYWORD_catch       <- 'catch'       end_of_word
KEYWORD_comptime    <- 'comptime'    end_of_word
KEYWORD_const       <- 'const'       end_of_word
KEYWORD_continue    <- 'continue'    end_of_word
KEYWORD_defer       <- 'defer'       end_of_word
KEYWORD_else        <- 'else'        end_of_word
KEYWORD_enum        <- 'enum'        end_of_word
KEYWORD_errdefer    <- 'errdefer'    end_of_word
KEYWORD_error       <- 'error'       end_of_word
KEYWORD_export      <- 'export'      end_of_word
KEYWORD_extern      <- 'extern'      end_of_word
KEYWORD_fn          <- 'fn'          end_of_word
KEYWORD_for         <- 'for'         end_of_word
KEYWORD_if          <- 'if'          end_of_word
KEYWORD_inline      <- 'inline'      end_of_word
KEYWORD_noalias     <- 'noalias'     end_of_word
KEYWORD_nosuspend   <- 'nosuspend'   end_of_word
KEYWORD_noinline    <- 'noinline'    end_of_word
KEYWORD_opaque      <- 'opaque'      end_of_word
KEYWORD_or          <- 'or'          end_of_word
KEYWORD_orelse      <- 'orelse'      end_of_word
KEYWORD_packed      <- 'packed'      end_of_word
KEYWORD_pub         <- 'pub'         end_of_word
KEYWORD_resume      <- 'resume'      end_of_word
KEYWORD_return      <- 'return'      end_of_word
KEYWORD_linksection <- 'linksection' end_of_word
KEYWORD_struct      <- 'struct'      end_of_word
KEYWORD_suspend     <- 'suspend'     end_of_word
KEYWORD_switch      <- 'switch'      end_of_word
KEYWORD_test        <- 'test'        end_of_word
KEYWORD_threadlocal <- 'threadlocal' end_of_word
KEYWORD_try         <- 'try'         end_of_word
KEYWORD_union       <- 'union'       end_of_word
KEYWORD_unreachable <- 'unreachable' end_of_word
KEYWORD_var         <- 'var'         end_of_word
KEYWORD_volatile    <- 'volatile'    end_of_word
KEYWORD_while       <- 'while'       end_of_word

keyword <- KEYWORD_addrspace / KEYWORD_align / KEYWORD_allowzero / KEYWORD_and
         / KEYWORD_anyframe / KEYWORD_anytype / KEYWORD_asm
         / KEYWORD_break / KEYWORD_callconv / KEYWORD_catch
         / KEYWORD_comptime / KEYWORD_const / KEYWORD_continue / KEYWORD_defer
         / KEYWORD_else / KEYWORD_enum / KEYWORD_errdefer / KEYWORD_error / KEYWORD_export
         / KEYWORD_extern / KEYWORD_fn / KEYWORD_for / KEYWORD_if
         / KEYWORD_inline / KEYWORD_noalias / KEYWORD_nosuspend / KEYWORD_noinline
         / KEYWORD_opaque / KEYWORD_or / KEYWORD_orelse / KEYWORD_packed
         / KEYWORD_pub / KEYWORD_resume / KEYWORD_return / KEYWORD_linksection
         / KEYWORD_struct / KEYWORD_suspend / KEYWORD_switch / KEYWORD_test
         / KEYWORD_threadlocal / KEYWORD_try / KEYWORD_union / KEYWORD_unreachable
         / KEYWORD_var / KEYWORD_volatile / KEYWORD_while
      {#end_syntax_block#}
      {#header_close#}
      {#header_open|Zen#}
      <ul>
        <li>Communicate intent precisely.</li>
        <li>Edge cases matter.</li>
        <li>Favor reading code over writing code.</li>
        <li>Only one obvious way to do things.</li>
        <li>Runtime crashes are better than bugs.</li>
        <li>Compile errors are better than runtime crashes.</li>
        <li>Incremental improvements.</li>
        <li>Avoid local maximums.</li>
        <li>Reduce the amount one must remember.</li>
        <li>Focus on code rather than style.</li>
        <li>Resource allocation may fail; resource deallocation must succeed.</li>
        <li>Memory is a resource.</li>
        <li>Together we serve the users.</li>
      </ul>
      {#header_close#}
      {#header_close#}
      </main></div>
    </div>
  </body>
</html>